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Abstract
Let H; be the 3-uniform hypergraph or 4 vertices with i hyper-
edges. In this paper we settle the existence of H3-hypergraph designs
of index ), obtaining simple Hs-hypergraph designs when A = 2, and
obtaining a new proof of their existence when A = 1. The existence
of simple Ha-hypergraph designs of index A is completely settled, as
is the spectrum of Hz-hypergraph designs of index A.

1 Introduction

In this paper we consider a generalization of graph designs. A G-design of
a graph M is a partition of the edge-set of M for which each element of the
partition induces a copy of the graph G. Let AK,, denote the multigraph
on n vertices in which each pair of vertices is joined by exactly A edges. A
G-design of order n and indez A is a G-design of AK,,. The A-spectrum of
G is the set of integers n for which there exists a G-design of order n and
index A. Finding the spectrum of various graphs is a well studied question
that began with Kirkman'’s proof in 1849 [11] of the result that K3-designs
of order n (Steiner triple systems) exist if and only if n =1 or 3 (mod 6).
More recently, the spectrum of G has been found in the cases where G is
K4 [9], K5 [9], a star [18], a path [19], and most cases where G is a graph
with at most 5 vertices [2, 4]. Substantial progress has also been made in
the case where G is a cycle [3, 5, 10, 12], but solving this case may be very
difficult. See also [6, 16].

A hypergraph of order n is an ordered pair (V, E) where V is a set of
n vertices, and FE is a collection of subsets of V. Each element e of E is
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said to be a hyperedge of size |e|. The hypergraph H = (V, E) is said to be
z-uniform if each hyperedge in F has size z; throughout this paper, we let
H? denote the property that H is z-uniform. Let AKZ denote the complete
z-uniform hypergraph of order n and indez A\ (so the hyperedge collection
of AKZ contains each z-element subset of V' exactly A times).

It is natural for one to ask the same questions of “hypergraph designs”
that have been considered for graph designs. An H®-hypergraph design
of a hypergraph M? is a partition of the hyperedges of M=, in which each
element of the partition induces a copy of H*. An H=*-hypergraph design of
ordern and indez A is an H*-hypergraph design of AKZ. The A-spectrum of
H? is the set of integers n for which there exists an H®-hypergraph design
of order n and index A. An H*-hypergraph design of index X is said to be
simple if no copy of H, appears more than once. Throughout what follows,
let H, denote the unique (up to isomorphism) 3-uniform hypergraph on 4
vertices containing e hyperedges.

The spectrum of Hy-hypergraph designs was solved in 1960 by Hanani
[7] in the guise of Steiner Quadruple Systems (notice that Hy = K3).
Hanani showed that Steiner Quadruple Systems of order n exist if and only
if n =2 or 4 (mod 6) or n = 1. A year later he settled [8] the A-spectrum
for Hy-hypergraph designs for all A. More recently, Bermond Germa and
Sotteau [1] solved the spectrum problem for Ha-hypergraph designs and for
Hj-hypergraph designs.

Theorem 1.1 ([1]) There exist Hs-hypergraph designs of order n and in-
dex 1 if and only if n = 0,1 or 2 (mod 9). There exist Ha-hypergraph
designs of order n and index 1 if and only if n = 0,1 or 2 (mod 4).

In their proof, they use the fact that Kirkman triple systems exist of
all orders n = 3 (mod 6), and remark that it would be interesting to find a
proof that avoids using this heavy machinery.

In this paper we obtain such a proof, and then use it to obtain some
new results. In Section 3 we provide this new proof, using it to obtain
two Hjs-hypergraph designs that have no copies of H3 in common, for all
possible orders (see Theorem 3.1). Of course, combining two such Hj-
hypergraph designs of order n produces an H3-hypergraph design of order
n and index 2 that is simple. In Section 4 we obtain the A-spectrum for
Hj-hypergraph designs for all A (see Theorem 4.1). Finally, in Section 5
we obtain a new proof of the existence of Hy-hypergraph designs of index
1 (this was first proved by Mouyart [14]), which we then use to solve the
A-spectrum problem for Hj-hypergraph designs (see Corollary 5.2), and
to obtain necessary and sufficient conditions for the existence of a simple
Hy-hypergraph design of index A.

For any design theoretical terms not defined in this paper see [13].

126



2 Some Preliminary Constructions

Since the following constructions will need to refer to specific copies of Hs,
we make the following definition. Let Hs(a,b,c,d) be the hypergraph with
vertex set {a,b,c,d} and hyperdedge set {{a,b, ¢}, {a,b,d}, {a,c,d}}.

Lemma 2.1 There ezist two Hg-hypergraph designs of order 9 and index
1 that have no copies of H3 in common.

