Hypergraph Designs

G. M. Foust and C.A. Rodger*
Department of Discrete and Statistical Sciences
120 Math Annex
Auburn University, Alabama
USA 36849-5307

Dedicated to Anne Penfold Street.

Abstract

Let H_i be the 3-uniform hypergraph or 4 vertices with *i* hyperedges. In this paper we settle the existence of H_3 -hypergraph designs of index λ , obtaining simple H_3 -hypergraph designs when $\lambda = 2$, and obtaining a new proof of their existence when $\lambda = 1$. The existence of simple H_2 -hypergraph designs of index λ is completely settled, as is the spectrum of H_2 -hypergraph designs of index λ .

1 Introduction

In this paper we consider a generalization of graph designs. A G-design of a graph M is a partition of the edge-set of M for which each element of the partition induces a copy of the graph G. Let λK_n denote the multigraph on n vertices in which each pair of vertices is joined by exactly λ edges. A G-design of order n and index λ is a G-design of λK_n . The λ -spectrum of G is the set of integers n for which there exists a G-design of order n and index λ . Finding the spectrum of various graphs is a well studied question that began with Kirkman's proof in 1849 [11] of the result that K_3 -designs of order n (Steiner triple systems) exist if and only if $n \equiv 1$ or $n \equiv$

A hypergraph of order n is an ordered pair (V, E) where V is a set of n vertices, and E is a collection of subsets of V. Each element e of E is

^{*}This research supported by NSF grant DMS-9531722 and ONR N00014-97-1-1067

said to be a hyperedge of size |e|. The hypergraph H = (V, E) is said to be x-uniform if each hyperedge in E has size x; throughout this paper, we let H^x denote the property that H is x-uniform. Let λK_n^x denote the complete x-uniform hypergraph of order n and index λ (so the hyperedge collection of λK_n^x contains each x-element subset of V exactly λ times).

It is natural for one to ask the same questions of "hypergraph designs" that have been considered for graph designs. An H^x -hypergraph design of a hypergraph M^x is a partition of the hyperedges of M^x , in which each element of the partition induces a copy of H^x . An H^x -hypergraph design of order n and index λ is an H^x -hypergraph design of λK_n^x . The λ -spectrum of H^x is the set of integers n for which there exists an H^x -hypergraph design of order n and index λ . An H^x -hypergraph design of index λ is said to be simple if no copy of H_x appears more than once. Throughout what follows, let H_e denote the unique (up to isomorphism) 3-uniform hypergraph on 4 vertices containing e hyperedges.

The spectrum of H_4 -hypergraph designs was solved in 1960 by Hanani [7] in the guise of Steiner Quadruple Systems (notice that $H_4 = K_4^3$). Hanani showed that Steiner Quadruple Systems of order n exist if and only if $n \equiv 2$ or 4 (mod 6) or n = 1. A year later he settled [8] the λ -spectrum for H_4 -hypergraph designs for all λ . More recently, Bermond Germa and Sotteau [1] solved the spectrum problem for H_2 -hypergraph designs and for H_3 -hypergraph designs.

Theorem 1.1 ([1]) There exist H_3 -hypergraph designs of order n and index 1 if and only if $n \equiv 0, 1$ or 2 (mod 9). There exist H_2 -hypergraph designs of order n and index 1 if and only if $n \equiv 0, 1$ or 2 (mod 4).

In their proof, they use the fact that Kirkman triple systems exist of all orders $n \equiv 3 \pmod{6}$, and remark that it would be interesting to find a proof that avoids using this heavy machinery.

In this paper we obtain such a proof, and then use it to obtain some new results. In Section 3 we provide this new proof, using it to obtain two H_3 -hypergraph designs that have no copies of H_3 in common, for all possible orders (see Theorem 3.1). Of course, combining two such H_3 -hypergraph designs of order n produces an H_3 -hypergraph design of order n and index 2 that is simple. In Section 4 we obtain the λ -spectrum for H_3 -hypergraph designs for all λ (see Theorem 4.1). Finally, in Section 5 we obtain a new proof of the existence of H_2 -hypergraph designs of index 1 (this was first proved by Mouyart [14]), which we then use to solve the λ -spectrum problem for H_2 -hypergraph designs (see Corollary 5.2), and to obtain necessary and sufficient conditions for the existence of a simple H_2 -hypergraph design of index λ .

For any design theoretical terms not defined in this paper see [13].

2 Some Preliminary Constructions

Since the following constructions will need to refer to specific copies of H_3 , we make the following definition. Let $H_3(a, b, c, d)$ be the hypergraph with vertex set $\{a, b, c, d\}$ and hyperdedge set $\{\{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}$.

Lemma 2.1 There exist two H_3 -hypergraph designs of order 9 and index 1 that have no copies of H_3 in common.

```
Proof: Let V = \{1,2,3,4,5,6,7,8,9\}. Let E_1 = \{\{1,5,6,9\},\{2,6,7,9\},\{3,7,1,9\},\{4,1,2,9\},\{5,2,3,9\},\{6,3,4,9\},\{7,4,5,9\},\{1,2,8,9\},\{2,3,8,9\},\{3,4,8,9\},\{4,5,8,9\},\{5,6,8,9\},\{6,7,8,9\},\{7,1,8,9\},\{1,3,4,8\},\{2,4,5,8\},\{3,5,6,8\},\{4,6,7,8\},\{5,7,1,8\},\{6,1,2,8\},\{7,2,3,8\},\{1,4,6,7\},\{2,5,7,1\},\{3,6,1,2\},\{4,7,2,3\},\{5,1,3,4\},\{6,2,4,5\},\{7,3,5,6\}\}, and E_2 = \{\{5,9,1,4\},\{6,1,2,4\},\{7,2,5,4\},\{8,5,6,4\},\{9,6,7,4\},\{1,7,8,4\},\{2,8,9,4\},\{5,6,3,4\},\{6,7,3,4\},\{7,8,3,4\},\{8,9,3,4\},\{9,1,3,4\},\{1,2,3,4\},\{2,5,3,4\},\{5,7,8,3\},\{6,8,9,3\},\{7,9,1,3\},\{8,1,2,3\},\{9,2,5,3\},\{1,5,6,3\},\{2,6,7,3\},\{5,8,1,2\},\{6,9,2,5\},\{7,1,5,6\},\{8,2,6,7\},\{9,5,7,8\},\{1,6,8,9\},\{2,7,9,1\}\}.
```

Lemma 2.2 There exist two partial triple systems of order 11 with no common triples, each of which has leave consisting of two vertex disjoint 5-cycles.

```
Proof: Let V = \{0,1,2,3,4,5,6,7,8,9,A\}. Let B_1 = \{\{A,0,1\},\{A,2,3\},\{A,4,5\},\{A,6,7\},\{A,8,9\},\{0,3,6\},\{0,4,7\},\{0,5,9\},\{1,2,7\},\{1,4,8\},\{1,5,6\},\{2,5,8\},\{2,6,9\},\{3,4,9\},\{3,7,8\}\}, and B_2 = \{\{A,2,1\},\{A,4,3\},\{A,6,5\},\{4,8,7\},\{4,0,9\},\{2,3,8\},\{2,6,7\},\{2,5,9\},\{1,4,7\},\{1,6,0\},\{1,5,8\},\{4,5,0\},\{4,8,9\},\{3,6,9\},\{3,7,0\}\}. Then the leave of each is \{(2,4,6,8,0),(1,3,5,7,9)\}.
```

Lemma 2.3 There exists an H_3 -hypergraph design of order 4 and index 3.

