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Abstract

We discuss difference sets (DS) and supplementary difference sets
(SDS) over rings. We survey some constructions of SDS over Galois
rings where there are no short orbits. From there we move to con-
structions which involve short orbits. These give rise to new infinite
families of SDS over GF(p) x GF(q), p, q both prime powers. Many
of these families have A = 1.

We also show some new balanced incomplete block designs and
pairwise balanced designs arising from the constructions given here.

1 Introduction

The methods and techniques in this paper have been inspired by many
authors including Dokovic [3], Furino [5], Hunt and Wallis [7] and Storer
[16). We use these methods and further generalisations to find many new
infinite families of SDS.

Definition 1 (Supplementary Difference Sets) Let S;,S,,...,8. be
subsets of Z, (or any finite abelian group of order v) containing ki, ks, ..., ke
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clements respectively. Let T; be the totality of all differences between ele-
ments of S; (with repetitions), and let T' be the totality of all the elements
of Ti. If T contains each non—zero clement of Z, a fixed number of times,
say A, then the sets will be called e-{v; k1, k2,...,ke; A} supplementary
difference sets (SDS).

The parameters of e-{v; k1, k2, . . ., ke; A} supplementary difference sets sat-
isfy

Mo=1)=Y ki(ki = 1). (1)
i=1
If ky = kg = ... = ke = k we shall write e—{v; k; A} to denote the e SDS

and (1) becomes

Mv—1) =ek(k - 1).
If e = 1, then we will denote the SDS as a {v;k; A} difference set (DS)
rather than a 1 — {v; k; A} SDS.

The rest of this paper is organised as follows. Section 2 gives an intro-
duction to cyclotomy and basic theorems. Section 3 gives some recursive
constructions. None of the constructions in Sections 2 and 3 are new.
Sections 4, 5 and 6 present new constructions. Section 4 gives a further
generalisation of previous results. Section 5 presents a construction yield-
ing supplementary difference sets with short orbits. Section 6 develops
further some of the Stanton-Sprott~Whiteman constructions. Finally, in
Section 7, we give some new pairwise balanced designs (PBD) and balanced
incomplete block designs (BIBD) arising from the previous sections.

2 Cyclotomy

We give a short introduction to cyclotomy. More details are given in (4]
and [12]. None of the theorems presented in this section is new.

Definition 2 Let z be a primitive element of F = GF(g), where ¢ = p® =
ef +1 is a prime power. Write F* =< z >. The cyclotomic classes (or
cosets) C; in F are:

C;={z>**:5=0,1,...,f—1},i=0,1,...,e—~ 1
We note that the C;’s are pairwise disjoint and their union is F* = F'\ {0}.
Notation 1 Let A = {a;,az,...,ax} be a k-set; then we will use AA for

the collection of differences between distinct elements of A, i.e,

AA=la;—aj:i#5,1<14,j <Kk
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Note that
AC;=Cy, U...UCj,_,,

where 0 < i < e—1 and the i;’s are not necessarily distinct. Also observe
that the classes C; have a multiplicative structure. That is, !

miplua X Ci = C‘i+iplua!
and, together with the distributive law,

ACi+‘iplua = m’plua X C‘il U e U z'plun X C‘i!—l

= Ci1+iphu U...u Ci!_l-i-l'plna'

Now,
e=-1 e-1
U AC‘ = U ACTH‘ipluu
i=0 iplus=0
e—1 e—-1
= U Ci1+iyxua u...u U Cg,_l.f.ipm,
iplua=o iplun=o
e—-1 e—1
= U C;uU...u U C;
i=0 i=0
= (f-1F".

Therefore, we have the following thcorem.

Theorem 1 Let q = p* = ef + 1, z, Cp,...,Ce_1 be defined as above.
Then
Co,...,Ce-1 aree—{q; f; f — 1} SDS.

Theorem 1 can be generalised (see, for example, [17]):

Theorem 2 Let Sop = C, U...UCk,, ki # kj for i # j, Sm = Cry4m U
<o e UCky4m, t < e. Now

Soy...ySe-1 are e — {q;tf;t(tf — 1)} SDS.
Proof. Note that
A(Ci U Cj) =AC; U A(Ci - CJ) U A(Cj — C.') U ACj,
Yf i + ip0us > e, then i + ipyy, has to be reduced mod e. In the remainder of this

paper, we will not indicate when indexes have to be reduced, except for some very special
cases which require some further considerations.
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where
A(Ca - Cb) = [c“ —Ch i Cq € Ca, Cy (S Cb]-

Similarly to the above we can now write

/-1 f I f-1
aAc:iuc)=JC,ulUculJcC,ulCa;
s=1 s=1 s=1 s=1
and;
e—1
U A(CitmUCjym) =
m=0
= (4f -2)F".

as above. It can now be easily shown that

e—1 e—1
U ASm = U ACiu+mU ... UCiam) = t(tf — 1)F".

m=0 m=0

o

For g being an odd pnme power we define —1 = 2% = z%#. For odd I,
we have -L =e( z L)+ £ £, s0 —1 € Cy. Therefore,

(-1)xCx = (1) x{z*=*t*:5=0,...,f -1}
= {z:e(L;_l)"":’a:e”"'k :8=0,...,f -1}
{xe*tk+%:5=0,...,f -1}
= Ck+ge

Simila.l']y, fOl' Sm = Ci1+m U... U Ci‘-'.m,
(1) x S = Sk+3-

The differences arising from Cj and (—1) x C, must be the same, similarly
for Sk and (—1) x Sk, Therefore, we get the following theorem.