Proof: Let V= {1,2,3,4,5,6,7,8,9}. Let E; = {{1,5,6,9},{2,6,7,9},{3,7,1,9},
{4,1,2,9},{5,2,3,9}, {6,3,4,9}, {7,4,5,9},{1,2,8,9},{2,3,8,9},{3,4,8,9},
{4,5,8,9},{5,6,8,9},{6,7,8,9}, {7,1,8,9},{1,3,4,8}, {2,4,5,8},{3,5,6,8},
{4,6,7,8}, {5,7,1,8},{6,1,2,8},{7,2,3,8},{1,4,6,7}, {2,5,7,1},{3,6,1,2},
{4,7,2,3}, {5,1,3,4},{6,2,4,5},{7,3,5,6}}, and

E; = {{5.9,1,4}, {6,1,2,4}, {7,2,5,4}, {8,5,6,4}, {9,6,7,4}, {1,7,8,4},
{2,8.9,4}, {5,6,3,4}, {6,7,3,4}, {7,8,3/4}, {8,934}, {9,1,3,4}, {1,2,3,4},
{2,5’314}’ {5)778$3}’ {6’8’9,3}) {7’9’1’3}’ {8’1’213}) {9’2)5’3}7 {1!5)673}’
{2’6,7i3}’ {5’8!1’2}$ {6’9’2)5}7 {7)1!5)6}’ {8’2’617}7 {9)5’7i8}’ {1!6!8’9})
{2,7,9,1}}.

Lemma 2.2 There exist two partial triple systems of order 11 with no
common triples, each of which has leave consisting of two vertex disjoint
5-cycles.

Proof: Let V = {0,1,2,3,4,5,6,7,8,9,A}. Let B, = {{A,0,1},{A,2,3},
{A’4’5}’ {A16’7}’{A18)9]’{0’376}) {0’4’7}’{0’5’9}’{1’2’7}1{114’8}){1’5i6}3
{2,5,8},{2,6,9}, {3,4,9},{3,7,8}}, and B, = {{A,2,1} {A 4,3} {A,6,5}
{A,8,7} {A,0,9} {2,3.8}, {2,6,7}, {2,5,9}, {1,4,7}, {1,6,0}, {1,5,8}, {4,5,0},
{4,8,9}, {3,6,9}, {3,7,0}}.

Then the leave of each is {(2,4,6,8,0), (1,3,5,7,9)}. D

Lemma 2.3 There ezists an Hs-hypergraph design of order 4 and indezx 3.
Proof: Let V={0,1,2,3}. Let E = {{0,1,2,3},{1,2,3,0},{2,3,0,1},{3,0,1,2} }.
o

Lemma 2.4 There exists an Hz-hypergraph design of order 5 and indezx 3.

Proof: Let V={0,1,2,3,4}. Let E= {{0123}{1234}{2340}{3401},
{4,0,1,2}, {0,2,4,1}, {1,3,0,2},{2,4,1,3},{3,0,2,4},{4,1,3,0}} }.

Lemma 2.5 There exists an H3-hypergraph design of order 7 and indezx 3.

Proof: Let V = {0,1,2,3,4,5,6}.
Let E = {{0,1,2,4},{1,2,3,5},{2,3,4,6}, {3,4,5,0},{4,5,6,1},
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{5’6’012}){6,031’3}1{011,2,4}){1)2,3’5}1 {2?3!4)6}’{3,4’5’0}’

{4,5,6,1},{5,6,0,2},{6,0,1,3},{0,1,4,5}, {1,2,5,6},{2,3,6,0},

{3’4)0’1}’{4$5’1’2},{5,6)2$3}1{6,0’3’4}, {071J3’5}1{112’4’6}!

{2,315’0}’{3,4)6’1}’{415)0)2}’{5’611’3}’ {6)012)4}‘{0,172)3})

{1,2,3,4},{2,3,4,5}, {3.4,5,6},{4,5,6,0},{5,6,0,1},{6,0,1,2}}. 0
We will need the following small design.

Lemma 2.6 There exist a partial triple system of order § whose leave con-
sists of a 4-cycle.

Proof: Let V = {0,1,2,3,4} and T = {{0, 1,3}, {0,2,4}}. Then the leave
of (V,T) is the 4-cycle (1,2, 3,4). 0

We will also need the following well-known result, a proof of which we
include for completeness to verify that the result is not “heavy machinery.”

Lemma 2.7 For alln = 1 or 3 (mod 6) there exist two Sleiner triple
systems (V,T,) and (V,T2) of order n that have no triples in common.
Furthermore, ifn = 3 (mod 6) then T; contains a parallel class m;(1 < i< 2)
such that no edge (pair) is in a triple in both m, and 7a.

Proof: If n = 3 (mod 6), we use the Bose Construction (see [13]) as follows.
Let V = Zaz41 X Z3 and let (V,-) be a symmetric idempotent quasigroup
of order 2z + 1. Let

m = {{(a,l), (a1 2)1 (a’ 3)} I ac€ Z2:z+l}’

Ti = mU{{(ai) G (a-bi+1)}|0<a<b<2s,ies),

m2 {{(aal)r (a‘+ 1:2)1 (a+ 2:3)} l ac Z22+1}: and

T, = mU{{(a,i),(bi),(ai(a-D),i—1)}|0<a<b< 2z,ic€Zs},

reducing the second component modulo 3, where a; (c) = ¢+ 2 and az(c) =
a3(c) = ¢— 1 for each ¢ € Z2,41. The Skolem Construction (see [13]) can
be used similarly to handle the case where n =1 (mod 6). o

3 The 2-Spectrum of simple Hs-hypergraph
designs

Let H3[V] denote an Hz-hypergraph design on the vertex set V.