Proof: Let
$$V = \{0,1,2,3\}$$
. Let $E = \{\{0,1,2,3\},\{1,2,3,0\},\{2,3,0,1\},\{3,0,1,2\}\}$.

Lemma 2.4 There exists an H_3 -hypergraph design of order 5 and index 3.

Proof: Let
$$V = \{0,1,2,3,4\}$$
. Let $E = \{\{0,1,2,3\},\{1,2,3,4\},\{2,3,4,0\},\{3,4,0,1\},\{4,0,1,2\},\{0,2,4,1\},\{1,3,0,2\},\{2,4,1,3\},\{3,0,2,4\},\{4,1,3,0\}\}\}$.

Lemma 2.5 There exists an H_3 -hypergraph design of order 7 and index 3.

```
Proof: Let V = \{0,1,2,3,4,5,6\}.
Let E = \{\{0,1,2,4\},\{1,2,3,5\},\{2,3,4,6\},\{3,4,5,0\},\{4,5,6,1\},
```

$$\{5,6,0,2\}, \{6,0,1,3\}, \{0,1,2,4\}, \{1,2,3,5\}, \{2,3,4,6\}, \{3,4,5,0\}, \\ \{4,5,6,1\}, \{5,6,0,2\}, \{6,0,1,3\}, \{0,1,4,5\}, \{1,2,5,6\}, \{2,3,6,0\}, \\ \{3,4,0,1\}, \{4,5,1,2\}, \{5,6,2,3\}, \{6,0,3,4\}, \{0,1,3,5\}, \{1,2,4,6\}, \\ \{2,3,5,0\}, \{3,4,6,1\}, \{4,5,0,2\}, \{5,6,1,3\}, \{6,0,2,4\}, \{0,1,2,3\}, \\ \{1,2,3,4\}, \{2,3,4,5\}, \{3,4,5,6\}, \{4,5,6,0\}, \{5,6,0,1\}, \{6,0,1,2\}\}.$$

We will need the following small design.

Lemma 2.6 There exist a partial triple system of order 5 whose leave consists of a 4-cycle.

Proof: Let $V = \{0, 1, 2, 3, 4\}$ and $T = \{\{0, 1, 3\}, \{0, 2, 4\}\}$. Then the leave of (V,T) is the 4-cycle (1, 2, 3, 4).

We will also need the following well-known result, a proof of which we include for completeness to verify that the result is not "heavy machinery."

Lemma 2.7 For all $n \equiv 1$ or 3 (mod 6) there exist two Steiner triple systems (V, T_1) and (V, T_2) of order n that have no triples in common. Furthermore, if $n \equiv 3 \pmod{6}$ then T_i contains a parallel class $\pi_i (1 \le i \le 2)$ such that no edge (pair) is in a triple in both π_1 and π_2 .

Proof: If $n \equiv 3 \pmod{6}$, we use the Bose Construction (see [13]) as follows. Let $V = \mathbb{Z}_{2x+1} \times \mathbb{Z}_3$ and let (V, \cdot) be a symmetric idempotent quasigroup of order 2x + 1. Let

```
\begin{array}{lll} \pi_1 & = & \{\{(a,1),(a,2),(a,3)\} \mid a \in \mathbb{Z}_{2x+1}\}, \\ T_1 & = & \pi_1 \cup \{\{(a,i),(b,i),(a \cdot b,i+1)\} \mid 0 \leq a < b \leq 2x, i \in \mathbb{Z}_3\}, \\ \pi_2 & = & \{\{(a,1),(a+1,2),(a+2,3)\} \mid a \in \mathbb{Z}_{2x+1}\}, \text{ and } \\ T_2 & = & \pi_2 \cup \{\{(a,i),(b,i),(\alpha_i(a \cdot b),i-1)\} \mid 0 \leq a < b \leq 2x, i \in \mathbb{Z}_3\}, \end{array}
```

reducing the second component modulo 3, where $\alpha_1(c) = c + 2$ and $\alpha_2(c) = \alpha_3(c) = c - 1$ for each $c \in \mathbb{Z}_{2x+1}$. The Skolem Construction (see [13]) can be used similarly to handle the case where $n \equiv 1 \pmod{6}$.

3 The 2-Spectrum of simple H_3 -hypergraph designs

Let $H_3[V]$ denote an H_3 -hypergraph design on the vertex set V.

Theorem 3.1 H_3 -hypergraph designs, of order n and index 2 with no repeated copies of H_3 exist if and only if $n \equiv 0, 1$ or $2 \pmod{9}$.

Remark: The following proof actually obtains two H_3 -hypergraph designs of order n and index 1 that have no copies of H_3 in common.

Proof: To construct these H_3 -hypergraph designs, we consider several cases in turn.

Case 1: $n \equiv 0 \pmod{9}$

We will show the existence of H_3 -hypergraph designs of order $n \equiv 0 \pmod{9}$ and index 2 with no repeated copies of H_3 by induction. Let n = 18z + 9 or 18z for $z \geq 0$ or $z \geq 1$ respectively. The proof is by induction on z.

For z=0, the existence of an H_3 -hypergraph design of order 9 and index 2 with no repeated copies of H_3 is given by Lemma 2.1. So now, let $k \geq 1$ and assume that there exists an H_3 -hypergraph design of order 18z + 9 and index 2 with no repeated copies of H_3 for all $z, 0 \leq z < k$.

The proof of this case is completed by showing there exist H_3 -hypergraph designs of order n = 18k and n = 18k + 9; these two values of n are handled separately.

Construction I: to construct an H_3 -hypergraph design of order n = 18k.