Theorem 3 Let g =ef + 1 be an odd prime power and let f be odd. Now
in Theorems 1 and 2:

g_
2
e

{a:f —l}SDS~
{s

1) t(tf Hef =1y opg.
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Note that we could also have chosen any configuration, for example,
Co,Cg+1,C3, ...,C,- instead of Cy,..., Cg-1. There are a total of 2% in-
dependent choices of either Cy or Cj. 4 for the above £ - {g; f; ‘%} SDS .
Similarly for Sk and Sk 4. Hence, there are many? nonisomorphic SDS for
either case in Theorem 3.

Another standard construction for SDS is obtained by adding the element
{0} to each set Cj or S; in Theorems 1 to 3. Observe that for any set D

A(DU{0}) = ADUDU(~1) x D.

Theorem 4 From Theorems I to $ and by adding the element {0} to each
set C; or S;, respectively, we get

e—{q;f+1;f+1} SDS,

e—{q;tf+ 1;t(tf +1)} SDS,
f+1

g—{q;f+1 ——1} SDS,
s — (gt +1) ‘(”T“’} 55 .

3 Supplementary Difference Sets without
Short Orbits

In this section we show how we can construct SDS over cross products of
Galois fields (also called Galois rings) and over Zpa by similar constructions
as given above. None of the constructions and the SDS in this section are
new and they are, for example, covered by a more general construction given
in [5] but the approach and (the sketch of) the proof of Theorem 5 here are
different from the constructions given in [5]. Other similar constructions
are given in (1], [8] and [10).

Definition 3 Let p,...,pn be prime powers and let f be a factor of each
pi— 1 Lete = 22 21 ynd z; be a primitive element of GF(p;). Let
6 e {QU{(m):0<j< B2 -1,0<m<f-1},i=1,...,n Then
we define the classes Cy, ¢,,...¢,, as

Cty ts,...t, = {(r1(5),72(8),...,Ta(8)) : 5 =0,..., f — 1},

2This construction gives us 2% ¢ s—1{ak; } SDS . But not all of these SDS are
nonisomorphic, for example, if e = 4 then Cp, %’2 and Cj,C3 are isomorphic SDS since
one can be obtained from one another by multiplying all the classes with the same fixed
element.
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where
0 £; =0

ri(s) = ) ; ]
t( ) { mf-(s‘*'m)-H 6= (J’,m)

€€ {(jym):0<j < B2 —-1,1<m < f—1} will not be defined if all
b=, for k=0,...,i-1.

We shall also be concerned with different types of class Cy, ¢,,...2,- We
define two classes Cy, , ¢,,,...,t., and Ciyy,t22,...,tns 1O bE of a different type,
if there is at least one 7 such that &, = Q and &;; # €1 or vice versa;
otherwise the classes are to be defined of the same type.

Observe that for any n, the totality of all the defined classes Ce,,....t, are
a partition of {(1,...,1),...,(P1 — 1,...,pn — 1)}. The total number of
different types of class is 2" — 1 (if we do not count the class Cqq,...0 =

{0})-

Theorem 5 Let py,...,pn be prime powers. Let f be a factor of each
pi—1,lete; = ’?‘7'-1 and ; be a primitive element of GF(p;).

()

X ...XPn—1
Cu,,...L. GT€ h 7 P —{pr x...xpn; f; f —1} SDS,

for all defined €y,. .., ¢Lx.

(ii) There are ¢(f)"~! nonisomorphic such SDS depending on the initial
choices of the primitive elements z;, i =1,...,n.

(ii) Purthermore, if all p;’s are odd and f is odd, then there are many
nonisomorphic ﬂ’&%&:}-—{pl X .. X P T3 L;l} SDS for each of
the SDS in ().

Proof. We only sketch how to prove (i) to (iii).
(i): It can be shown that the totality of differences arising from one type
of class generate this type of class f —1 times. That is

AC‘la--o,ln = (f - 1) U Cll....,l,.,

same type of class same type of class

and this will complete this part of the proof, since all the classes are a
partition of {(1,...,1),...,(P1 —1,...,Pn — 1)}.

(ii): If n = 1, then ¢(f)» ! = 1. That is, the SDS in this case does not
depend on the choice of the primitive element z,. If, however, n 2> 2, then
the classes depend on the choice of the primitive elements z;, i 2 2. For
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each p;, ¢ > 2 there are ¢(p; — 1) primitive elements of which ¢(f) will
lead to another nonisomorphic set of classes. There are a total of n — 1
independent such choices, therefore, we have ¢(f)"~! such SDS.

(iii): If all p;’s are odd and f is odd, then (—1) = (—1,...,~1) will not be in
C(0,0),....(0,0)- So there are two classes, C(o),...,0,0) and (—1) X Co,0),...,(0,0)
which generate the same differences. Similarly for all other classes Cey,...tn-
Hence, half of the classes must generate all the differences and there are a
total of ﬂ%’"‘—_l independent choices of either Cy,, .. ¢, or (—1)XCq,....¢.

to form El%&'—l—{pl X .oo X Pni [ %} SDS. m}

Theorems 2 to 4 can now be extended similarly.

Theorem 6 Let p;, e;, z;, f be as above. Let t < min{e; : 1 < i < n}.
For each different type of class now define

t
Sstart = U Corsytns
i=1
such that, for each o # B and 1 < k < n, if by = (ja,Mma) and bp =
(Js, mp), then jo # jg.

