Some Constructions of Block Designs

Malcolm Greig
Greig Consulting,
5685 Daffodil Drive,
West Vancouver,
B.C., Canada, VTW 1P2

Dinesh G. Sarvate*
Department of Mathematics,
University of Charleston,
Charleston, SC 29424

Dedicated to Anne Penfold Street.

Abstract

Using a blend of Drake’s and Saha’s techniques, we construct a
BTD(n?/4; (n? + n)/2;2n — 4,3, 2n + 2;n; 8) whenever n is a power
of 2, as well as some new symmetric BTDs. It is known that the
necessary condition v =1 (mod 2) is sufficient for the existence of
simple BIBD(v,3,3). In the second part of this paper we give a very
simple construction based on graph factorization to prove this result
whenever v is not divisible by 3. We then expand upon this result to
exhibit further constructions of BTDs.
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1 Introduction

A Balanced Ternary Design, BTD (V; B; p1, p2, R; K; A), is an arrangement
of V elements into B multisets, or blocks, each of cardinality K, satisfying:
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a. Each element appears R = p; +2p2 times altogether, with multiplicity
one in exactly p; blocks, with multiplicity two in exactly p, blocks
and

b. Every pair of distinct elements appears A times.

Note that in a block {a,a,b,c,c,c}, the pair (a,b) is said to occur twice,
the pair (b,c) is said to occur three times and the pair (a,c) is said to have
occured 6 times. A BTD(6;12;4,1,6;3;2) on elements {1,2,3,4,5,6} is
given below where a block, say, {1,1,2} is written as 112.

{112,133, 144, 156, 156, 223, 255, 246, 246, 366, 345, 345}

Two excellent survey papers on BTDs are by Billington [3], [4].

In the next section we will construct a new family of BTD(n?/4; (n? +
n)/2;2n — 4,3,2n + 2;n;8) whenever n is a power of 2. Observe that the
BTDs we constructed can not be a multiple of smaller designs as ps is 3
and A = 8 is even.

It is well known that Hanani [12] showed that the necessary condition
v=1 (mod 2) is sufficient for the existence of BIBD(v,3,3).

Van Buggenhaut [23] gave constructions of simple BIBD(v,3,3) Vv =1
(mod 2). Street [21] gave recursive constructions of simple BIBD(w, 3,2)
and simple BIBD(w, 3, 3).

Of course, there is a vast literature on simple BIBDs including Stinson
and Wallis [20] and many others as well as a flawed/unrepairable proof
by Sarvate [16], [17] that all simple BIBDs with block size 3 exists, but
it is not our intention to give here even a brief survey of the literature.
We just wish to give a very simple construction motivated by a paper of
Professor Street [21] to suit the occasion. We then exploit the ideas in our
construction to construct more BTDs.

2 Construction of Balanced Ternary Designs

We begin this section by presenting a standard construction for AG(2,q)
where ¢ is a prime power. Let z be a primitive element for GF(q).

P = GF(q) x GF(q)

G = {(0,0)(0,2°)(0,z")...(0,2972)} mod (g,-)

c = {(0,0)(z°,0)...(z7"2,0)} mod (-,q)

B, = {(0,0)(z°z*)(z!,z>*)... (297%,2°%9"2)} mod (- q)
B = dev(G)Udev(C) U=t dev(Ba,)
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We make an observation here, that an affine plane of order ¢ is also an
RBIBD(¢?%; ¢ + ;9 + 1;4;1).

We next make the general observation that if we have a (v;b;r;k; A)
BIBD with v = am, and replace a spanning collection of disjoint sets of m
points by a new points, then we get a (a;b;rm; k; Am?) (m + 1)-ary design.
However, this design does not, in general, have an equi-replicate pattern
over the new points, although if the design degenerates into a ternary de-
sign, we will have an equi-replicate pattern with p; = /\(';)

If ¢g = n is a power of 2, we found a way to collapse sets of 4 old
points onto 1 new point so that we got a BTD(n?/4;n2 +n;4n —8,6,4n +
4;7n;16). It turns out that this design can be partitioned into two iden-
tical halves. This construction can be considered a blend of well-known
constructions [7], [15].

Firstly, each of the above base blocks generates a resolution set in
AG(2,q) and if we remove a resolution set from an affine plane we get
a resolvable transversal design RTD(q;q). Secondly, if ¢ = p*, we can
represent points in GF(q) by vectors of dimension ¢ with elements from
GF(p), these vectors normally being thought of as coefficients of a degree t
polynomial in z (we take the constant term last). A standard constuction
for an RT Dy (p*; pt/)) where A = p® < pt, is to take our set of base blocks,
and remove G to provide the groups, and collapse points that only differ
in the last s places of the second (vector) element. Now, although a p® to
1 collapse of points in a design normally multiplies the original value of A
by p??, here we only need a factor of p* as we have p* identical copies, and
we only need one of them. To see this, we let GF°(p*~*) be the subset
of elements of GF(p') whose vector representation has a zero in the last s
places. Now we need only develop the base blocks over GF%(p*~°) rather
than GF(p'), since, if y € GF°(p'~*), then adding y and say, y+ 1, produce
the same block after collapsing.