Let $X = \{1, 2, ..., 9\}, Y = \{10, 11, ..., 18k\}, \text{ and } N = X \cup Y.$

Let $H_3[X]$ be an H_3 -hypergraph design of order |X| = 9 and index 2 with no repeated copies of H_3 (this exists by Lemma 2.1), and let $H_3[Y]$ be an H_3 -hypergraph design of order |Y| = n-9 = 18k-9 = 18(k-1)+9 and index 2 with no repeated copies of H_3 (this exists by the induction hypothesis). Note that $|X| \equiv |Y| \equiv 3 \pmod{6}$ so for $1 \le i \le 2$ let $STS(X, B_{X_i})$ denote a Steiner triple system of order 9 with vertex set X and block set B_{X_i} such that $B_{X_1} \cap B_{X_2} = \emptyset$ (see Lemma 2.7) and similarly let $STS(Y, B_{Y_i})$ denote a Steiner triple system of order n-9 such that $B_{Y_1} \cap B_{Y_2} = \emptyset$. Define $H_3[N]$ as follows:

Type 1: if $H_3(a, b, c, d) \in H_3[X]$ then $H_3(a, b, c, d) \in H_3[N]$,

Type 2: if $H_3(a, b, c, d) \in H_3[Y]$ then $H_3(a, b, c, d) \in H_3[N]$,

Type 3: for $1 \le i \le 2$, if $a \in X$, and $\{b, c, d\} \in B_{Y_i}$ then $H_3(a, b, c, d) \in H_3[N]$, and

Type 4: for $1 \le i \le 2$, if $a \in Y$, and $\{b, c, d\} \in B_{X_i}$ then $H_3(a, b, c, d) \in H_3[N]$.

Claim: $H_3[N]$ is an H_3 -hypergraph design with vertex set N of order n=18k and index 2 with no repeated copies of H_3 . To prove this we need to show every hyperedge, t, of K_n^3 is in exactly two different copies of $H_3 \in H_3[N]$. If $t=\{a,b,c\} \subset X$ then since $H_3[X]$ is an H_3 -hypergraph design of index 2 with no repeated copies of H_3 there exist two different copies of H_3 in $H_3[X]$ containing t; so t is in two different copies of H_3 that are of Type 1 in $H_3[N]$.

If $t = \{a, b, c\} \subset Y$ then since $H_3[Y]$ is an H_3 -hypergraph design of index 2 with no repeated copies of H_3 there exist two different copies of H_3 in

 $H_3[Y]$ containing t; so t is in two different copies of H_3 that are of Type 2 in $H_3[N]$.

If $t = \{a, b, c\}$ where $a \in X$ and $\{b, c\} \subset Y$, then there exist $d_1, d_2 \in Y$ such that $\{b, c, d_i\} \in B_{Y_i}$, where $d_1 \neq d_2$ (since $B_{Y_1} \cap B_{Y_2} = \emptyset$); so t is in $H_3(a, b, c, d_i)$ which is of Type 3 in $H_3[N]$.

If $t = \{a, b, c\}$ where $a \in Y$ and $\{b, c\} \subset X$, then there exist $d_1, d_2 \in X$ such that $\{b, c, d_i\} \in B_{X_i}$, where $d_1 \neq d_2$ (since $(B_{X_1} \cap B_{X_2} = \emptyset)$; so t is in $H_3(a, b, c, d_i)$ which is of Type 4 in $H_3[N]$.

So every hyperedge, t, is in at least two different copies of $H_3 \in H_3[N]$. The total number of copies of H_3 in $H_3[N]$ is: $2\binom{9}{3}/3$ of Type 1; $2\binom{n-9}{3}/3$ of Type 2; $2 \cdot 9\binom{n-9}{2}/3$ of Type 3; and $2(n-9)\binom{9}{2}/3$ of Type 4. So since every hyperedge is in at least two copies of $H_3 \in H_3[N]$, and since $H_3[N]$ contains $2\binom{9}{3}/3 + 2\binom{n-9}{3}/3 + 2 \cdot 9\binom{n-9}{2}/3 + 2(n-9)\binom{9}{2}/3 = 2(n^3 - 3n^2 + 2n)/18 = 2\binom{n}{3}/3$ copies of H_3 , every hyperedge is in exactly two copies of $H_3 \in H_3[N]$. So $H_3[N]$ is an H_3 -hypergraph design with vertex set N of order n and index 2 with no repeated copies of H_3 as claimed.

Construction II: To construct an H_3 -hypergraph design of order n = 18k + 9.

Let $X = \{1, 2, ..., 9\}$, $Y = \{10, 11, ..., 18k + 9\}$, and $N = X \cup Y$. Let $H_3[X]$ be an H_3 -hypergraph design of order |X| = 9 and index 2 with no repeated copies of H_3 (this exists by Lemma 2.1), and let $H_3[Y]$ be an H_3 -hypergraph design of order |Y| = 18k and index 2 with no repeated copies of H_3 (this exists by Construction I). For $1 \le i \le 2$ let $STS(X, B_{X_i})$ be a Steiner triple system of order 9 such that $B_{X_1} \cap B_{X_2} = \emptyset$, and let π_i be a parallel class of the $STS(X, B_{X_i})$ such that π_1 and π_2 have no edge in common (see Lemma 2.7). Since $18k \equiv 0 \pmod{6}$, there exist two maximal packings, (Y, B_{Y_i}) for $1 \le i \le 2$, of K_{18k} with triples on the vertex set Y such that: the leave in (Y, B_{Y_i}) is a 1-factor M_{Y_i} with $M_{Y_1} \cap M_{Y_2} = \emptyset$; and $B_{Y_1} \cap B_{Y_2} = \emptyset$ (using Lemma 2.7, delete a point $y \in Y$ from two STSs of order 18k + 1). Define $H_3[N]$ as follows:

Type 1: if $H_3(a, b, c, d) \in H_3[X]$ then $H_3(a, b, c, d) \in H_3[N]$,

Type 2: if $H_3(a, b, c, d) \in H_3[Y]$ then $H_3(a, b, c, d) \in H_3[N]$,

Type 3: for $1 \le i \le 2$, if $a \in X$ and $\{b, c, d\} \in B_{Y_i}$ then $H_3(a, b, c, d) \in H_3[N]$,

Type 4: for $1 \le i \le 2$, if $a \in Y$ and $\{b, c, d\} \in B_{X_i} \setminus \pi_i$ then $H_3(a, b, c, d) \in H_3[N]$, and

Type 5: for $1 \le i \le 2$ if $\{a, b, c\} \in \pi_i$ with a < b < c, and $\{d, e\} \in M_{Y_i}$ then each of $H_3(a, b, d, e)$,

 $H_3(b, c, d, e)$, and $H_3(c, a, d, e)$ are in $H_3[N]$.