If we now let all the Sgare’s “cycle through”, then we have

PLX...Xpp—1
f

Theorem 7 If, in Theorem 6, all p;’s are odd and f is odd, then there are
also

—-{mx... xzrn;tf;t(tf¥1)} SDS .

MX...Xpn—1
2f
obtained by taking either Ssiart+k Or (—1) X Sstaresk for each k and each
different type of class.

~{mx... xp,.;tf;t(th—l)} SDS ,

Theorem 8 In Theorems 5 to 7 we obtain

P1X...Xpp—1

—{p x...xpn;f+1;f+1} SDS,

f
B P = d (o X past] 4 158(tf + 1)} 5DS,
P1X...Xpp—1 . J+1

2f {plx...xz)mf'f'l, 2 }SDS’
2 "-~-2’f<1’"‘1 -{nm x...xpn;tf+1;t(tL2+-1-)-} 5Ds

by adding the element {0} to each of the initial sets, in Theorems 5 to 7,
respectively.
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Clearly, all the above constructions work for py,...,pn being pairwise dis-
tinct primes. We then have

GF(p) X ...XxGF(pa) =~ Zp X...X2Zp,

~

Zp;x...xp,.-

We now turn briefly to SDS over Zpa. The next theorem corresponds to
Lemma 4.3 in [5}.

Theorem 9 Let p be an odd prime and = be an element of Zya such that
z has multiplicative order p* — p®~1. Let f be a factor of p—1. Let

1
Cop, = {p7z= Tt :5=0,...,f -1},

a—x__ a—z—1

z=0,...,a—-1, £z=0,...,L—-}’———1.
()

> -1

Cet, arep 7

for z, £, running through the above ranges.

—{p%; f; f — 1} SDS over Zpa,

(i) The number of nonisomorphic SDS in (i) is one.
(iii) Purthermore, if f is odd, then there are many nonisomorphic %‘—1 -
{r>; f; 51} SDS.

The constructions in Theorems 2 to 4 can now be applied very similarly.
We do not state the theorems here. However, we would like to mention
that combinations of SDS over cross products of Galois fields and Z,. are
possible. In Theorems 5 and 9 two classes, say C; over G1 and Cy, over G2,
could always be expressed as

Cj = {ylz‘l"°+j:s=0,...,f—1},
Cr = {yg:cg""""‘:s:O,...,f—l}. (2)

Any two such classes give immediately rise to f new classes, say Cj k,m over
G1 x G2, which can be expressed as

Cj,lc,m = {(ylx‘l:ls+j’y2m;2(8+m)+k) :8=0,...,f - 1}

form=0,...,f—1.
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Suppose that the C;’s are a partition of G; and the C}’s are a partition of
G2. If now the totality of the C;’s form -1‘—1 {v1; f; f — 1} SDS over G;,

that is,
Uac; = -nJe;
i J
and the totality of the Ci’s form 33]:1- — {vq; f; f — 1} SDS over G2, that
is,
UACk =(f- l)UCk,
k k

then

Cikm = {(naf®t ypa2C™¥ey 50, ..., f -1}
D = {(0,y222***):5=0,...,f -1}
E; {z5*,0) :s=0,...,f -1}

are 21213—_1 — {v1ve; f; f — 1} SDS over G, x Gy, since,

U ACikm = (F=1) U Cikm

Jik,m Jik,m

Uabe = (F-ylJbs
k k
Uate;, = (r-1{JE;.
J J

Furthermore, the Cjk m’s, D¢’s and Ej;’s are a partition of G; x Ga.
Jik, 4] p

It is clear that the above construction can be applied recursively. The con-
structions from Theorems 2 to 4 may now be applied accordingly.

The theorems given in the above sections produce infinite families of SDS.
For a given v the above constructions may lead to different groups. For
example, if v = 25, then we may consider SDS over

GF(25), or

Zs x Zs ~ GF(5) x GF(5), or

Z25.
If, in the above constructions, we call C(o,0),....(0,0)) Co,0, Or Co00 “the

first class”, then in Theorems 5 and 9 all the SDS are defined by “second
element” in the first class. That is, the whole structure is defined by

R e o 3)

169



where G; are the different groups involved, z; is a generator of the units of
Gi (i=1,...,n) and |G| is the order of the group G;.

We also would like to point out that the first class is a® subgroup of the
units in G; X ... x Gpn. All the other classes are the orbits of this subgroup.
All the orbits and the subgroup have the same order, that is, there are no
short orbits. This is due to the construction and (3) which assures that
zf =(1,1,...,1) and z* = (uy,...,us) With ux # 1, (k = 1,...,n) for
2<i<f—1

4 A More General Construction

The construction in Theorem 10 is similar to Theorem 5. However, the
construction here is more general. This generalisation is completely differ-
ent from the constructions in [5]. A construction using a similar idea for
cyclic block designs has been given in [1].

Theorem 10 Suppose Cy,...,Ce—1 are
e —{v; fo,..., fe=1; A} SDS over G;

and suppose there is a prime power q with fil(q—1) for all0 <i<e-—1.
Furthermore, suppose that (A + 1)|(g —1).

Let = be a primitive element of GF(q) and let c; s be the s-th element® in
set C;. Let

Cie = {(cimz T ¥ :5=0,...,0-1}
Dy {(0, 2%ty :5=0,...,A}
Ej = {(Cj,8,0)28=0,...,fj—1},

where j =0,...,e—1,k=0,...,5571-1,£=0,...,g - 2.

