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Abstract

We consider the projective properties of small Hadamard matrices
when viewed as two level O As of strength two. We show that in some
cases sets of rows with the same type of projection form balanced
incomplete block designs.

1 Introduction

An orthogonal array OA(N, k,s,t) is a k x N array with entries from a
set of s distinct symbols arranged so that for any t rows of the array each
of the s* column vectors appear equally often. Thus we see that s|N.
We call N the number of runs in the OA, k the number of factors, s the
number of levels for each factor and t the strength of the array. Sometimes
N/s* = X is called the indez of the array. Table 1 gives an example of an
0A(16,15,2,2).

An array on 2 symbols with k rows and N columns is an (N, k, p) screen-
ing design if for each choice of p rows, each of the 2P column vectors appears
at least once. Thus an OA(\2*,k,2,t) is a (A2*, k, t) screening design. An
example of a (16, 14,3) screening design can be obtained from Table 1 by
removing the first row. However, this (16, 14,3) screening design is not
an orthogonal array of strength 3 since the combination of rows 1, 3 and
5 from this screening design gives three copies of each of (1,1,2), (1,2,1),
(2,1,1) and (2,2,2) but only one copy of each of the combinations (1,1,1),
(1,2,2), (2,1,2) and (2,2,1). This is an example of a (1,3) projection.
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2 2 2 2 2 2 2 211111111
2 222111122 22111:1
2 2 2 2111111112222
2 2112 21122112211
2 2112 21111221122
2 2111122 21212121
2 211112 212121212
2 1 21 212122111122
21 21 212111222211
21 211212 21121221
21 2 1121212212112
2 112 211221211212
2 112 211212122121
2 11 2122121122112
211212 2112211221

Table 1: An OA(16,15,2,2)

If the possible p-dimensional columns vectors each appear either i times
or j times then we talk of a projection of type (%, j). If 7 or j is O then the
design is not of projectivity p.

To determine if the projectivity of a design is p, each subset of p rows
must be checked to see if each of the distinct column vectors appears at least
once. For example, the (16,14, 3) screening design obtained from Table 1
has projectivity three, since if any three rows are selected then each of the
23 column vectors appears at least once. It does not have projectivity four
since rows 1, 2, 3, and 4 of the screening design do not contain any of the
quadruples with three 1’s and one 2.

A screening design of projectivity 2 is sometimes called a covering array;
see [10].

An N by N Hadamard matrix H is an orthogonal matrix with entries
41 or —1. Thus HT . H = N - Iy where Iy is the N x N identity ma-
trix. Without loss of generality we can insist that the first row of any
Hadamard matrix contain only 1’s. Then by removing this row we obtain
an OA(N, N —1,2,2). Some OAs of this form were introduced by Plackett
and Burman (1946) and are termed Plackett- Burman designs.

A balanced incomplete block design (BIBD) with parameters (v, b,7, k, A)
consists of b blocks each of size k. The number of treatments in the design
is v, all treatments are replicated r times and every pair of treatments
appears in A blocks. Thus some restrictions are placed on the values of
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v, b, 7, k, and A. In particular, counting the occurrences of treatments,
vr = bk and by counting pairs of treatments, A(v — 1) = r(k — 1). Because
of these relationships we usually talk about a (v, k&, A) BIBD.

Some work has been done on projective properties of a few small de-
signs. Lin and Draper [8] consider the projection properties of the Plackett-
Burman designs with 12 runs in detail and give results for Plackett-Burman
designs of orders N = 20 and N = 24 projected into p = 2, 3,4 or 5 dimen-
sions, and for values of N to 36 for p = 3.

Box and Tyssedal [1] consider the projection properties of two-level O As
with k = N — 1. They show that any design OA(2N, N — 1,2, 2) obtained
by taking the Kronecker product of

1 1

1 -1
with an OA(N, N — 1,2,2) is always of projectivity 2. If an OA(N,N —
1,2,2) is obtained by cyclically developing an initial row then that OA
may have projectivity 2 or 3. Any OA(4m,4m — 1,2,2) with m odd is of
projectivity 3.

Cheng [2] gives some theoretical results about the projections of OA(N,
k,2,t) onto t+1 and t+2 rows. In particular, he shows that if the projection
onto some ¢ + 1 rows does not contain all the 2t*! column vectors at least
once then the projection onto any other set of ¢t + 1 rows with ¢ rows in
common with the first set will contain at least one copy of each of the 2t+!
column vectors (Lemma 2.2).