Claim: $H_3[N]$ is an H_3 -hypergraph design with vertex set N of order n = 18k + 9 and index 2 with no repeated copies of H_3 .

As before, we consider each hyperedge, t, in turn. If $t = \{a, b, c\} \subset X$ then since $H_3[X]$ is an H_3 -hypergraph design of index 2 with no repeated

copies of H_3 there exist two different copies of H_3 in $H_3[X]$ containing t, so t is in two different copies of H_3 that are of Type 1 in $H_3[N]$. Similarly, if $t = \{a, b, c\} \subset Y$ then t is in two different copies of H_3 that are of Type 2 in $H_3[N]$.

If $t = \{a, b, c\}$ where $a \in X$ and $\{b, c\} \subset Y$ then for $1 \le i \le 2$: either there exists some $d_1, d_2 \in Y$ such that $\{b, c, d_i\} \in B_{Y_i}$, where $d_1 \ne d_2$ (since $B_{Y_1} \cap B_{Y_2} = \emptyset$), in which case $H_3(a, b, c, d_i)$ is of Type 3 in $H_3[N]$; or $\{b, c\} \in M_{Y_i}$ (this happens for at most one value of i, since $M_{Y_1} \cap M_{Y_2} = \emptyset$), in which case there exists some $\{d, e\} \subset X$, such that $\{a, d, e\} \in \pi_i$, so t is in a copy of Type 5 in $H_3[N]$. So $\{a, b, c\}$ occurs in two different copies in this case.

If $t = \{a, b, c\}$ where $a \in Y$ and $\{b, c\} \subset X$ then there exist $d_1, d_2 \in X$ with $d_1 \neq d_2$ such that $\{b, c, d_i\} \in B_{X_i}$. If $\{b, c, d_i\} \notin \pi_i$ then $H_3(a, b, c, d_i)$ is of Type 4 in $H_3[N]$; and otherwise, since M_{Y_i} is a 1-factor, there exists some $e \in Y$ such that $\{a, e\} \in M_{Y_i}$ (this happens for at most one value of i since π_1 and π_2 are edge-disjoint) so t is in a copy of H_3 that is of Type 5 in $H_3[N]$. Since π_1 and π_2 are edge-disjoint, $\{a, b, c\}$ occurs in two different copies in this case.

So every hyperedge in in at least two different copies of $H_3 \in H_3[N]$. The total number of copies of H_3 in $H_3[N]$ is $2\binom{9}{3}/3$ of Type 1; $2\binom{n-9}{3}/3$ of Type 2; $2(9\binom{n-9}{2})-(n-9)/2)/3$ of Type 3; $2(n-9)\binom{9}{2}/3-3$ of Type 4; and $2\cdot 3\cdot 3\cdot (n-9)/2$ of Type 5. Since every hyperedge is in at least two copies of $H_3 \in H_3[N]$, and since $H_3[N]$ contains $2\binom{9}{3}/3+2\binom{n-9}{3}/3+2(9\binom{n-9}{2})-(n-9)/2)/3+2(n-9)\binom{9}{2}/3-3)+2\cdot 3\cdot 3\cdot (n-9)/2=2(n^3-3n^2+2n)/18=2\binom{n}{3}/3$ copies of H_3 , every hyperedge is in exactly two copies of $H_3 \in H_3[N]$. So $H_3[N]$ is an H_3 -hypergraph design with vertex set N of order n and index 2 with no repeated copies of H_3 for all $n \equiv 0 \pmod{9}$. This completes Case 1.

Case 2: $n \equiv 10 \pmod{18}$

Construction III: to construct an H_3 -hypergraph design of order n = 18k + 10.

Let $X = \{1, 2, ..., 18k + 9\}$ and let $N = X \cup \{\infty\}$. Let $H_3[X]$ be an H_3 -hypergraph design of order |X| = 18k + 9 and index 2 with no repeated copies of H_3 ; this was shown to exist in Case 1. For $1 \le i \le 2$ let $STS(X, B_{X_i})$ be a Steiner triple system of order |X| = 18k + 9 such that $B_{X_1} \cap B_{X_2} = \emptyset$ (see Lemma 2.7). Define $H_3[N]$ as follows:

Type 1: if $H_3(a, b, c, d) \in H_3[X]$ then $H_3(a, b, c, d) \in H_3[N]$, and **Type 2:** for $1 \le i \le 2$ if $\{a, b, c\} \in B_{X_i}$ then $H_3(\infty, a, b, c) \in H_3[N]$.

Claim: $H_3[N]$ is an H_3 -hypergraph design with vertex set N and order n = 18k + 10 and index 2 with no repeated copies of H_3 .

As before, we consider each hyperedge, t, in turn. If $t = \{a, b, c\} \subset X$ then since $H_3[X]$ is an H_3 -hypergraph design, of index 2 with no repeated

copies of H_3 , there exist two different copies of H_3 in $H_3[X]$ containing t; so t is in two different copies of H_3 that are of Type 1 in $H_3[N]$.

If $t = \{\infty, a, b\}$ then there exist $c_1, c_2 \in X$ such that $\{a, b, c_i\} \in B_{X_i}$ for $1 \le i \le 2$, with $c_1 \ne c_2$ since $B_{X_1} \cap B_{X_2} = \emptyset$, so t is in two different copies of H_3 of Type 2 in $H_3[N]$. So every hyperedge, t, is in at least two different copies of $H_3 \in H_3[N]$. The total number of copies of H_3 in $H_3[N]$ is $2\binom{n-1}{3}/3$ of Type 1 and $2\binom{n-1}{2}/3$ of Type 2. So since every hyperedge is in at least two different copies of $H_3 \in H_3[N]$, and $H_3[N]$ contains $2\binom{n}{3}/3$ copies of H_3 , every hyperedge in in exactly two different copies of $H_3 \in H_3[N]$. So $H_3[N]$ is an H_3 -hypergraph design with vertex set N of order n and index 2 with no repeated copies of H_3 as claimed.

Case 3: $n \equiv 11 \pmod{18}$

Construction IV: to construct an H_3 -hypergraph design of order n = 18k + 11.