Now

Cjt, D, Ej are (eq + i;—})—
{vq;anfO)” '7f¢—11fe—11’\+ lw .o ,A + 1’f07~-'afe—l;A} SDS
over G x GF(q),

for j, k, € running through the above ranges.

3Because there may be more than one way to construct the first class (Theorem 5)
we say “a subgroup” and not “the subgroup”.
4Note that “the order” within the sets C; may be chosen completely arbitrarily.
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Proof.

UAE =i U (5,0),

9€G*
due to the assumption; and;
-1
U ADp=A U (01 y):
k=0 yEGF(q)*

due to cyclotomy and the construction. Also

AlG* -1
U AC]O = U (gk) uk))
j=0 k=0
such that Ut!__cf;l_l gk = AG*.
Now
e—1g—2 AG*|-1g-2
Uudace = U Utz
§=0¢=0 k=0 ¢=0
=2UJ U G,
9€G"* yeGF(q)*

which completes the proof.

Corollary 1 The above construction also works if

-1 | (@-1),
(2A+1) | (g-1), g being odd
(2x-1) | (g—-1), g being odd.

Proof. The standard constructions in cyclotomy given above give rise to
SDS over GF(q) with A= f + 1, %, %, where f is the size of the sets.
Therefore, for the construction of the Dg’s, we have to let f = A — 1,2\ +

1,2\ — 1, respectively, and this f must divide g — 1.

Corollary 2 Suppose there are {v; f; A} SDS over G and {gq; f; A} SDS
over GF(q), q a prime power and f|(q — 1), then there are {vg; f; A} SDS

over G x GF(q).
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Proof. Follows directly from the construction and by embedding the
{g; f; A} SDS over GF(q) in G x GF(q) yielding the Dy’s. w]

Corollary 3 Suppose Cy,...,Ce—1 are
e — {v; f; A} SDS over G;

and suppose there is a prime power q with f|(q—1). Furthermore, suppose
that A|(f — 1).

Let = be a primitive element of GF(q) and let c;, be the s-th element in
set Cj. Let

Cie = {(cj,s,x#’“) :8=0,...,f—1}
D {(0,z°T**):5=0,...,f - 1}
Ej {(Cj's,O):S=0,...,f—1},

where j=0,...,e~1, k=0,...,9% -1, £=0,...,g - 2.

Now

% copies of Cj ¢, E; and one copy of Dy are (eqf;—l + 9;__1)_
{vg; f; f — 1} SDS over G x GF(q),

for j, k, £ running through the above ranges.

Proof. Follows directly from Theorem 10 and the construction. a

Theorem 10 and its corollaries lead to infinite families of SDS. Note that
due to Corollary 1 may more than one construction be possible (for exam-
ple, if ¢ = 13 and A = 3). Theorem 5 is a special case of Corollary 2.

In the above section constructions of SDS over Zp. are given. Similarly,
we can now extend SDS via Zpa.

Theorem 11 Suppose Co,...,Ce—1 ore
e — {v; fo,..., fe—1;A} SDS over G;

and suppose there is a prime p with fi|(p— 1) for all0 < i < e—1. Fur-
thermore, suppose that (A + 1)|(p — 1).
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Let = be an element of Zya such that x has multiplicative order p* — p*~1
and let c; 5 be the s-th element in set C;. Let

a—z_a—z~1
{(¢j,srP°x 7 8“‘) :8=0,...,f; — 1}

a—z_ _a-—z—1
D.i, = {(0,p*z™ =t —stks).5-0,...,)}
E; = {(¢js0):5=0,...,f;-1},

Cjz.e.

where j = 0,...,e — 1, k, = O,...,‘%_;_:;H -1, 2=0,...,aa-1,
£,=0,...,p> % —p—="1_1,
Now

Cjnznts’Dz,kz’Ej are (epa + %n-;Tl)_
{‘vpa;fo,fo,-~-,fe-1,fe—1,/\+ lr"'a’\ + 17f0,'--’fe-1;’\} SDS
over G X Zpa,

for j, k., 2,2, running through the above ranges.

Proof. Similarly to Theorem 10: The proof follows from Theorem 9 and
the construction. a]

Remark 1 Similarly to the above, the construction also works if

-1 | (p-1),
@ +1) | (-1,
-1 | (p-1).

The constructions from Corollaries 2 or 3 may be applied.

Example 1 Co = {1,5,25,8}, Ci = {2,10,11,16}, C; = {4,20,22,32},
C3 = {13,26} are 4 — {39;4,4,4,2;1} SDS over Zsg. The construction in
Theorem 10 now yields:

22 -{195;4,4,4,4,4,4,4,4,4,4,4,4,2,2,2,2,2,2,4,4,4,2; 1}

SDS over Zzg x GF(5) ~ Zgs,

40 — {351;4,...,...,2,2,2,2,4,4,4,2;1} SDS over Z3g x GF(3?),
58 — {507, 4, . c100012,2,2,2,2,2,4,4,4,2;1}

SDS over Z3g x GF(13),

and there are many other SDS possible.
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Example 2 Thesets {1,12,8,5}, {10,3,11,2}, {4,6,7,9} are 3—{13;4; 3}
SDS over GF(13). (Note that “the order” within the sets has been chosen
arbitrarily.) We now extend these SDS via GF(5). Let

Coo = {(1,1),(12,2),(8,4),(5,3)} = {1,12,34,18},

Cio = {(10,1),(3,2),(11,4),(2,3)} = {36,42, 24, 28},

Cao = {(4,1),(6,2),(7,4),(9,3)} = {56, 32,59,48},
Do = {(0,1),(0,2),(0,4),(0,3)} = {26,52,39,13},
Eo = {(1,0),(12,0),(8,0),(5,0)} = {40,25,60,5},
E; = {(10,0),(3,0),(11,0),(2,0)} = {10,55,50,15},