Theorem 3.1 Hj-hypergraph designs, of order n and index 2 with no re-
peated copies of H3 exist if and only if n =0,1 or 2 (mod 9).
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Remark: The following proof actually obtains two H3-hypergraph de-
signs of order n and index 1 that have no copies of Hz in common.

Proof: To construct these Hj-hypergraph designs, we consider several
cases in turn.

Case 1: n =0 (mod 9)

We will show the existence of Hz-hypergraph designs of order n = 0
(mod 9) and index 2 with no repeated copies of H3 by induction. Let
n = 182+ 9 or 18z for z > 0 or z > 1 respectively. The proof is by
induction on z.

For z = 0, the existence of an Hs-hypergraph design of order 9 and
index 2 with no repeated copies of Hj is given by Lemma 2.1. So now,
let k > 1 and assume that there exists an H3-hypergraph design of order
182 + 9 and index 2 with no repeated copies of Hj for all z, 0 < z < k.

The proof of this case is completed by showing there exist H3-hypergraph
designs of order n = 18k and n = 18k +9; these two values of n are handled
separately.

Construction I: to construct an Hs-hypergraph design of order n =
18k.

Let X ={1,2,...,9}, Y = {10,11,...,18k},and N= X UY.
Let H3[X] be an Hz-hypergraph design of order | X| = 9 and index 2 with
no repeated copies of Hj (this exists by Lemma 2.1), and let H3[Y] be an
Hs-hypergraph design of order [Y| = n-9 = 18k-9 = 18(k-1)+9 and index
2 with no repeated copies of Hj (this exists by the induction hypothesis).
Note that |X| = |Y| = 3 (mod 6) sofor 1 < i < 2 let STS(X,Bx,) denote a
Steiner triple system of order 9 with vertex set X and block set Bx; such
that Bx, N Bx, = 0 (see Lemma 2.7) and similarly let STS(Y,By;) denote
a Steiner triple system of order n — 9 such that By, N By, = 0.
Define H3[N] as follows:
Type 1: if Hy(a,b,c,d) € H3[X] then Hs(a,b,c,d) € H3[N],
Type 2: if Hy(a,b,c,d) € Hy[Y] then H3(a,b,c,d) € H3[N],
Type 3: for1<i<2,ifa€X,and {bcd} € By, then Hs(a,b,c,d)
€ H; [N ], and
Type 4: for1<i<2,ifa€Y, and {b,c,d} 6 By, then Ha(a,b,c,d)
€ H3[N ]

Claim: Hj3[N] is an Hz-hypergraph design with vertex set N of order
n = 18k and index 2 with no repeated copies of Hs. To prove this we
need to show every hyperedge, ¢, of K3 is in exactly two different copies of
Hj3 € H3[N]. If t = {a,b,c} C X then since H3[X] is an Hj-hypergraph
design of index 2 with no repeated copies of Hj there exist two different
copies of Hy in H3[X] containing ¢; so ¢ is in two different copies of Hj that
are of Type 1 in H3[N].

If t = {a,b,¢} C Y then since H;[Y] is an Hz-hypergraph design of index
2 with no repeated copies of H3 there exist two different copies of H3 in
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H;3[Y] containing ¢; so ¢ is in two different copies of Hj that are of Type 2
in H3[]V]

If t = {a,b,c} where a € X and {b,c} C Y, then there exist di,d2 € ¥
such that {b,c,d;} € By;, where d; # d; (since By, N By, = @); sotisin
Hs(a, b, c,d;) which is of Type 3 in H3[N].

If t = {a,b,c} where a € Y and {b,c} C X, then there exist di,d2 € X
such that {D, c,d;} € Bx,, where d; # d; (since (Bx, N Bx, = @);sotisin
Hj(a, b, c,d;) which is of Type 4 in H3[N].

So every hyperedge, t, is in at least two different copies of H3 € H3[N]. The
total number of copies of Hs in Hz[N] is: 2(3)/3 of Type 1; 2(";°)/3 of
Type 2; 2-9(";°) /3 of Type 3; and 2(n—9) (3)/3 of Type 4. So since every
hyperedge is in at least two copies of H3 € H3[N], and since H3[N] contains
2(8)/3+2("3°)/3+2-9("3°) 3+ 2(n - 9)(3) /3 = 2(n® — 3n® +2n)/18 =
2(3)/3 copies of H3, every hyperedge is in exactly two copies of Hy € H3[N).
So H3[N]is an Hs-hypergraph design with vertex set NV of order n and index
2 with no repeated copies of H3 as claimed.

Construction II: To construct an Hz-hypergraph design of order n =
18k + 9.