Let $X = \{1, 2, ..., 18k + 9\}$ and let $N = X \cup \{\infty_1, \infty_2\}$. Let $H_3[X]$ be an H_3 -hypergraph design of order |X| = 18k + 9; this was shown to exist in Case 1. For $1 \le i \le 2$ let $STS(X, B_{X_i})$ be a Steiner triple system of order |X| = 18k + 9, such that $B_{X_1} \cap B_{X_2} = \emptyset$ and in which π_i is a parallel class of triples in B_i such that π_1 and π_2 have no edges in common (see Lemma 2.7). Define $H_3[N]$ as follows:

Type 1: if $H_3(a, b, c, d) \in H_3[X]$ then $H_3(a, b, c, d) \in H_3[N]$,

Type 2: for $1 \le i \le 2$ if $\{a,b,c\} \in B_{X_i} \setminus \pi_i$ then $H_3(\infty_1,a,b,c)$ and $H_3(\infty_2,a,b,c) \in H_3[N]$, and

Type 3: for $1 \le i \le 2$ if $\{a, b, c\} \in \pi_i$ with a < b < c then $H_3(a, b, \infty_1, \infty_2)$, $H_3(b, c, \infty_1, \infty_2)$, and

 $H_3(c,a,\infty_1,\infty_2)\in H_3[N].$

Claim: $H_3[N]$ is an H_3 -hypergraph design with vertex set N of order 18k + 11 and index 2 with no repeated copies of H_3 .

As before, we consider each hyperedge, t, in turn. If $t = \{a, b, c\} \subset X$, then since $H_3[X]$ is an H_3 -hypergraph design of index 2 with no repeated copies of H_3 , there exist two different copies of H_3 in $H_3[X]$ containing t; so t in in two different copies of H_3 that are of Type 1 in $H_3[N]$.

If $t = \{\infty_j, a, b\}$ $(j \in \{1, 2\})$, then there exist $c_1, c_2 \in X$ such that $\{a, b, c_i\} \in B_{X_i}$ for $1 \le i \le 2$ with $c_1 \ne c_2$ since $B_{X_1} \cap B_{X_2} = \emptyset$. If $\{a, b, c_i\} \notin \pi_i$, then t is in an H_3 of Type 2 in $H_3[N]$. If $\{a, b, c_i\} \in \pi_i$, then t is in an H_3 of Type 3 in $H_3[N]$. Since π_1 and π_2 are edge-disjoint $\{\infty_j, a, b\}$ occurs in different copies in this case.

If $t = \{\infty_1, \infty_2, a\}$ then for $1 \le i \le 2$ there exists some $\{b_i, c_i\} \subset X_i$ such that $\{a, b_i, c_i\} \in \pi_i$, with $\{b_1, c_1\} \cap \{b_2, c_2\} = \emptyset$ since π_1 and π_2 are edge-disjoint; so t is two different copies of H_3 of Type 3 in $H_3[N]$.

So every hyperedge, t, is in at least two different copies of $H_3 \in H_3[N]$. The total number of copies of H_3 in $H_3[N]$ is $2\binom{n-2}{3}/3$ of Type I, $2 \cdot 2((\binom{n-2}{2})/3) - (n-2)/3$) of Type 2, and $2 \cdot 3((n-2)/3)$ of Type 3. So since

every hyperedge is in at least one copy of $H_3 \in H_3[N]$, and since the total number of copies of H_3 is $2\binom{n}{3}/3$, every hyperedge is in exactly two copies of $H_3 \in H_3[N]$. So $H_3[N]$ is an H_3 -hypergraph design with vertex set N of order n and index 2 with no repeated copies of H_3 as claimed.

Case 4: $n \equiv 1 \pmod{18}$

Construction V: to construct an H_3 -hypergraph design of order n = 18k + 1.

Let $X=\{1,2,\ldots,18k-9\},\ Y=\{18k-9,18k-8,\ldots,18k+1\}$ (so $X\cap Y=\{18k-9\}$), and $N=X\cup Y$. Let $H_3[X]$ be an H_3 -hypergraph design of order |X|=18k-9 and index 2 with no repeated copies of H_3 ; this was show to exist in Case 1. Let $H_3[Y]$ be an H_3 -hypergraph design of order |Y|=11 and index 2 with no repeated copies of H_3 ; this was shown to exist in Case 3. For $1\leq i\leq 2$: let $STS(X,B_{X_i})$ be a Steiner triple system of order |X|=18k-9 such that $B_{X_1}\cap B_{X_2}=\emptyset$ (see Lemma 2.7); let α_i be the set of all triples in B_{X_i} that contain the vertex 18k-9; and let $L_i=\{\{j,\ell\}\mid\{18k-9,j,\ell\}\in B_{X_i}\}$ (note $L_1\cap L_2=\emptyset$). For $1\leq i\leq 2$ let $TS(Y,B_{Y_i})$ be a partial triple system of order 11 such that $B_{Y_1}\cap B_{Y_2}=\emptyset$ with leave $M_1=\{(18k-8+s,18k-7+s,18k-6+s,18k-5+s,18k-4+s)\mid s\in\{0,5\}\}$ (this exists by Lemma 2.2). Define $H_3[N]$ as follows:

Type 1: if $H_3(a, b, c, d) \in H_3[X]$ then $H_3(a, b, c, d) \in H_3[N]$,

Type 2: if $H_3(a, b, c, d) \in H_3[Y]$ then $H_3(a, b, c, d) \in H_3[N]$,

Type 3: for $1 \le i \le 2$, if $\{a, b, c\} \in B_{X_i} \setminus \alpha_i$ then $H_3(y, a, b, c) \in H_3[N]$, for each $y \in Y \setminus \{18k - 9\}$,

Type 4: for $1 \le i \le 2$, if $\{a, b, c\} \in B_{Y_i}$ then $H_3(x, a, b, c) \in H_3[N]$, for each $x \in X \setminus \{18k - 9\}$, and

Type 5: for $1 \le i \le 2$, if $(a, b, c, d, e) \in M_i$ with a > b > c > d > e then $\{H_3(a, b, j, \ell), H_3(b, c, j, \ell), H_3(c, d, j, \ell), H_3(d, e, j, \ell), H_3(e, a, j, \ell)\} \subseteq H_3[N]$, for each $\{j, k\} \in L_i$.

Claim: $H_3[N]$ is an H_3 -hypergraph design with vertex set N of order n = 18k + 1 and index 2 with no repeated copies.

As before, we consider each hyperedge, t, in turn. If $t = \{a, b, c\} \subset X$ or $t = \{a, b, c\} \subset Y$, then t is in two different copies of $H_3 \in H_3[N]$ that is of Type 1 or Type 2 respectively.