E, = {(4s 0):(610)a (71 0)1(910)} = {30: 45, 20, 35},

and let Cj ¢ = (1,2%)xCj o, for j =0,...,2,£=0,...,3. Now Cje, Do, Eo,
E,, E, are 16 — {65;4;3} SDS over GF(13) x GF(5) ~ Zgs. These SDS are
nonisomorphic to the ones arising from Theorem 5 or given in [5] because
the elements in the classes arising from GF(13) have “been shuffled” before
the Cj,¢ were constructed. There are many other nonisomorphic such SDS,

since, for fixed j, there are 4? = (f — 1)! ways to construct the Cj’s.

Example 3 Section 10.6 in [2] gives {v;4;1} SDS for v = 49,85. We
extend these SDS via GF(13) and let D = {(0,0),(0,1), (0,3),(0,9)} (note
that {0,1,3,9} is a {13;4;1} DS, Corollary 2), Cj and E; as in Theorem
10. We now have {r;4;1} SDS for

r = 637,1105,
over Z,.

Example 4 The set {0,1,3,9} is a {13;4;1} DS over GF(13). We ex-
tend these SDS via {1,7,24, 18}, {2, 14,23,11}, {4,3,21,22}, {8,6,17,19},
{16,12,9, 13}, {5, 10,20, 15} which are 6 — {25;4;3} SDS over Z;2. We get

Co00, = {(01 1),(1, 7)v (3’ 24), (91 18)} = {261 157, 224, 243}’

Coote = (1,2)% x Co0,00 = 27" x C0,0,00s
Coa0, = {(0,5),(1,10),(3,20),(9,15)} = {130, 235,120,165},
Coren = (1,2)" x Con0, = 27" x Co,1,045

Doo, = {(0,1),(0,24)} = {26,299},

Doy, = (2,2)% x Do, = 2% x Do,0,,

Do, = {(0,5),(0,20)} = {130,195},

D1, = (2,2)% x Dy, =2 x Dyg,,

Eo = {(0,0),(1,0),(3,0),(9,0)} = {0,300,250,100}.
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Now for eo = 0,...,19, 31 = 0,...,3, ko = 0,...,9, kl = 0,1, CO,O,Eo:
Co,1,2,5 Do kgy D1k, Eo are 37—{325;4,4,...,...,2,2;1} SDS over GF'(13) x
Z52 o~ 2325.

Corollary 4 Suppose n = p® is a prime power and q is an odd prime
power. Suppose (n+1)|(g—1). Then we get

-1
(q+qT)_ {gr® +n+1);n+1,...,2,n+1;1} SDS

over Zp24ni1 X GF(q).

Proof. Cyclic projective planes exist for every order n = p* (Singer),
see, for example, [6] or [11]. Therefore, we have a {v; k; A} DS with

v=n?+n+1, k=n+1, A=1
Theorem 10 gives us the desired SDS. (]
Corollary 5 Suppose n = p* is a prime power and q is a prime. Suppose
(n+1)|(g—1). Then we get

“—1
(q“-{-q—2—-)—{q"‘(nz+n+1);n+1,...,2,n+1;1} SDS

over Znziniy X Zga, fora 2 1.

Proof. As Corollary 4 but now via Theorem 11. ]

5 Supplementary Difference Sets with Short
Orbits

Theorem 12 Let £ > 1 be a number such that £ 4 2 is a prime power.
Let q be a prime power with ¢ = 1 mod (£ + 1)2. Let z¢ and z, generate
GF(£+2)* and GF(q)*, respectively. Let

-1 847
C; = {(z:,m'§¢+l),‘ +J) 18=0,...,(0+ 1)2 -1}
E = {(2¢,0):5=0,...,¢}

. -1
forj=0,...., 543 -1

Now the C;’s plus £+ 1 copies of E are
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g-1 _
(e+1+£+1)
{(€+2)gE+1)%...,+1)%e+1,...,8+1;8¢+1)} SDS,

over GF(q) x GF(£+2), for j running through the above range.

Proof. We define

De = {(0,sF™ ™) s =0,...,@+1)2 -1},
fork=0,...,z{_'_;1157—1.
We have

ACy = DpU...UDg U

Cjv...u Cj(t+1)’

—-t-1

where 0 < k; < '(Zq-F_ile -1,0<5i < %:_—% — 1. The classes have a multiplica-
tive structure, so

(l,nglua) X CO = ijl‘“,
Aijlua Dk!"‘jpluu U M U Dkt+jylus U
Cj1+jplua U . U Cj(;.}.;)?_g-;""jplua'
Therefore,
1 -1 -1
U Aijlus = U Dkl +jp!ua u...u U Dkl+jplus U
jplua=0 jyhu!:o jplua=0
-1 -1
U le+jplua U s U U Cj(¢+;)2_¢_1+jylun
jplun=o J.plua"—"o
-1 -1
= ¢ |J Deu(e+1)?-2-1) U ¢;
k=0 j=0
@rr} -1
= ¢e+1) |J Deute+1) | G
k=0 3=0
Also
AE = (E,
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(£ +1)AE = £(¢ + 1)E,

and the proof is complete. (m]

Example 5 Let £ = 3 and ¢ = 17 (note that 17 = 1 mod 16). Let
(ze,zq) = (2,5) = 22. Now

Co = {1,22,59,23,81,82,19,78,16,12,9, 28, 21, 37,49, 58},

C: = {56,42,74,13,31,2,44,33,46,77,79,38,71, 32,24, 18},
C. = {76,57,64,48,36,27,84,63,26,62,4,3,66,7,69,73},
Cs = {6,47,14,53,61,67,29,43,11,72, 54,83, 41, 52, 39, 8},

E = {51,17,34,68},

and Cy,C1,C,,C3,E,E,E,E are 8 — {85;16,16,16,16,4,4,4,4;12} SDS
over GF(17) x GF(5) =~ Zgs.