Let X = {1,2,...,9}, Y ={10,11,...,18k + 9}, and N = X UY. Let
H3[X] be an Hs-hypergraph design of order |X| = 9 and index 2 with no
repeated copies of Hj (this exists by Lemma 2.1), and let H3[Y] be an Hs-
hypergraph design of order |Y| = 18k and index 2 with no repeated copies
of Hs (this exists by Construction I). For 1 < i < 2 let STS(X, Bx,) be
a Steiner triple system of order 9 such that Bx, N Bx, = @, and let m; be
a parallel class of the ST'S(X, Bx;) such that m; and m; have no edge in
common (see Lemma, 2.7). Since 18k = 0 (mod 6), there exist two maximal
packings, (Y, By;) for 1 < i < 2, of K)g) with triples on the vertex set Y
such that: the leave in (Y, By,) is a 1-factor My, with My, N My, = §; and
By, N By, = § (using Lemmna 2.7, delete a point y € Y from two STSs of
order 18k + 1). Define H3[N] as follows:

Type 1: if Hs(a,b,¢,d) € H3[X] then Hs(a,b,c,d) € H3[N],

Type 2: if Hs(a,b,c,d) € H3[Y] then Hs(a,b,c,d) € H3[N],

Type 3: for 1 <i < 2, if a € X and {b,¢,d} € By, then Hs(a,b,c,d) €
H3[N]:

Type 4: for 1 <i < 2,if a € Y and {b,c,d} € Bx;\m; then Hj(a,b,c,d) €
H3[N], and

Type 5: for 1 < i < 2if {a,b,c} € m; with a < b < ¢, and {d,e} € My,
then each of Hs(a,b,d,€),

Hs(b, ¢, d, e), and Hs(c,a,d,e) are in H3|N).

Claim: H;3[N] is an Hj-hypergraph design with vertex set N of order
n = 18k + 9 and index 2 with no repeated copies of Hs.

As before, we consider each hyperedge, ¢, in turn. If t = {a,b,c} C X
then since H3[X] is an Hz-hypergraph design of index 2 with no repeated
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copies of Hj there exist two different copies of H; in H3[X] containing ¢,
so ¢ is in two different copies of H3 that are of Type 1 in H3[N]. Similarly,
if t = {a,b,c} C Y then ¢ is in two different copies of Hj that are of Type
2in H3 [N]

If t = {a,b,c} where a € X and {b,c} C Y then for 1 < i < 2: either
there exists some dy,d2 € Y such that {b,c,d;} € By,, where di # d
(since By, N By, = 0), in which case H3(a, b, ¢, d;) is of Type 3 in H3[N]; or
{b,c} € My, (this happens for at most one value of i, since My, "My, = 0),
in which case there exists some {d,e} C X, such that {a,d,e} € m;, so ¢ is
in a copy of Type 5 in H3[N]. So {a,b, ¢} occurs in two different copies in
this case.

If t = {a,b,c} where a € Y and {b,c} C X then there exist d,,d; € X
with dy # dp such that {b,¢,d;} € Bx,. If {b,¢,d;} ¢ m; then Hj(a,b,c,d;)
is of Type 4 in H3[N}; and otherwise, since My, is a 1-factor, there exists
some e € Y such that {a,e} € My, (this happens for at most one value of i
since m; and 7 are edge-disjoint) so ¢ is in a copy of Hj that is of Type 5
in H3[N]. Since 7, and m are edge-disjoint, {a, b, ¢} occurs in two different
copies in this case.

So every hyperedge in in at least two different copies of H3 € Hj[N].
The total number of copies of Hs in H3[N] is 2(§) /3 of Type 1; 2(";9) /3 of
Type 2; 2(9(";°) — (n — 9)/2)/3 of Type 3; 2(n—9) ((3)/3 - 3) of Type 4;
and 2-3-3-(n—9)/2 of Type 5. Since every hyperedge is in at least two copies
of Hy € H3[N], and since H3[N] contains 2(3) /3+2("3°) /3+2(9(";°) - (n—
9/2)/3+2(n~9) ((3)/3 — 3)+2-3-3-(n—9)/2 = 2(n®-3n2+2n) /18 = 2(7) /3
copies of Hj, every hyperedge is in exactly two copies of H3 € H3[N]. So
H3[N] is an Hs-hypergraph design with vertex set N of order n and index
2 with no repeated copies of Hs as claimed. Therefore, there exists an Hs-
design of order n and index 2 with no repeated copies of H for all n =0
(mod 9). This completes Case 1.

Case 2: 7 = 10 (mnod 18)

Construction III: to construct an Hz-hypergraph design of order n =
18k + 10.

Let X = {1,2,...,18k + 9} and let N = X U {co}. Let H3[X] be
an Hs-hypergraph design of order |X| = 18k + 9 and index 2 with no
repeated copies of Hj; this was shown to exist in Case 1. For 1 <i < 2 let
STS(X, Bx;) be a Steiner triple system of order | X| = 18k + 9 such that
Bx, N Bx, = 0 (see Lemma 2.7). Define H3[N] as follows:

Type 1: if H3(a,b,c,d) € H3[X] then H3(a,b,c,d) € H3|N], and
Type 2: for 1 <i < 2if {a,d,c} € Bx; then H3(co,a,b,c) € H3[N].