If $t = \{a, b, c\}$, where $\{b, c\} \subset X$ and $a \in Y \setminus \{18k - 9\}$, then there exist $d_1, d_2 \in X$ such that $\{b, c, d_i\} \in B_{X_i}$ for $1 \le i \le 2$. If $d_i = 18k - 9$, then there exists some 5-cycle in M_i containing a, so t is in a copy of H_3 of Type 5 in $H_3[N]$. Otherwise t is in an H_3 of Type 3 in $H_3[N]$. These copies are different since $B_{X_1} \cap B_{X_2} = \emptyset$.

If $t = \{a, b, c\}$, where $a \in X \setminus \{18k-9\}$ and $\{b, c\} \subset Y$ (possibly $18k-9 \in \{b, c\}$), then: either there exists $d_1, d_2 \in Y$ such that $\{b, c, d_i\} \in B_{Y_i}$ for $1 \le i \le 2$, with $d_1 \ne d_2$ since $B_{Y_1} \cap B_{Y_2} = \emptyset$, in which case t is in two different copies of H_3 of Type 4 in $H_3[N]$; or $\{b, c\}$ is an edge in a 5-cycle in M_1 and in M_2 , in which case there exist $g_1, g_2 \in X$ such that $\{a, g_i\} \in L_i$,

for $1 \le i \le 2$ with $g_1 \ne g_2$ since $L_1 \cap L_2 = \emptyset$, so t is in two different copies of H_3 of Type 5 in $H_3[N]$.

So every hyperedge t is in at least two different copies of $H_3 \in H_3[N]$. The total number of copies of H_3 in $H_3[N]$ is $2\binom{n-10}{3}/3$ of Type 1, $2\binom{11}{3}/3$ of Type 2, $2(n-11)((\binom{11}{2}-10)/3)$ of Type 3, $2\cdot 10((\binom{n-10}{2}/3)-(n-11)/2)$ of Type 4, and $2\cdot 2\cdot 5(n-11)/2$ of Type 5. So $H_3[N]$ contains $2\binom{n}{3}/3$ copies of H_3 . Therefore $H_3[N]$ is an H_3 -hypergraph design with vertex set N of order n of index 2 with no repeated copies of H_3 as claimed.

Case 5: $n \equiv 2 \pmod{18}$

Construction VI: to construct an H_3 -hypergraph design of order n = 18k + 2.

Let $X = \{1, 2, ..., 18k + 1\}$ and let $N = X \cup \{\infty\}$. Let $H_3[X]$ be an H_3 -hypergraph design of order |X| = 18k + 1 and index 2 with no repeated copies of H_3 ; this was shown to exist in Case 4. For $1 \le i \le 2$ let $STS(X, B_{X_i})$ be a Steiner triple system of order |X| = 18k + 1 such that $B_{X_1} \cap B_{X_2} = \emptyset$ (see Lemma 2.7). Define $H_3[N]$ as follows: Type 1: if $H_3(a, b, c, d) \in H_3[X]$ then $H_3(a, b, c, d) \in H_3[N]$, Type 2: for $1 \le i \le 2$, if $\{a, b, c\} \in B_{X_i}$ then $H_3(\infty, a, b, c) \in H_3[N]$.

Claim: $H_3[N]$ is an H_3 -hypergraph design with vertex set N of order n = 18k + 2 and index 2 with no repeated copies of H_3 .

As before, we consider each hyperedge, t, in turn. If $t = \{a, b, c\} \subset X$ then t is in two different copies of H_3 that are of Type 1 in $H_3[N]$, and if $t = \{\infty, a, b\}$ then there exist $c_1, c_2 \in X$ such that $\{a, b, c_i\} \in B_{X_i}$, $1 \le i \le 2$ so t is in an H_3 of Type 2 in $H_3[N]$. The copies containing t are different since $B_{X_1} \cap B_{X_2} = \emptyset$. So every hyperedge, t, is in at least two different copies of $H_3 \in H_3[N]$. Since the total number of copies of H_3 in $H_3[N]$ is $2\binom{n-1}{3}/3$ of Type 1 and $2\binom{n-1}{2}/3$ of Type 2, which is $2\binom{n}{3}/3$ altogether. So $H_3[N]$ is an H_3 -hypergraph design with vertex set N of order n and index 2 with no repeated copies of H_3 as claimed.

4 The λ -spectrum of H_3 -hypergraph designs for all values of λ

Theorem 4.1 H_3 -hypergraph designs of order n and index λ exist if and only if

 $\begin{cases} n \equiv 0, 1, 2, \pmod{9}, \text{ or} \\ \lambda \equiv 0 \pmod{3} \text{ and } n \neq 3. \end{cases}$

Proof: The existence of H_3 -hypergraph designs of order n, n = 0, 1, 2 (mod 9), and index 1 was solved in Theorem 1.1. To obtain an H_3 -hypergraph design of order n, $n \equiv 0, 1, 2$ (mod 9), for any λ , just take λ copies of each H_3 . For $\lambda \equiv 0 \pmod{3}$ we need only consider when $\lambda = 3$ and

 $n \equiv 3, 4, 5, 6, 7, 8 \pmod{9}$, since taking $\lambda/3$ copies of H_3 will produce an H_3 -hypergraph design of index λ . To construct these H_3 -hypergraph designs of index 3, we will consider two cases.

Case 1: $n \equiv 1 \pmod{2}$, $n \neq 3$.

We will show the existence of of H_3 -hypergraph designs of order $n \equiv 1 \pmod{2}$ and index $\lambda = 3$ by induction. Let n = 2z + 5 for $z \geq 0$. The proof is by induction on z.

For z=0 the existence of an H_3 -hypergraph design of order 5 is given by Lemma 2.4. For z=1 the existence of an H_3 -hypergraph design of order 7 is given by Lemma 2.5. So now, let $k \geq 2$ and assume there exists an H_3 -hypergraph design of order 2z+5 for all $z, 0 \leq z < k$.

Construction VII to construct an H_3 -hypergraph design of order n = 2k + 5.

Let $X = \{1, 2, 3, 4, 5\}, Y = \{5, 6, \dots, 2k+5\}$, and $N = X \cup Y$ (so $X \cap Y = \{5\}$).

Let $H_3[X]$ be an H_3 -hypergraph design of order |X|=5 and index 3 (this exists by Lemma 2.4). Let $H_3[Y]$ be an H_3 -hypergraph design of order |Y|=n-4=2k+1=2(k-2)+5 and index 3 (this exists by the induction hypothesis). Let $TS(Y,B_Y)$ be a three-fold triple system of order |Y|=2k+1; this exists since $|Y|=1\pmod{2}$ (see [12], for example). Let π be the set of all triples in B_Y that contain the vertex 5. Let L be the multiset given by $L=\{\{j,\ell\}|\{5,j,\ell\}\in B_Y\}$. Let $TS(X,B_X)$ be a partial triple system of order |X|=5 with leave the 4-cycle M=(1,2,3,4); this exists by Lemma 2.6.