Note that £ odd implies £ + 2 and ¢ odd. That is, —1 exists. Now —1 =

241 -1
(-1,-1) = (:c:g_ ,z:’_ ) is not in Co which can be easily shown. That is,
(—1) x Cop # Co. But the differences generated from ACp and A(—Cp) must
be the same. Since this applies for every class C;, we can take only half of
the classes in Theorem 12 to get SDS. We have the following corollary.

Corollary 6 If, in Theorem 12, £ is odd, then there are also

g-1 241
Gesn* 2
e+1

{(€+2)g; (€ +1)%...,(6+1)%e+1,...,0+ 1;6——} SDS,
over GF(q) x GF(£+ 2).
Example 6 In Example 5, Co,C1, E, E are
4 — {85;16,16,4,4;6} SDS
over Zgs.

Example 7 Let £ =1 and ¢ = 5 (note that 5 = 1 mod 4). In this case
the constructions in Theorem 12 and Corollary 6 work and the SDS in
Corollary 6 are given by

Co = {(1,1),(2,2),(1,4),(2,3)} = {1,2,4,8}

E = {(1,0),(2,0)} = {10,5}.

177



Now Cy, E are 2 — {15;4,2;1} SDS over GF(5) x GF(3) ~ Z;s.

Let £ =1 and q = 13 (note that 13 =1 mod 4). In this case the construc-
tions in Theorem 12 and Corollary 6 work and the SDS in Corollary 6 are
given by

Co = {(1,1),(2,8),(1,12),(2,5)} = {1,8,25,5}
c = {(1,2),(2,3),(1,11),(2,10)} = {28,29, 37,23}
C: = {(1’4))(2a6)s(119),(217)} = {4$ 32,22, 20}

Now Cy, C1,Cs, E are 4—{39;4,4,4,2;1} SDS over GF(13) x GF(3) =~ Zso.
Let £ =1 and g = 17 (note that 17 = 1 mod 4). In this case the construc-

tions in Theorem 12 and Corollary 6 work and the SDS in Corollary 6 are
given by

Co = {(11 l)a (2’ 13)’ (1, 16), (2’4)} = {11 47,16, 38}

¢, = {(1,5),(2,14),(1,12),(2,3)} = {22, 14, 46, 20}
C: = {(1,8),(2,2),(1,9),(2,15)} = {25,2,43,32}
C; = {(176)7 (2) 10)1(1$ 11), (2, 7)} = {40144a28141}

E = {(1a0)’(2’0)}={34117}

Now Co, C1,Ca,C3, E are 5—{51;4,4,4,4,2;1} SDS over GF(17)xGF(3) =
Zs1.

Note that Cp is again a subgroup of the units of GF(¢ + 2) x GF(q). The
other classes are all orbits of this subgroup. But this time we have one
short orbit, that is, one class with less elements than Cp, which is E.

6 Twin Prime Power Constructions

Stanton, Sprott, Storer and Whiteman, sce, for example, [15), [16] or [18],
showed constructions of DS over GF(p) x GF(p + 2), with p, p 4+ 2 both
prime powers. We give very similar constructions here which give new
families of SDS.

Theorem 13 Let p, p + 2 be two prime powers p > 2. Let z, y generate
GF(p)*, GF(p + 2)*, respectively. Let f = E5* =lem(p—1,p+1). Let

C = {(=*y**):s=0,...,f-1}
Br = {="F**%,0):5=0,1},
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where i =0, 1, k=o,...,&-1—1. Then Co, Eo,...,Epz1_, are

p+1

{(p+2), ,2 ,...,2;(”;1)2}395

over GF(p) x GF(p +2).

Proof Define E = {(z%,0) : s = 0,...,p— 2}, D = {(0,%°) :
.-,p}. Note that Co, C1, D, E are a partltlon of (GF(p) x GF(p +

2)) \ {0}. AC, generates Lt—lﬁ classes C;,, i = 0,1, LL times D

and L’?ﬁ — 1 times E, whxch follows directly from the constructlon (by
counting “the number of hits from ACp” in each of the classes Co,C1, D, E
and taking into account the length, that is, the number of elements in each
class). Observe that

U AE.=E
=0

It now only remains to prove that half of the i;’s are 0 (and the other half
therefore 1). Note that

—1xCo=(~1,-1)x Co = (z°T,y™F) x Co = C,
since (227, y™) = (z°7°,y*7 *!) € C;. But
ACy = A(—Cp) = AC,.
gence, half of the C;,’s generated by AC)y are Co’s and the other half are
1's. o

Remark 2 The only reason why the Ei’s in Theorem 13 are needed is
2

because ACy does not generate enough E’s (namely 9#)- — 1 instead of

-(3_4—1)1). Therefore, the class E has to be generated once more via the

AEk’S.

Remark 3 The SDS in Corollary 6 and Theorem 13 for the case GF(3) x
GF(5) ~ Z,5 are the same.