Lastly, Saha [15] constructed n-ary designs by collapsing points within
a group of a PBIBD with group association scheme; (he paid particular
attention to groups of size 2 so as to ensure the n-ary design were, in fact,
ternary designs).

Now we put these ideas together. Our aim is to collapse four points onto
one; we can think of the four points as a quadrangle; we will get all the
verticals from G, all the horizontals from C, and the diagonals from By. In
one sense, we can select different resolution sets of AG(2,q), treat them as
group definers, and collapse pairs inside the groups, which helps maintain
the ternary nature of our design. We now summarize construction.

Theorem 2.1 A BTD(n?/4;(n?+n)/2;2n —4,3,2n + 2;n;8) whenever n
s a power of 2.

Proof: It suffices to exhibit a 4 to 1 mapping of the points of AG(2,n) onto
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new points, then show the resulting design is actually a BTD, (not say, a
5-ary design), and that every block is duplicated, so we can just take half
the blocks. Let n = 2™,

Let a, b be (m — 1)-tuples of binary elements. Then we map the points
(a0, 50), (a0,b1), (al,b0), (al,bl) onto (a,b). The six pairs of old points
ocurred as follows:

Pair Block

(a0,80) (a0,50) G+ (a0,0)
(20,b0) (al,b0) C + (0,b0)
(a0,50) (al,bl) Bp+ (0,50 — a0)
(a0,b1) (al,50) Bp+ (0,41 — a0)
(a0,b1) (al,bl) C+(0,b1)
(a1,50) (al,b1) G+ (al,0)
Since these 6 pairs all occurred on distinct blocks, the new design is
actually a BTD.
Now let s € GF(2™), and note that s — 1 = s+ 1. Then, after replacing
the old points by the new ones, we have:

G+(5,00 = G+(s+1,0)

C+(0,s) C+(0,s+1)
B; +(0,s) Bi+(0,s+1) Vi

Taking only those shifts whose s value ends in 0 gives the desired half of
the design.

3 More BTD Constructions

We begin this section by presenting a construction for an RT'D3(9;3) con-
structed by the collapsing method of Section 2. Firstly we present an array
of symbols; replace the symbols by circulants as follows: replace 0, 1, 2 by
100, 010, 001 (and treat the symbol —0 as 0). (We will give circulants by
their first row.) This gives the RTD. If we now add J3 to a transversal
we get a BTD; say replace —0 by 211, rather than 100 in the above con-
struction, and we get a BTD(27;27;10, 1, 12;12;5) which is BR121 in [5];
no design was previous known for these parameters.
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The next construction uses two RT'D(4;1)’s; since 4 is not a prime, we
have a more complicated development. Firstly we treat each of the 8 rows of
8 pairs of symbols in the array below as eight 2 by 2 circulants, and develop
to get 16 rows, each with 16 symbols. We then replace each symbol by a 2
by 2 circulant: replace 0, 1, J and — by 20, 02, 11, and 00, and we get the
incidence matrix of a BTD(32; 32; 4,4, 12; 12;4) which is BR164 in [5]; this
design was previously constructed, using different terminology, in [10].

00 60 00 0 JJ —— —— -——

60 01 10 11 —— JJ —— ——
600 10 11 01 - — JJ -—-
6o 11 01 10 —--= —— —— JJ
JJ -—- — —-— 00 00 00 00
- JJ — -— 00 01 10 11
-— ——= JJ —— 00 10 11 01

—_— - - JJ 00 1 01 10

The next construction uses two RT'D(5; 1)’s; but one is written with its
circulants as the multiplicative inverse of the other. The diagonal elements
are additive complements. We replace each symbol by a 5 by 5 circulant: re-
place 0, 1, 2, 3, 4, A, B and — by 20000, 02000, 00200, 00020, 00002, 12002,
10220 and 00000, giving the incidence matrix of a BTD(50; 50; 1, 7, 15; 15; 4)
which is BR342 in [5]; no design was previously known for these parameters.

A - - - -000 00
- A - - - 01 2 4 3
- - A - -0 2 4 3 1
- - — A - 0 4 3 1 2
- - - - A 0 3 1 2 4
0 000 0 B - - - -
0 431 2 —-— B - - -
0 31 2 4 - - B - -
012 43 - - - B -
0o 2 431 - - - - B
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4 A Construction of simple BIBD(v, 3,3) for
odd v not divisible by 3

As mentioned in the Introduction the necessary condition v=1 (mod 2)
is sufficient for the existence of a simple BIBD(v, 3,3). We present a new
construction that establishes this whenever v is not divisible by 3.