Define $H_3[N]$ as follows:

Type 1: if $H_3(a, b, c, d) \in H_3[X]$ then $H_3(a, b, c, d) \in H_3[N]$,

Type 2: if $H_3(a, b, c, d) \in H_3[Y]$ then $H_3(a, b, c, d) \in H_3[N]$,

Type 3: if $\{a,b,c\} \in B_X$ then three copies of $H_3(y,a,b,c) \in H_3[N]$, for each $y \in Y \setminus \{5\}$,

Type 4: if $\{a,b,c\} \in B_Y \setminus \pi$ then $H_3(\ell,a,b,c) \in H_3[N]$, for each $\ell \in X \setminus \{5\}$, and

Type 5: $\{H_3(1,2,j,\ell), H_3(2,3,j,\ell), H_3(3,4,j,\ell), H_3(4,1,j,\ell)\} \subset H_3[N]$, for each $\{j,\ell\} \in L$.

Claim: $H_3[N]$ is an H_3 -hypergraph design with vertex set N of order n = 2k + 5 and index 3.

As before, we consider each hyperedge, t, in turn. If $t = \{a, b, c\} \subset X$ or $t = \{a, b, c\} \subset Y$, then t is in three copies of $H_3 \in H_3[N]$ that is of Type 1 or Type 2 respectively.

If $t = \{a, b, c\}$, where $\{b, c\} \subset X$ (possibly $5 \in \{b, c\}$) and $a \in Y \setminus \{5\}$, then: either there exists some $d \in X$ such that $\{b, c, d\} \in B_X$, in which case t is in three copies of $H_3 \in H_3[N]$ of Type 3; or $\{b, c\}$ is an edge in M, in which case there exist three edges in L that contain a (since there are three triples in B_Y containing $\{5, a\}$), so t is in three copies of $H_3 \in H_3[N]$

of Type 5.

If $t=\{a,b,c\}$, where $a\in X\smallsetminus\{5\}$ and $\{b,c\}\subset Y\smallsetminus\{5\}$, then there exist $d_1,d_2,d_3\in Y$ such that $\{b,c,d_i\}\in B_Y$ for $1\leq i\leq 3$. If $d_i=5$, t is in a copy of $H_3\in H_3[N]$ of Type 5; otherwise t is in a copy of $H_3\in H_3[N]$ of Type 4. So every hyperedge t is in at least three copies of $H_3\in H_3[N]$. The total number of copies of $H_3\in H_3[N]$ is 10 of Type I, $\binom{n-4}{3}$ of Type 2, $3\cdot 2(n-5)$ of Type 3, $4(\binom{n-4}{2})-3(n-5)/2$ of Type 4, and $4\cdot 3(n-5)/2$ of Type 5, which is $\binom{n}{3}$ altogether. So $H_3[N]$ is an H_3 -hypergraph design with vertex set N of order n and index 3 as claimed.

Case 2: $n \equiv 0 \pmod{2}$

Construction VIII: to construct an H_3 -hypergraph design of order $n \equiv 0 \pmod{2}$ and index 3.

Let $X = \{1, 2, 3, \dots n-1\}$ and let $N = X \cup \{\infty\}$. Let $H_3[X]$ be an H_3 -hypergraph design of order |X| = n-1; this was shown to exist in Construction VII. Let $TS(X, B_X)$ be a three-fold triple system of order $|X| \equiv 1 \pmod{2}$. Define $H_3[N]$ as follows:

Type 1: if $H_3(a, b, c, d) \in H_3[X]$ then $H_3(a, b, c, d) \in H_3[N]$, and Type 2: if $\{a, b, c\} \in B_X$ then $H_3(\infty, a, b, c) \in H_3[N]$.

Claim: $H_3[N]$ is an H_3 -hypergraph design with vertex set N of order n and index 3. As before, we consider each hyperedge, t, in turn. If $t = \{a, b, c\} \subset X$ then t is in three copies of H_3 that are of Type 1 in $H_3[N]$. If $t = \{\infty, a, b\}$ then there exists some $\{c_1, c_2, c_3\} \subset X$ such that $\{\{a, b, c_1\}, \{a, b, c_2\}, \{a, b, c_3\}\} \subset B_x$, so t is in three copies of H_3 of Type 2 in $H_3[N]$. So every hyperedge, t, is in at least three copies of $H_3 \in H_3[N]$. The total number of copies of H_3 in $H_3[N]$ is $\binom{n-1}{3}$ of Type 1 and $\binom{n-1}{2}$ of Type 2, which is $\binom{n}{3}$ altogether. So $H_3[N]$ is an H_3 -hypergraph design of order n and index 3 as claimed.

5 The Spectrum of H_2

Since the following construction will need to refer to specific copies of H_2 , we make the following definitions. Let $H_2(t_1, t_2)$ be the hypergraph with vertex set $\{t_1 \cup t_2\}$ and hyperedge set $\{\{t_1\}, \{t_2\}\}$.

Theorem 5.1 H_2 -hypergraph designs, of order n and index λ that are simple exist if and only if $\lambda \leq 3n-9$ and

$$\begin{cases} n \equiv 0, 1, 2 \pmod{4} & or \\ \lambda \equiv 0 \pmod{2} & and n \neq 3, \end{cases}$$

Proof: The necessity of the conditions follows because the number of triples $\lambda\binom{n}{3}$ must be divisible by 2, and because each copy of H_2 that

contains the triple $\{a, b, c\}$ must contain one of the 3(n-3) triples $\{a, b, x\}$, $\{a, c, y\}$ or $\{b, c, z\}$ for some x, y and z.

We begin the proof of the sufficiency by considering $\lambda \leq 2$, and in the process produce a new proof for the spectrum of H_2 -designs of index 1. There are various ways that one might establish the existence for H_2 -hypergraph designs. We decided the most interesting and direct way is to produce such a hypergraph design explicitly by finding a hamilton cycle C in the graph G(n) with vertex set being the set of all triples in $\{1, 2, \ldots, n\}$ and with two triples t_1 and t_2 being joined if and only if $|t_1 \cap t_2| = 2$. For then let $C = (t_1, t_2, \ldots, t_{\binom{n}{3}})$: if $n \equiv 0, 1$, or 2 (mod 4) then C has even length, so taking the copies of each H_2 in $E = \{H_2(t_{2i-1}, t_{2i})|1 \leq i \leq \binom{n}{3}/2\}$ produces the required H_2 -hypergraph design of index 1; and if $n \equiv 3 \pmod{4}$ then $\lambda = 2$, so taking the copies of each H_2 in $\{H_2(t_{2i-1}, t_{2i})|1 \leq i \leq \binom{n}{3}\}$ (reducing subscripts mod $\binom{n}{3}$) produces the required H_2 -hypergraph design.