Claim: H3[N] is an Hz-hypergraph design with vertex set N and order
n = 18k + 10 and index 2 with no repeated copies of Hj.

As before, we consider each hyperedge, ¢, in turn. If t = {a,b,c} Cc X
then since H3[X] is an Hz-hypergraph design, of index 2 with no repeated
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copies of Hs, there exist two different copies of H3 in H3[X] containing ¢;
so t is in two different copies of H3 that are of Type 1 in H3[N].

If t = {co,a,b} then there exist ¢;,¢; € X such that {a,b,¢;} € Bx,
for 1 < i < 2, with ¢) # c3 since Bx, N Bx, = 0, so t is in two different
copies of H3 of Type 2 in H3[N]. So every hyperedge, ¢, is in at least
two different copies of Hs € H3[N]. The total number of copies of Hs
in H3[N] is 2("3')/3 of Type 1 and 2(";')/3 of Type 2. So since every
hyperedge is in at least two different copies of Hs € H3[N], and H3[N]
contains 2(3)/3 copies of Hs, every hyperedge in in exactly two different
copies of Hs € H3[N). So H3[N] is an Hs-hypergraph design with vertex
set N of order n and index 2 with no repeated copies of H3 as claimed.

Case 3: n =11 (mod 18)

Construction IV: to construct an H3-hypergraph design of order n =
18k +11.

Let X = {1,2,...,18k + 9} and let N = X U {00;,002}. Let H3[X] be
an Hs-hypergraph design of order | X| = 18k +9; this was shown to exist in
Case 1. For 1 < i < 2let STS(X, By;) be a Steiner triple system of order
| X| = 18k + 9, such that Bx, N Bx, = @ and in which m; is a parallel class
of triples in B; such that m; and 2 have no edges in common (see Lemma
2.7). Define H3[N] as follows:

Type 1: if Hs(a,b,c,d) € H3[X] then Hs(a,b,¢,d) € H3[N],

Type 2: for 1 < i < 2if {a,b,¢} € Bx;\m; then H3(co1,a,b,c) and
H3(002, a, b: C) € H3[N]) and

Type 3: for1 <i < 2if {a,b,c} € m; with a < b < cthen H3(a,b, 001,002),
H3(ba ¢, 001, 002): and

Hj(c, a,001,002) € H3[N].

Claim: H;3[N]is an Hj-hypergraph design with vertex set N of order
18k + 11 and index 2 with no repeated copies of Hs.

As before, we consider each hyperedge, ¢, in turn. If ¢t = {a,b,c} C X,
then since H3[X] is an H3-hypergraph design of index 2 with no repeated
copies of Hs, there exist two different copies of H3 in H3[X ] containing t;
so t in in two different copies of Hj that are of Type 1 in H3[N].

If t = {c0j,a,b} (j € {1,2}), then there exist c1,c2 € X such that
{a,b,c;} € Bx, for 1 < i < 2 with ¢; # ¢z since Bx, NBx, = 0. If
{a,b,¢:} ¢ m;, then ¢ is in an Hj of Type 2 in H3[N]. If {a,b,c;} € m;,
then ¢ is in an Hj of Type 3 in H3[N]. Since m; and w2 are edge-disjoint
{o0j,a,b} occurs in different copies in this case.

If t = {00;,002,a} then for 1 < i < 2 there exists some {b;,¢;} C X;
such that {a,b;,c;} € m;, with {by,c1} N {b2,c2} = @ since m and m; are
edge-disjoint; so ¢ is two different copies of H3 of Type 3 in H3[N].

So every hyperedge, ¢, is in at least two different copies of Hz € H3[N).
The total number of copies of H3 in Hj3[N] is 2(“;2) /3 of Type I, 2 -
2((("52)/3) - (n—2)/3) of Type 2, and 2-3((n — 2)/3) of Type 3. So since

132



every hyperedge is in at least one copy of Hs € H3[N], and since the total
number of copies of Hj is 2(;‘) /3, every hyperedge is in exactly two copies
of H3 € H3[N]. So H3[N] is an H3-hypergraph design with vertex set N of
order n and index 2 with no repeated copies of Hj as claimed.

Case 4: n =1 (mod 18)

Construction V: to construct an Hs-hypergraph design of order n =
18k + 1.

Let X = {1,2,...,18k— 9}, Y = {18k — 9,18k — 8,...,18k + 1} (so
XNY = {18k - 9}), and N = X UY. Let H3[X] be an Hs-hypergraph
design of order |X| = 18k — 9 and index 2 with no repeated copies of Hs;
this was show to exist in Case 1. Let H3[Y] be an Hz-hypergraph design of
order Y| = 11 and index 2 with no repeated copies of Ha; this was shown
to exist in Case 3. Tor 1 < i < 2: let STS(X, Bx,) be a Steiner triple
system of order |X| = 18k — 9 such that Bx, N Bx, = 0 (see Lemma 2.7);
let o; be the set of all triples in By, that contain the vertex 18k — 9; and let
L: ={{j5,¢} | {18k—9,j,e} € Bx..} (note LyNLy = §). For1<i<2let
TS(Y, By,) be a partial triple system of order 11 such that By, N By, =0
with leave M, = {(18k—8+s,18k—7+s5,18k—6+s3,18k—5+5, 18k —4 +5) |
s € {0,5}} (this exists by Lemma 2.2). Define H3|N] as follows:

Type 1: if H3(a,b,¢,d) € H3[X] then Hz(a,b,c,d) € H3[N],

Type 2: if H3(a,b,c,d) € H3[Y] then H3(a,b,c,d) € Hs[N],

Type 3: for 1 < i < 2, if {a,b,¢} € Bx;\a; then Hs(y,a,d,c) € H3[N],
for each y € Y'\{18k - 9},

Type 4: for 1 < <2, if {a,b,c} € By; then Hj(z,a,b,c) € Hj3[N), for
each z € X\ {18k - 9}, and

Type 5: for 1 < i < 2,if (a,b,c,dye) € My witha>b>c>d>e
then {H3((l, b1 j) z): HS(b, c,j,l), HS(C; d:ja e), H3(d: e7j1e)1 HS(ea a’j:z)} -
H3[N), {or each {j,k} € L;.

Claim: H3[N]is an Hz-hypergraph design with vertex set N of order
n =18k + 1 and index 2 with no repeated copies.

As before, we consider each hyperedge, ¢, in turn. If ¢ = {a, b, cjCc X
ort = {a,b,c} CY, then ¢t is in two different copies of H; € Hj3[N] that is
of Type 1 or Type 2 respectively.

If t = {a,b,c}, where {b,c} C X and a € Y'\{18k — 9}, then there exist
dy,dz € X such that {b,c,d;} € Bx, for 1 <i < 2. If d; = 18k — 9, then
there exists some 5-cycle in M; containing a, so ¢ is in a copy of Hs of Type
5 in H3[N]. Otherwise ¢ is in an H3 of Type 3 in H3[N]. These copies are
different since Bx, N Bx, = 0.

Ift = {a,b,c}, wherea € X\{18k—9} and {b,c} C Y (possibly 18k—9 €
{b,c}), then: either there exists dy,ds € Y such that {b,c,d;} € By, for
1 <11 <2, with d; # dy since By, N By, = 0, in which case ¢ is in two
different copies of Hs of Type 4 in H3|[NJ; or {b, ¢} is an edge in a 5-cycle in
M, and in M, in which case there exist g;,g> € X such that {a,9:} € L;,
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for 1 <i < 2 with g; # g2 since Ly N Ly =@, so ¢ is in two different copies
of H3 of Type 5 in H3[N].

So every hyperedge ¢ is in at least two different copies of H3 € H;[N).
The total number of copies of Hs in Ha[N] is 2(*3'%)/3 of Type 1, 2(5)/3
of Type 2, 2(n—11)(((%}) —10)/3) of Type 3, 2-10(((*3'°)/3) - (n—11)/2)
of Type 4, and 2-2-5(n —11)/2 of Type 5. So H3[N] contains 2(}) /3 copies
of H3. Therefore Hs[N] is an Hs-hypergraph design with vertex set N of
order n of index 2 with no repeated copies of Hj as claimed.

Case 5: n =2 (mod 18)

Construction VI: to construct an Hj-hypergraph design of order n =
18k + 2.

Let X = {1,2,...,18k + 1} and let N = X U {oo}. Let H3[X] be
an Hj-hypergraph design of order |X| = 18k + 1 and index 2 with no
repeated copies of Hz; this was shown to exist in Case 4. For 1 <1 <2 let
STS(X,Bx,) be a Steiner triple system of order |X| = 18k +1 such that
Bx, N Bx, = 0 (see Lemma 2.7). Define H3[N] as follows:

Type 1: if Hs(a,b,c,d) € H3[X] then Hs(a,b,c,d) € H3[N],
Type 2: for 1 <i <2, if {a,b,c} € Bx, then H3(o0,a,b,c) € H3[N).

Claim: H3[N] is an Hj-hypergraph design with vertex set V of order
n = 18k + 2 and index 2 with no repeated copies of Hj.

As before, we consider each hyperedge, ¢, in turn. If ¢t = {a,b,c} C X
then ¢ is in two different copies of Hs that are of Type 1 in H3[N], and
if t = {c0,a,b} then there exist ¢,z € X such that {a, b,¢;} € Bx;,
1<i<2sotisinan Hs of Type 2 in H3[N). The copies containing ¢
are different since Bx, N Bx, = 0. So every hyperedge, ¢, is in at least
two different copies of Hs € H3[N]. Since the total number of copies of H
in Ha[N] is 2("5")/3 of Type 1 and 2("3")/3 of Type 2, which is 2(3)/3
altogether. So H3[N] is an Hs-hypergraph design with vertex set N of
order n and index 2 with no repeated copies of H3 as claimed. a

4 The M-spectrum of Hs-hypergraph designs
for all values of A

Theorem 4.1 Hj-hypergraph designs of order n and indez X ezist if and
only if

n=0,1,2, (mod 9), or

A =0 (mod 3) and n # 3.