We restate the theorem of Stanton, Sprott [15] and Whiteman [18] and
reprove it by simply counting the differences generated by A{CoUEU{0}}.

Theorem 14 (Stanton—Sprott—Whiteman restated) Let Co, E be de-
fined as above, then {CoUE U {0}} is a

2 _ 2
{p(p+2); 2 5 1+p;(p4;1) -1} DS

over GF(p) x GF(p+2).
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Proof. We know that

A{CoUE U {0}} =
ACoUAEUA(Co—E)UA(E—Co)UCoU—CoUEU—E=

@1 Gucyu s

41)20u((p_41)2-1)E
U(p—2)EUA(Co— E)UA(E - Co)UCoUC, U2E.

We have to examine A(Co — E) and A(E — Cp). Again by counting “the
number of hits from A(Cp — E)” we find that A(Cp — E) generates £~

D’s and (p —2) Ci,’s. Similarly, A(E — Co) generates 23X D’s and (p — 2)
(—Cgk)’s.

Therefore, (Cp U C)) is generated
(p— 1)
4
times. The class D is generated
(p—1)? _(+1)?
7 +p—-1= 7 1
times. And, finally, the class E is generated
(p-1)°
4
times. o

2
+p-2+1=(1’_*;l)_—1

2
-1+p-2+2=@-1

Corollary 7 Let Co, D be defined as above, then {CoU D} is a

2 2
oo+ 2); E51 ANy g

over GF(p) x GF(p+ 2).

Proof. The complement of {Co U EU {0}} is {C1 U D} which is a DS.
But A{Cl U D} A- {C1 8] D} A{Co U D} Hence, {Co U D} 18 a DS
with the above parameters.
Example 8 Let p=5,p+2=17, (z,y) = (2,3) = 17. Now

Co, = {1,17,9,13,11,12,29,3,16,27,4,33}

D = {15,10,30,20,25,5}
E = {21,7,14,28}

Ey = {21,14}

E, = {7,28}9
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and Cy, Eo, E; are 3 — {35;12,2,2;4} SDS. Furthermore,

{CoU EU{0}} = {1,17,9,13,11,12,29,3, 16,27, 4,33, 21,7, 14, 28,0},
which is a {35;17; 8} DS; and;

{Cou D} = {1,17,9,13,11,12, 29,3, 16,27, 4, 33, 15, 10, 30, 20, 25, 5},
which is a {35;18;9} DS. All the SDS and DS are over GF(5) x GF(7) =~
Z3s.

The above theorems motivate us to find other pairs of prime powers p, p+a
(a now greater than 2) with ged(p — 1,p + ¢ — 1) = 2 to construct DS and
SDS in a similar manner. However, some calculations show that DS and
SDS as in the above theorems are only possible for ¢ = 2. If @ > 2, then
the set D (the zeroes in p) will be generated too many times.

A more successful approach is to drop the condition ged(p—1,p+a—1) = 2.
That is, we let g = ged(p—1, p+a—1) and try to find appropriate conditions
about a and g.

Theorem 15 Let p, q = (9 — 1)p + 2 be two prime powers p > 2, where
g=gcd(p—1,q9—1). Let =, y generate GF(p)* and GF(q)*, respectively.
Let f = 5”—_12}"—_-9 =lem(p—1,9—1). Let

Ct' {(28:y8+i):s=01"'$f-1}

E = {(«%,0):5=0,...,p—2},
wherei=0,...,9— 1. Then {CoUEU{0}},...,{Cg_ UE U {0}} are

2 - (g =00 iy 50

over GF(p) x GF(q), where

_pg-l-g
A= TR
Proof. Similarly to the proof above (Theorem 14). The construction also
involves the fact that -1 = (-1,-1) = (a;zi‘l,ysi‘!) € Cy. Therefore, we
only need the classes {CoUEU{0}} to {Cg_,UEU{0}} to generate the SDS.
But —1 € Cg can be easily proven by showing that gL—z(z—_l), =% mod g.
O

The above theorem and construction are very similar to Theorem II.1 in
Storer [16]). This theorem was originally due to Whiteman [18]. However,
in Storer DS are constructed, while Theorem 15 gives SDS. The case g = 2
is of course Theorem 14.
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Example 9 Let p = 5, g = 4. Now q = 3p+ 2 = 17 is a prime power.

Also gcd(4,16) =4 =g. Let z = 2 and y = 5. Now

{CoUEU{0}} = ({1,22,59,23,81,82,19,78,16,12,9,28,21,37,49, 58,
0,51,17,34,68}

{CiUEU{0}} = {56,42,74,13,31,2,44,33,46,77,79,38,71,32,24,18,
0,51,17,34,68},

and {Co U EU {0}}, {C1 U E U {0}} are 2 — {85;21;10} SDS.

We close the section by pointing out the similarity of Theorem 12 to Theo-
rem 15 for ¢ = (£+1)2 + 1. If we denote the other prime in Theorem 12 by
p,thenp=2£+2 Nowg=ged(p—-1,9—1)=£€+1andg=(g—1)p+2.
The classes Cp in either theorems are now the same (if we take the same
generators of GF(p)* and GF(g)*). The whole construction is now very
similar. Taking only half of the classes (Theorem 15) corresponds of course
to Corollary 6.

7 Balanced Incomplete Block Designs and Pair-
wise Balanced Designs

Definition 4 Let B be a collection of b blocks (or sets) of size k over a
finite set V with v elements. If B satisfies the following conditions

(i) each element v; occurs exactly r times;
(ii) each unordered pair (v;,v;) occurs in exactly A of the b blocks;
then B is called a balanced incomplete block design (BIBD).
The parameters of a BIBD satisfy
bk = wr,
Mpv—-1) = r(k-1).

