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1 Introduction

This paper is a contribution to the solution of a problem of Marusi¢ concern-
ing finite vertex-transitive graphs which are not Cayley graphs. Marusié
(5] asked for a determination of the set AC of natural numbers n for which
there exists a vertex-transitive graph of order n, that is on n vertices, which
is not a Cayley graph. The elements of NC are called non-Cayley numbers.
The set AC is closed under multiplication by arbitrary positive integers k,
for if I" is a non-Cayley, vertex-transitive graph of order n then the vertex-
disjoint union of k copies of I" is a non-Cayley, vertex-transitive graph of
order kn. Thus it is important to understand which natural numbers with
few prime divisors lie in MC. The question of membership of AC has been
settled for all natural numbers which are not square-free [9, 10], or are the
twice the product of two distinct odd primes (2, 11].

We are concerned here with integers n = pgr where p, g, r are distinct
odd primes. By our remarks above we may assume that pgq, qr, pr &€ AC.
Integers n of this form for which there exists a vertex-transitive graph T’
of order n, with AutT" quasiprimitive on vertices, were determined in [15).
(A permutation group is said to be quasiprimitive if every non-identity
normal subgroup is transitive.) Thus we need to determine the integers n
of this form for which there exists a vertex-transitive graph I of order = for
which Aut I is not quasiprimitive on vertices, that is, AutI' is transitive on
vertices and has a non-identity intransitive normal subgroup, N say. The
set of N-orbits forms an (Aut I')-invariant partition of the vertex set in the
sense that elements of Aut I permute the N-orbits amongst themselves. We
say that the set of orbits of a normal subgroup of a transitive permutation
group is a normal partition; the orbits of a normal subgroup are blocks of
tmprimitivity for the group. Since n = pqr, either the length of the N-
orbits or the number of N-orbits is a prime. We are especially concerned
in this paper with the case where AutI has a vertex-transitive subgroup G
such that there is a sequence of normal subgroups of G, 1 < N < K < G,
with both N and K intransitive on vertices, and the N-orbits being proper
subsets of the K-orbits; such a group G is said to be genuinely 3-step
imprimitive on vertices. Note that the lattice of G-invariant partitions of
the vertex set, for such a group G, contains a chain of length 3 of normal
partitions corresponding to this sequence of normal subgroups.

In addition to handling the quasiprimitive case, the paper [15] by Seress
contains a construction of a family of non-Cayley, vertex-transitive graphs
of order pgr which admit genuinely 3-step imprimitive subgroups of auto-
morphisms. The construction is analogous to one in {11, Construction 2.1}
of graphs of order 2pgq. Thus it is shown in [15] that, for {p,q,r} in the
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Table 1: {p,q,r} as in Definition 1.1(iii)

following set N3 of triples, the product pgr € AC.

Definition 1.1. Let p,q,7 be distinct odd primes. Then {p,q,7} € N3 if

and only if pq, gr,pr ¢ NC, and one of the following holds.
(i) per = (22 +1)(2*"
prime d;

+ 1), for some t, or (29£! 4+ 1)(2¢ — 1), for some

(ii) re-ordering {p,q,7} if necessary, we have gr equal to (a) 2p=£1, or (b)

+1)/2, or (c ﬁ,or d na—’lwhere:z:=1,2or5,or e) 2t +1,
2 24z

where p divides 2¢ — 1 for some t;

(iii) re-ordering {p,q,r} if necessary, p < g < r and p,q,r are as in one of
the lines Table 1 on this page.

The purpose of this paper is to show that there are no further triples
{p,q,7} for which there is a non-Cayley, vertex-transitive graph of order
pqr admitting a genuinely 3-step imprimitive subgroup of automorphisms.
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Theorem 1.1. Let p, q, v be distinct odd primes such that pq, qr, pr ¢ NC,
and {p,q,7} & Na. Suppose that I is a vertex-transitive graph of order pqr
which admits a genuinely 3-step imprimitive subgroup of automorphisms.
Then I is a Cayley graph.

The case where there is no genuinely 3-step imprimitive subgroup will
be treated in a separate paper [3]. Quite different methods are required for

that case than those uscd in this paper.

In Section 3 we give several preliminary results, mainly concerning
graphs. Then in Section 4 we discuss two families of genuinely 3-step im-
primitive permutation groups which will arise in our proof of Theorem 1.1.
We show that every graph admitting a group from one of these two fami-
lies, as a vertex-transitive subgroup of automorphisms, is a Cayley graph.
Finally, in Section 5, we give the proof of Theorem 1.1.