Let G(k,n) be the graph with vertex set equal to the two element subsets of $\{k+1,k+2,\ldots,n\}$ in which two vertices v_1 and v_2 are joined if and only if $|v_1 \cap v_2| = 1$. There exists a directed Hamilton path $P^+(k,n)$ in G(k,n) from $\{k+1,k+2\}$ to $\{n-1,n\}$ defined by Figure 1.

The two possible endings of $P^+(k, n)$ depend on the parity of n-k; we display one with a solid line, the second with a dashed line.

Figure 1: $P^+(k, n)$

Let $P^-(k,n)$ be the directed path in G(k,n) from $\{n-1,n\}$ to $\{k+1,k+2\}$ formed by reversing the orientation of $P^+(k,n)$. If $P^*=P^+(k,n)$ or $P^-(k,n)$ then let $k+P^*$ be formed by adding a third element k to each vertex in P^* (so each vertex in $k+P^*$ is a triple containing k). Finally let P be the concatenation of the paths $1+P^-(1,n), 2+P^+(2,n), 3+P^-(3,n), \ldots, n-2+P^\pm(n-1,n)$ where $P^\pm(n-1,n)=P^+(n-1,n)=P^-(n-1,n)$. Then P is a Hamilton path in G(n) from $\{1,n-1,n\}$ to $\{n-2,n-1,n\}$, so adding the edge $\{\{1,n-1,n\},\{n-2,n-1,n\}\}$ to P forms C.

To prove the theorem itself, suppose $\lambda \leq 3n-9$. Note that G(n) is (3n-9)-regular. If there exists a λ -factor F of G(n), then it immediately follows that the set of edges of F form an H_2 -hypergraph design of order n and index λ which is clearly simple, so the result would follow. So it remains to form F.

If G(n) has an even number of vertices, then let F_1 and F_2 be two 1-factors of G(n) that partition the edges of C. In any case, by Peterson's Theorem, there exists a 2-factorization $\{T_1, \ldots, T_{\lfloor (3n-9)/2 \rfloor}\}$ of G(n) or of $G(n) - F_1$ if G(n) has even or odd degree respectively; furthermore, if G(n) has even degree and an even number of vertices, then we can choose $T_{(3n-9)/2} = F_1 \cup F_2$. Then, since whenever the number of vertices is odd (so $n \equiv 3 \pmod{4}$) the necessary conditions require λ to be even, we can define F by:

$$F = \begin{cases} \bigcup_{i=1}^{\lambda/2} E(T_i) & \text{if } \lambda \text{ is even, and} \\ (\bigcup_{i=1}^{\lfloor \lambda/2 \rfloor} E(T_i)) \cup E(F_1) & \text{if } \lambda \text{ is odd.} \end{cases}$$

Corollary 5.2 There exists an H_2 -hypergraph design of order n and index λ if and only if

 $\begin{cases} n \equiv 0, 1 \text{ or } 2 \pmod{4}, \text{ or} \\ \lambda \equiv 0 \pmod{2} \text{ and } n \neq 3. \end{cases}$

Proof: The necessity follows from the fact that the number of triples $\lambda \binom{n}{3}$ must be even, and since clearly $n \neq 3$. The sufficiency follows from λ (or $\lambda/2$) copies of an H_2 -hypergraph design of index 1 (or 2) if $n \equiv 0, 1$ or 2 (mod 4) (or $\lambda \equiv 0 \pmod{2}$) found in Theorem 5.1.

References

[1] J. C. Bermond, A. Germa, and D. Sotteau, *Hypergraph-designs*, Ars Combin., 3 (1977), 47-66.

- [2] J.C. Bermond, C. Huang, A. Rosa and D. Sotteau, Decomposition of complete graphs into isomorphic subgraphs with five vertices, Ars Combin., 10 (1980), 211-254.
- [3] J.C. Bermond, C. Huang and D. Sotteau, Balanced cycle and circuit designs: even cases, Ars Combin., 5 (1978), 293-318.
- [4] J.C. Bermond and J. Schönheim, G-decomposition of K_n , where G has four vertices or less, Discrete Math., 19 (1977), 113-120.
- [5] J.C. Bermond and D. Sotteau, Balanced cycle and circuit designs: odd cases, Proc. Colloq. Oberhof Illmenau (1978), 11-32.
- [6] J. Bosák, Decompositions of Graphs, Kluwer Academic Publishers, Boston, 1990.
- [7] H. Hanani, On quadruple systems, Canad, J. Math., 12 (1960), 145-157.
- [8] H. Hanani, On some tactical configurations, Canad, J. Math., 15 (1961), 702-722.
- [9] H. Hanai, Balanced incomplete block designs and related designs, Discret Math., 11 (1975), 255-369.
- [10] D.G. Hoffman, C.C. Lindner, and C.A. Rodger, On the construction of odd cycle systems, J. Graph Theory, 13 (1989), 417-426.
- [11] Rev. T.P. Kirkman, On a problem in combinatorics, Cambridge and Dublin Math. Journal, 2 (1847), 191-204.
- [12] C.C. Lindner and C. A. Rodger, Decomposition into Cycles II: Cycle Systems, Contemporary Design Theory: A collection of Surveys, 1992, 325-368.
- [13] C.C. Lindner and C. A. Rodger, Design Theory, CRC Press, 1997.
- [14] A. F. Mouyart, Decomposition of the complete hypergraph into hyperclaws, Discrete Math, 76 (1989), 137-150.
- [15] D.K. Ray-Chaudhuri and R.M. Wilson, Solution of Kirkman's school-girl problem, Proc. Symp. Pure Math. Amer. Math. Soc., 19 (1971), 187-204.
- [16] C.A. Rodger, *Graph Decompositions*, Graphs, Designs and Combinatorial Geometries, Second Catania Combinatorial Conference Invited Lectures, 1989.
- [17] J. Schönheim, On coverings, Pacific J. Math., 14 (1964), 1405-1411.

- [18] M. Tarsi, Decomposition of complete multigraphs into stars, Discret Math., 26 (1979), 273-278.
- [19] M. Tarsi, Decomposition of the complete multigraph into simple paths: non-balanced handcuffed designs, J. Combinatorial Theory (A), 34 (1983), 60-70