In this paper we look at the structure of sets of p rows of Hadamard
matrices of small order which either do not contain at least one copy of each
of the 2P distinct column vectors, or which all have the same projection
type. We find that these sets are often examples of BIBDs. In the final
section we briefly consider the same problem for some of the small designs
listed in Dey [5].

2 Results for Hadamard matrices of order 2V

There is only one non-isomorphic Hadamard matrix of order 8 [3] and we
give it in Table 2. (Two Hadamard matrices are said to be isomorphic if
one of the matrices can be obtained from the other by permuting the rows,
or the columns, or by multiplying any row or column by —1.)

The first row of all 1’s is removed to obtain an OA(8,7,2,2). We can
view this OA as an (8,7,2) screen. However, no (8,7,3) screen can be ob-
tained, since if rows 1, 2 and 3 are selected from the OA, for instance, there
are 2 copies of the triple (1,—1,—1) and so some triples do not appear. But
for rows 5, 6 and 7 there is one copy of each of the 8 triples. In Table 3,
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we list the triples of rows of projection type (0,2). We see that they form
a (7,7,3,3,1) BIBD.

1 1 1 1 1 1 1
1 -1 -1 1 1 -1 -1
<11 -1 1 -1 1 -1

-1 -1 1 1 -1 -1 1
11 1 -1 -1 -1 -1
1 -1 -1 -1 -1 1 1

-1 1 -1 -1 1 -1 1

-1 11 -1 1 1 -1

[ e e )

Table 2: The Hadamard matrix of order 8
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Table 3: A (7,7,3,3,1) BIBD

Let OAz N be the orthogonal array obtained by taking the Kronecker
product of the Hadamard matrix of order two N times and discarding the
first row. Then we have the following result.

Theorem 1 The set of triples of rows of OAg N which have projection type
(0,2) form a (2N —1,3,1) BIBD for N > 2.

Proof: We prove the result by induction. We have established the result
for N = 3. Suppose the result is true for N and consider N + 1. By
induction there is a (2¥ —1,3,1) BIBD from rows 1 to 2V — 1. For each
triple (i, j,m) in this BIBD we obtain the triples of rows (3, j+2V,m+2"),
(i+2V,5,m+2"), and (i+2%, j+2",m) each of which has projection type
(0,2). The other triples of rows are those of the form (3,i+2",2") since the
triples from here are of the form (a, e, 1) or (@, —a, —1). From Lemma 2.2 of
Cheng [2] we know that no pair of rows can be in a triple of projection type
(0,2) more than once. We have found (2V¥ — 1) +4(2V —1)(2¥-1 -1)/3 =
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(2M¥+1 — 1)(2V —1)/3 triples of rows of projection type (0,2) and so the
result follows.

Clearly the designs obtained from this result have at least one subdesign
embedded in them but for larger designs there may be more. A recursive
construction for obtaining a (2v+1,3,1) from a (v, 3, 1) appears in Stanton
and Goulden [11]. Applying Theorem 1 to QA4 gives a (15, 35, 7, 3,
1) with 15 (7,7,3,3,1) BIBDs embedded in it, and so is the first of the
(15,35,7,3,1)’s listed in Colbourn and Dinitz [3], Table 1.1.22.

Now consider those sets of four rows of the Hadamard matrix of or-
der 8 which have an element-wise product of 1 in each position, such as
{1,2,4,7}. There are seven such sets, given in Table 4, which we see form
a (7,7,4,4,2) BIBD.

Gl es e Lo WD
[~ = NS N N
NNouo o

N I I e e e

Table 4: A (7,7,4,4,2) BIBD

Theorem 2 The sets of quadruples of rows of OAa n which have an ele-
ment-wise product of 1 form a (2N —1,4,2(2N-2 — 1)) BIBD for N > 2.