Theorem 4.1 If v = 2n — 1 is odd, and not divisible by 3, then a simple
BIBD(v,3,3) ezists.

Proof: Let v = 2n — 1 with the point set 0,1,---,2n — 2. Let K3, be the
complete graph on the set of points Z2,_; U{co0}. Consider the well known
one-factorization (see [19, Theorem 2.1]) where the one-factors are specified
fori=0,1,-.,2n — 2 as follows:

F, = (00,1), (4 — §,i + ), wherej=1,2,---,n—1.

Note that arithmetic is done in Zs,_;. The set of blocks of the required
BIBD are:

{{a,b,c}: the edge (a,bd) is in the factor F,}.

We only need to check that the blocks are distinct. Note that 0 <
a,b,c < 2n — 1. If the edge (a,b) is in F, and the edge (a,c) is in F}, it
will imply that a +b=2¢c (mod 2n—1)and a+c=2b (mod 2n — 1),
hence, after subtracting and rearranging, we have 3b = 3¢ (meod 2n — 1).
If 3 does not divide 2n — 1, this implies b = ¢. Note that if 2n — 1 = 3T
and 0 £ y < T, then the block (y,T + ¥,2T + y) is repeated 3 times (all
with j =T).

5 Designs from Frames

The one-factors given in the previous section can alternatively be considered
as a BIBD(2n—1,2, 1), with the blocks defined by the vertices of each edge.
The factorization defines a partial resolution set, with the set F; having a
hole consisting of the point {¢}. This is a special instance of a frame, and we
have filled in the hole (with the point {3}) to produce a BIBD(2n — 1,3, 3).
We will now exploit this idea to construct more BTDs.

A {k,A}-frame is a {k, A\}-GDD with group divisible association scheme,
and the additional property that its blocks can be partioned into holey
resolution sets; if G; is the i-th group, then there are A|G;|/(k — 1) reso-
lution sets that each cover all the points except those in G;. In the case
where every group size is one, the resulting frame is a BIBD, and when
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A = k — 1 is known as a near resolvable design, or NRB(v, k,k — 1). For
more about frames, see [1, Section 1.6] or [11]. Frames are useful objects
for recursive constructions of RBIBDs, but the important thing, from our
point of view, is that frames have been studied to some extent, and we
can make use of this. Several standard frame constructions are known:
given a RBIBD(v, k, 1), deleting any point and using its blocks for groups
gives a frame (where the old resolution sets, less the deleted block, form
the holey resolution sets); an NRB(4¢ — 1,2t — 1,2t — 2) is obtained from
a skew-Hadamard of order 4t (with diagonal omitted) and its transpose; a
BIBD(v,v—1,v—2) is a NRB; if v = kt+1 is a prime power, the cyclotomic
classes form the base blocks for a NRB(v, k, k — 1); the last construction
we will state is rather less obvious, so we give a proof for it.

Theorem 5.1 If ¢g=ef + 1 is a prime power, then a {q, f}-frame of type
e+l exists,

Proof: Let ¢ = ef + 1. Let (GF(q)U{oo}) x {j : 0 < j < e} be our
point set. Note that e = 1 or f = 1 is permitted. We will use our earlier
representation of AG(2,q) as a starting point. After developing the base
blocks, remove dev(G) which will be the indirect basis for the groups. Now
replace every element (y,z**7) by (y,j) and omit every element of the
form (y,0). (Effectively we are taking logs of the second element, and
reducing modulo e, with the undefined log of zero avoided; alternatively
we are replacing the second element by its multiplicative coset label). All
the blocks generated by B, have had one element removed; all the blocks
generated by Bie+; are augmented with the point (co,j). All elements
with the same (new) second element are in the same group. After carefully
considering the infinite elements, it is clear we have effectively performed
an f to 1 collapsing of points, and have produced a (g, f?) GDD of type
€91, We will now show there are f copies of each block, so that by taking
only one, we will get the required (g, f) GDD. Consider B, and Bgte-
Suppose d = z%** and d' = z%***. The blocks B, — d and Bayte — d'
both are missing points with a first element of z*. Consider the points
with first elements of 7 with j # 4; the second elements are z°+7 — d
and z%+te+J — d’ respectively. Now z0tte+i — ¢’ = zte(z%+7 — d) so these
elements are in the same coset, and thus B, and B, 2ll produce the same
blocks, although not generated in the same order. Finally, it is clear that
G +d and G + d' are identical and G + 0 has been removed entirely. Thus
every block has f copies, and we have shown the existence of the desired
GDD. This construction (of a GDD) is due to Wilson [13, Theorem 15.7.4].
Careful counting shows that the design is actually a frame, with the blocks
that are disjoint from any group actually forming the holey resolution set
for that group.
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Our intention is to form a frame of doubletons (singletons) and fill each
hole with singletons (doubletons); clearly we will get a group associative
PBTD; if there are b blocks in each of the h holey resolution sets for each
hole, then the first associates’ index will be 4bh (bh for singleton fill), and
the second associates’ index will be increased by 4h; we now have to pick
the right frames so that the two indices are the same. Note that the first
associates’ index is not relevant for NRBs. We arrive at several designs
easily.