Proof: The existence of Hs-hypergraph designs of order n, n =0, 1,2 (mod
9), and index 1 was solved in Theorem 1.1. To obtain an H3-hypergraph
design of order n, n = 0,1,2 (mod 9), for any A, just take A copies of
each Hs. For A = 0 (mod 3) we need only consider when A = 3 and
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n =3,4,5,6,7,8 (mod 9), since taking A/3 copies of Hj will produce an Hj-
hypergraph design of index A. To construct these Hj-hypergraph designs
of index 3, we will consider two cases.

Case 1: n =1 (mod 2), n # 3.

We will show the existence of of Hz-hypergraph designs of order n = 1
(mod 2) and index A = 3 by induction. Let n = 2z+5 for z > 0. The proof
is by induction on z.

For z = 0 the existence of an Hs-hypergraph design of order 5 is given by
Lemma 2.4. For z = 1 the existence of an Hs-hypergraph design of order
7 is given by Lemma 2.5. So now, let ¥ > 2 and assume there exists an
Hj-hypergraph design of order 2z + 5 for all z, 0 < z < k.

Construction VII to construct an H3-hypergraph design of order n =
2k + 5.

Let X = {1,2,3,4,5},Y = {5,6,...,2k+5},and N=X UY (so XNY =
{5)).

Let H3[X] be an Hz-hypergraph design of order |X| = 5 and index 3 (this
exists by Lemma 2.4). Let H3[Y] be an Hz-hypergraph design of order
Y| =n—-4=2k+1 = 2(k~-2)+5 and index 3 (this exists by the
induction hypothesis). Let TS(Y, By) be a three-fold triple system of order
|Y| = 2k + 1; this exists since |Y| = 1 (mod 2) (see [12], for example). Let
7 be the set of all triples in By that contain the vertex 5. Let L be the
multiset given by L = {{j,£}|{5,7,€} € By}. Let TS(X, Bx) be a partial
triple system of order | X| = 5 with leave the 4-cycle M = (1,2, 3,4); this
exists by Lemma 2.6.

Define H3[N] as follows:

Type 1: if H3(a,b,c,d) € H3[X] then Hs(a,b,c,d) € H3[N],

Type 2: if H3(a,b,c,d) € H3[Y] then Hs(a,b,c,d) € H3[N],

Type 3: if {a,b,c} € Bx then three copies of H3(y,a,b,c) € H3[N], for
each y € Y \ {5},

Type 4: if {a,b,c} € By \ « then Hs(¢,a,b,c) € H3[N], for each £ €
X \ {5}, and

Type 5: {H3(1) 2rj) e): H3(2; 3: j: e)) H3(3) 4)ja e)v H3(4, 1, jt e)} c H3[N]s
for each {j,¢} € L.

Claim: H3[N] is an Hs-hypergraph design with vertex set N of order
n =2k + 5 and index 3.

As before, we consider each hyperedge, t, in turn. If ¢ = {a,b,c} C X
ort = {a,b,c} CY, then t is in three copies of H3 € H, [V] that is of Type
1 or Type 2 respectively.

If t = {a,b,c}, where {b,c} C X (possibly 5 € {b,c}) and a € Y \ {5},
then: either there exists some d € X such that {b,c, d} € Bx, in which
case ¢ is in three copies of H3 € H3[N] of Type 3; or {b,c} is an edge in M,
in which case there exist three edges in L that contain a (since there are
three triples in By containing {5,a}), so ¢ is in three copies of H; € H3[N]
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of Type 5.

I t = {a,b,c}, where a € X \ {5} and {b,c} C Y \ {5}, then there
exist dy,dz,d3 € Y such that {b,c,d;} € By for 1 <i<3. Ifd; =5, tis
in a copy of Hj € H3[N] of Type 5; otherwise ¢ is in a copy of H3 € H3[N]
of Type 4. So every hyperedge ¢ is in at least three copies of H3 € H3[N].
The total number of copies of Hz € H3[N] is 10 of Type I, (*3%) of Type
2, 3-2(n—5) of Type 3, 4(("3*) — 3(n - 5)/2) of Type 4, and 4-3(n—5)/2
of Type 5, which is () altogether. So H3[N] is an H3-hypergraph design
with vertex set N of order n and index 3 as claimed.

Case 2: n =0 (mod 2)

Construction VIII: to construct an H3-hypergraph design of order
n = 0 (mod 2) and index 3.

Let X = {1,2,3,...n—1} and let N = X U {c0}. Let H3[X] be an
Hj3-hypergraph design of order |X| = n — 1; this was shown to exist in
Construction VII. Let T'S(X,Bx) be a three-fold triple system of order
|X| =1 (mod 2). Define H3[N] as follows:

Type 1: if H3(a,b,c,d) € H3|X] then Hs(a,b,¢,d) € H3[N), and
Type 2: if {a,b,c} € Bx then H3(c0,a,b,c) € H3[N].