Proof: We prove the result by induction. We have established the result
for N = 3. Suppose the result is true for N and consider N + 1. By
induction there is a (2N —1,4,2(2¥-2 — 1)) BIBD from rows 1 to 2V — 1.
For each quadruple (i, j,m,n) in this BIBD we obtain the quadruples of
rows (i,jsm + 2N’n + 2N), (1'$J + 2N)m + 2Nan)1 (zfj + 2N1msn + 2N)’
G+ 2N,j,m,'n, +2%), G+ 2N’jam + 2N’n)’ i+ 2V, j+ 2N’m’n) each
of which has an element-wise product of 1. Other quadruples of rows are
those obtained from the triples of the (2¥ — 1,3,1) BIBD constructed in
Theorem 1. Each triple gives rise to four quadruples. These are (i, j,m +
2V, 2N), (4,5+2N,m,2V), (i+2V,5,m,2V) and (i+2V, j+2V, m+2V, 2N),
The final quadruples are of the form (3,i+2%, j, j+2V), for 1 < 4,5 < 2N -1.

Applying this result when N=4 gives a (15, 105, 28, 4, 6) BIBD. Taking
any of the sets of three rows from the (15,35,7,3,1) constructed in Theorem 1
and adjoining a fourth row gives a quadruple of rows in which some column
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vectors are repeated. There are 420 of these sets and they form a (15, 420,
112, 4, 24). Together these 525 quadruples account for all the quadruples
of rows in which there are repeated column vectors.

The next result looks at sets of five rows.

Theorem 3 The sets of quintuples of rows of OAa n which have an ele-
ment-wise product of 1 form a (2N —1,5,2(2V-%2 —1)(2N —8)/3) BIBD for
N >3.

Proof: The triples given in Theorem 1 all have element-wise product 1.
If these rows are represented by a,b and ¢ then we write a-b-¢ = 1.
The quadruples from Theorem 2 satisfy a - b-c-d = 1. The quintuples
arise by adjoining the triple {a,b,¢} and the quadruple {c,z,y,2} to get
{a,b,z,y, z} (where a,b,z,y and z must all be distinct). Straight-forward
counting then gives the result.

When N = 4 the previous result gives a BIBD (15,168, 56, 5, 16) and
when N =5 it gives a BIBD (31, 5208, 840, 5,112).

3 Some other results for Hadamard matrices

Hall [6] found that there are exactly five nonisomorphic Hadamard matrices
of order 16. The representative matrices of each of these five classes may
be found in Seberry [9]. The first matrix, H16.1, corresponds to OAg 4.

For these five matrices, we remove the first row of all 1’s to obtain five
OA (16,15,2,2)s. The OA obtained from H16.4 in this manner is shown
in Table 1. For the second, third and fifth OAs, if the first three rows are
removed, (16,12,3) screens can be produced. Only the first row needs to
be removed from the fourth design matrix in order to produce a (16, 14, 3)
screen, as discussed in Section 1.

There are three nonisomorphic Hadamard matrices of order 20 which
may be found in [9]. For all three OAs, (20,19,3) screens can be obtained.
However, 57 combinations of three rows produce (1,4) projections. For
each of the three OAs, these 57 combinations of three rows produce a
BIBD (19,57,9,3,1). Recall that there are over 1.1 x 10° (19, 3,1) BIBDs
[3]-

There are 60 Hadamard matrices of order 24. From the one given in
Table 2 of Hedayat and Wallis (7] a (24,23,3) screen can be obtained. From
these 1771 combinations of three rows, 759 are (2,4) projections and form a
BIBD (23, 759, 99, 3,9) while the remaining 1012 have all triples of columns
equally replicated and form a BIBD (23,1012,132,3,12).

When attempting to find (24,23,4) screens, 5060 combinations of four
rows have projection type (0,1,2,3) and form a BIBD (23, 5060, 880, 4,120).
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The remaining 3795 sets of four rows have projection type (1,2) and form
a BIBD (23, 3795, 660,4,90).

4 Results for several orthogonal fractional
factorial designs

Several orthogonal fractional designs given by Dey [5] were checked for the
existence of screening designs. In particular we considered the symmetrical
orthogonal resolution III designs which correspond to an OA(81,40,3,2),
an OA(16,5,4,2), an OA(64,21,4,2) and an OA(25,6,5,2).

In the OA(81, 40, 3, 2) there is no (81, 40, 3) screen but there is a (40, 3,
2) BIBD from the sets of three rows which have at least one of the column
vectors not represented. Similarly the sets of four rows which do not have
all the column vectors appearing exactly once form a (40, 4, 217) BIBD.

These are the only non-trivial BIBDs obtained from the designs in Dey

(5).
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