Since 2 of the parameters v,b,r, k, A are redundant, we will refer to a BIBD
as BIBD(v, k, A).

If So,...,S8:—1 are t — {v; f; A} SDS, then we may obtain v x ¢ blocks
B; j, where B;; is obtained from S; by adding the element j to each of
the elements in S;. It can be easily shown that the B;;’s are a BIBD.
Therefore, we have the following theorem.

Theorem 16 If there are t — {v; f; A} SDS, then there is a BIBD(v, f, }).
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v \% K How

5| GFO) XCFG) =25 | {42 Corollary 6 with £ =1
30 | GF(3)x GF(13)~Zss | {4,2} Corollary 6 with £ = 1
51| GF(3)x GF(17)~2Zs | {4,2} Corollary 6 with £ = 1
65 | GF(13) x GF(5)~Zes | {4,2} | {0,1,3,9} and Theorem 10
75 GF(3) x GF(5%) {4,2} Corollary 6 with £=1
87 | GF(3) x GF(29) ~ Zs? {4,2} Corollary 6 with £ =1
111 | GF(3) x GF(37)~ Zin | {4,2} Corollary 6 with £=1
123 | GF(3) x GF(41) = Z1as | {4,2} Corollary 6 with £= 1
147 GF(3) x GF(7?) {4,2} Corollary 6 with £ =1
159 | GF(3) x GF(53) ~ Z150 | {4,2} Corollary 6 with £=1
183 | GF(3) x GF(61) ~ Z1ss | {4,2} Corollary 6 with £ =1

195 Z1s X GF(13) ~ Z95 {4,2} | Corollary 6 and Theorem 10
195 Z3g X GF(5) = Z105 {4,2} | Corollary 6 and Theorem 10

217 Z31 X GF(T) ~ Za17 {6,2} Corollary 4 withn =15
219 | GF(3) x GF(73) ~ Za1o | {4,2} Corollary 6 with £ =1
221 | GF(13) x GF(17) ~ Zoz1 | {4,2} {0,1,3,9} and Theorem 10
231 Zy X GF(11) = Za3 {5,2} Corollary 4 with n =4
243 GF(3) x GF(3*) {4,2} Corollary 6 with £=1

247 | GF(19) x GF(13) = Zzaz | {3,2} | {4,9,6}, {5,16,17}, {8, 18,12}
and Theorem 10

255 Z1s X GF(17) ~ Zzss {4,2} | Corollary 6 and Theorem 10
255 Z51 X GF(5) ~ Zass {4,2} | Corollary 6 and Theorem 10
325 GF(13) x Zg2 ~ Z325 {4,2} {0,1,3,9} and Theorem 11

351 Z39 x GF(3%) {4,2} | Corollary 6 and Theorem 10
377 | GF(13) x GF(29) ~ Zarr | {4,2} {0,1,3,9} and Theorem 10
403 Z31 X GF(13) =~ Z403 {6,2} Corollary 4 withn =5

435 Z15 x GF(29) >~ Z435 {4,2} Corollary 6 and Theorem 10
481 | GF(13) X GF(37) ~ Z4s1 | {4,2} {0,1,3,9} and Theorem 10
507 Z39 x GF(13) {4,2} | Corollary 6 and Theorem 10
513 Zsy X GF(3%) {8,2} Corollary 4 withn =7
555 Z15 X GF(37) ~ Zgss {4,2} | Corollary 6 and Theorem 10
615 Z15 X GF(41) ~ Zg1s {4,2} | Corollary 6 and Theorem 10
651 | Zu x GF(381)~Zes; | {5,2} Corollary 4 with n = 4
795 Z15 X GF(53) =~ Zves {4,2} | Corollary 6 and Theorem 10
915 Z15 X GF(61) =~ Zg15 {4,2} | Corollary 6 and Theorem 10
1001 Zgy X GF(11) ~ Zyo01 {10, 2} Corollary 4 withn =9

Table 1: Some PBD with A =1.
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A more sophisticated construction is given in [12], Theorem 23:

Theorem 17 (Theorem 23 from [12]) If there are n — {v; f; A} SDS,
then there are BIBD(v + 1, f,af(f — 1)), fora > 1.

If there are e—{v; f; A} SDS, then there are also e-{v;v — f;ev — 2ef + A}
complementary SDS. Therefore, all the above constructions also produce
many complementary SDS and BIBD.

Definition 5 Let B be a collection of blocks (or sets) of sizes k; € K over
a finite set V with v elements. If each unordered pair (v;, v;) of elements of
V occurs in exactly A blocks, then B is called a pairwise balanced design,
PBD(v, K, )).

The parameters of a PBD satisfy

Y kilki=1) = Xo(v - 1),

B;eB

where k; is the size of block B;. A BIBD(v,k, ) is a PBD(v, {k}, ).
Therefore, by Theorem 16, if there are t — {v; f; A} SDS, then there is a
PBD(v, {f},A).

In Table 1 we present some PBD with A = 1 which are obtained by the
above constructions. There are many other PBD possible.

8 Conclusion

Many theorems which produce infinite families of SDS (and therefore BIBD
and PBD) have been given. Many of these theorems can be applied recur-
sively without multiplying the parameter A\. Some of the constructions are
very similar for certain parameters which indicates that there might be
some further generalisations. The authors feel that there are many other
theorems possible which shall be investigated in another paper.
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