Claim: H;3[N]is an Hs-hypergraph design with vertex set N of order
n and index 3. As before, we consider each hyperedge, ¢, in turn. If
t = {a,b,c} C X then ¢t is in three copies of H3 that are of Type 1 in
H;3[N). If t = {00, qa,b} then there exists some {c;,c2,¢c3} C X such that
{{a,b,c1},{a,b,¢2}, {a,b,c3}} C Bz, so t is in three copies of H; of Type 2
in H3[N]. So every hyperedge, ¢, is in at least three copies of H3 € H3[N].
The total number of copies of Hy in H3[N] is (*3') of Type 1 and (") of
Type 2, which is (5) altogether. So H3[N] is an H3-hypergraph design of
order n and index 3 as claimed. 0

5 The Spectrum of H,

Since the following construction will need to refer to specific copies of Ha,
we make the following definitions. Let Hs(t),%2) be the hypergraph with
vertex set {¢; Ut2} and hyperedge set {{t1}, {t2}}

Theorem 5.1 H,-hypergraph designs, of order n and index A that are sim-
ple exist if and only if A < 3n—9 and

n=0,1,2 (mod §) or
A=0 (mod 2) andn #3,

Proof: The necessity of the conditions follows because the number of
triples A(3) must be divisible by 2, and because each copy of Hy that
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contains the triple {a, b, c} must contain one of the 3(n — 3) triples {a, b, z},
{a,c,y} or {b,¢c, z} for some z,y and z.

We begin the proof of the sufficiency by considering A < 2, and in
the process produce a new proof for the spectrum of Hz-designs of index
1. There are various ways that one might establish the existence for Ho-
hypergraph designs. We decided the most interesting and direct way is to
produce such a hypergraph design explicitly by finding a hamilton cycle C in
the graph G((n) with vertex set being the set of all triplesin {1,2,... ,n} and
with two triples ¢; and t; being joined if and only if |¢; N¢s| = 2. For then
let C = (ty,12,-.. ,t(g)): ifn=0,1, or 2 (mod 4) then C has even length,
so taking the copies of each Hj in E = {Hy(t2i-1,t2)|1 < i < (3)/2}
produces the required Hs-hypergraph design of index 1; and if n = 3 (mod
4) then A = 2, so taking the copies of each Hy in {Ha(t2;-1,22:)|1 < i < (3
(reducing subscripts mod (3)) produces the required H-hypergraph design.

Let G(k,n) be the graph with vertex set equal to the two element subsets
of {k+1,k+2,...,n} in which two vertices v; and v, are joined if and
only if Jv; Nvz| = 1. There exists a directed Hamilton path Pt+(k,n) in
G(k,n) from {k+ 1,k + 2} to {n — 1,n} defined by Figure 1.

k+1 k+2 k+3 k+4 n-3 n-2 n-l
k+2

k+3
k+4 :\.

The two possible endings of P*(k,n)
depend on the parity of n-k; we display
one with a solid line, the second with

a dashed line.

Figure 1: P*(k,n)
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Let P—(k,n) be the directed path in G(k,n) from {n — 1,n} to {k +
1,k + 2} formed by reversing the orientation of P+(k,n). If P* = P*(k,n)
or P~(k,n) then let k + P* be formed by adding a third element k to each
vertex in P* (so each vertex in k + P* is a triple containing k). Finally
let P be the concatenation of the paths 1 + P~(1,n),2 + P*(2,n),3 +
P~(3,n),...,n -2+ P¥(n — 1,n) where P*(n — 1,n) = P*(n—1,n) =
P~(n - 1,n). Then P is a Hamilton path in G(n) from {1,n - 1,n} to
{n—-2,n - 1,n}, so adding the edge {{1,n-1,n},{n—2,n—1,n}} to P
forms C.

To prove the theorem itself, suppose A < 3n — 9. Note that G(n) is
(3n — 9)-regular. If there exists a A-factor F of G(n), then it immediately
follows that the set of edges of F form an H-hypergraph design of order
n and index A which is clearly simple, so the result would follow. So it
remains to form F.

If G(n) has an even number of vertices, then let Fy and F, be two 1-
factors of G(n) that partition the edges of C. In any case, by Peterson’s
Theorem, there exists a 2-factorization {T},...,T|(3n-9)/2)} of G(n) or of
G(n) — Fy if G(n) has even or odd degree respectively; furthermore, if
G(n) has even degree and an even number of vertices, then we can choose
T(an-9)/2 = F1 U F2. Then, since whenever the number of vertices is odd

(so n = 3 (mod 4)) the necessary conditions require A to be even, we can
define F by: :

F= U:\=/? E(T3) if A is even, and
URA E(T)) UEF)  if s odd.

o

Corollary 5.2 There exists an Ho-hypergraph design of order n end index
A if and only if

n=0,1or2 (mod 4), or

A=0 (mod 2) andn # 3.

Proof: The necessity follows from the fact that the number of triples A(3)
must be even, and since clearly n # 3. The sufficiency follows from A (or
A/2) copies of an Hj-hypergraph design of index 1 (or 2) if n = 0,1 or 2
(mod 4) (or A =0 (mod 2)) found in Theorem 5.1. 1]
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