Theorem 5.2 If p is an odd prime power, then a BTD((p® + 1)(p +
1)/2;B=V;p% (p+1)/2,p> +p+ 1;K = R;2(p + 1)), and a BTD((p? +
1)(p+1);B=V;2(p+1),p%,2(p*> +p+1); K = R;2(p + 1)) exist.

Proof: In Theorem 5.1, take g = p, and e = (p+ 1)/2 and fill with double-
tons, or f = (p — 1)/2 and fill with singletons. |

Remark 5.3 An instance of the first design, BR184, with p = 3, was
given in [5]; the smallest second design has parameters (80; 80; 8, 9, 26; 26; 8),
when p = 3.

Theorem 5.4 A BTD(10;30;9,3,15;5;6) ezists.

Proof: A NRB(10,3,2) exists (see [1, Example 1.6.33]); fill in the holes
with doubletons to get the BTD. Previously no example was known for
this design (BR296).

Actually, we do not need all the structure of frames in this sort of
construction; since we are filling in the holes uniformly, all we really need
is that all the holey resolution classes for a hole be jointly a-resolvable.
We can exploit a construction of Wallis [24] or see [2, Theorem I1.8.16]; we
can view this design as a PBIBD consisting of holey a-resolution sets; here
we also have A\; = A, since it is a BIBD. The Wallis construction takes
an affine resolvable BIBD, and forms the v by v adjacency matrix of the
cliques defined by the blocks of a resolution set, and adds in the diagonal;
a Latin square of order r + 1 is taken, and the i-th symbol is replaced by
the matrix formed from the i-th resolution set, with the last symbol (say
0) being replaced by a zero matrix. The zero transversal defines the groups
(of size v) and the holey k-resolution sets. A BTD results from taking the
initial design as AG(2,4), using the Wallis design for the doubletons, and
filling the holes with singletons, which we state as:

Theorem 5.5 A BT D(96; 96; 16,20, 56; 56; 32) exists.
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6 Odds and Ends

In [5, p.252], it is remarked that there are still two open cases in Tocher’s
list [22], and that these cannot be equireplicate designs. Tocher attempted
to construct ternary block designs, with constant block size, and constant
pair-wise index. The two open cases are (V = 12,K = 5,A = 2) and
(V =13,K = 5,A = 2). We can resolve these cases; the former does not
exist and the latter does.

For (V =12, K = 5, A = 2) we need 132 pairs, and every block contains
at most one doubleton, since A < 4. A block with no doubletons contributes
10 pairs, and a block with one doubleton contributes 9 pairs, so there must
be exactly 14 blocks, with 8 containing a doubleton. Each point needs to
meet 22 other (non-distinct) points, but there are at least 4 points that
have no doubletons, and if such a design exists, each of these points should
meet 4 points per block; since 22 is not a multiple of 4, no design is possible.

For (V = 13,K = 5,A = 2) we first construct a PBIBD(12,5,(1,2))
with a group association type of 3%; Clatworthy[6, R145] gives a base block
of (1,2,4,6,7) in Z;3; we then fill in the groups with the aid of an infinite
point by (o0, 00,0,4,8) (with a short orbit).

In [14], a tabulation was made of the possible values of bz, the number of
blocks containing doubletons, for the designs with parameters listed in [5].
We take this opportunity to note some typos in [14, Table IV.2.2];

o for KS28 b, = 20 is known and b; = 10 is open;

o for KS34, KS46, KS70, KS94, KS122, KS161, by = 10 is known;
e for KS100, KS134, KS172, b; = 13 is known;

o for KS203, the b, entry should be “none”, (see [9, p. 146]).

We have also resolved the status of a number of the open by’s in [14]; these
will appear in later papers. We have also resolved the status of several of
the open parameter sets in [5]. To the best of our knowledge 17 of the 77
cases open there are now resolved.

Design Exists? Authority

BR94, BR164 Yes [10]

BR106, BR197, BR262 No

BR121, BR296, BR342 Yes Constructed above
BR153, BR212, BR302 Yes (8]

BR203 No (9]
BR209, BR245 Yes  [18]
BR223, BR334 Yes

BR266 Yes  [9]
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