For completeness we state the result from {7, 9, 10], which determines

membership in MC of numbers of the form pq.

Proposition 1.2. Suppose that p and g are distinct odd primes and q < p.
Then pg € NC if and only if one of the following holds:

(i) ¢ divides p — 1.
(i) p=2¢g—1>30orp=(¢°> - 1)/2.
(iii) p=2' + 1 and q divides 2* — 1, orq =271 — 1.
(ivip=2t—1,q=2"1 +1.
(v) (p,9) = (11,7).

2 Notation

In this section we record some of the definitions and notation we will be
using in the paper.

2.1 Notation for permutation groups

If a group G acts on a set ¥ then we write GT for the permutation group
on X induced by G, and we write g% for the permutation of £ induced by
g, for each g € G. In Lemma 3.2 we introduce a more restrictive meaning
for this symbol which will only apply in Lemma 3.2 and its applications.
A transitive permutation group G acting on a set V induces a natural
action on V x V given by (a,8)? := (af,89), for all o,f € V and g € G.
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The G-orbits in V x V are called orbitals of G. In particular Ag = {(a, ) |
a € V} is an orbital, called the trivial orbital, and all other orbitals are
said to be nontrivial. For a € V, the Gq-orbits in V are called suborbits of
G, and they are precisely the set A(e) := {8 | (o, 8) € A} where A is an
orbital. For each orbital A, the set A* := {(8,a) | (o, ) € A} is also an
orbital and is called the orbital paired with A ; if A* = A then A is said
to be self-paired. Similarly A*(a) is called the G4-orbit paired with A(a)
and if A*(a) = A(e) (which is equivalent to A* = A) then A(a) is said
to be self-paired. A union of orbitals, say ©, is called a generalised orbital
and O is said to be self-paired if, whenever an orbital A C © then also the
paired orbital A* C ©. Let © be a union of orbitals which is self-paired
and such that Ag € ©. The generalised orbital graph corresponding to ©
is defined as the graph I'®) with vertex set V such that {a,} is an edge
if and only if (a,8) € ©. The fact that © is self-paired ensures that the
adjacency relation is symmetric, and the fact that A9 € © ensures that
there are no loops. If © consists of a single self-paired orbital then r® js
called an orbital graph.

Let V be a set and G < Sym(V). A partition P of V is said to be
G-invariant if the elements of G permute the parts of V' blockwise, that is,
P9 cPforall PeP and g €G (where P9 := {af | a € P}). The trivial
partitions {V'} and {{8} | B € V} are G-invariant for all transitive groups
G, and a transitive permutation group G on V is said to be primitive on V'
if these are the only G-invariant partitions of V. If G is transitive, but not
primitive on V, then G is said to be imprimitive on V. Also a non-empty
subset B of V is a block of imprimitivity for G in V if, for all g € G, either
B% = Bor BSNB = d. It is not difficult to show that B is a block of
imprimitivity for G if and only if {B? | g € G} is a G-invariant partition
of V. For this reason a G-invariant partition of V is sometimes called a
system of blocks of imprimitivity or simply block system. For a block system
T and B € X, we denote by G(s;) and Gp the subgroup of G fixing each
block in ¥ setwise, and fixing B setwise respectively.

A permutation group G on V is said to be regularon V if it is transitive
on V and the only element of G which fixes a point of V' is the identity.
For any subgroup G < Sym(V) we denote by fixy (G) the subset of points
of V which are fixed by G, that is {&¢ € V | a9 = a for all g € G}. By
H ! K we mean the wreath product of H and K. For a finite group G and
a set of primes m, a subgroup H < G is called a Hall 7-subgroup if every
prime dividing |H| belongs to 7, and 7 contains no prime dividing |G : H|.
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2.2 Graph theoretic notation

A graph T = (V, E) consists of a set V of vertices and a set E of unordered
pairs from V called edges. The cardinality of V is called the order of
I' = (V, E). By AutI’ we mean the full automorphism group of ' = (V, E),
that is, the subgroup of Sym(V') that preserves E, and we say that I is
vertez-transitive if Aut " acts transitively on V.

For a group G and a subset S of G such that 1 ¢ S and § = S,
where S~! = {s71 | s € S}, the Cayley greph Cay(G, S) of G relative to
S is the graph with vertex set G such that {g,h} is an edge if and only
if there exists s € S such that ¢ = sh. Every Cayley graph Cay(G, S)
for G admits the group G acting by right multiplication (g : £ — zg) as
a group of automorphisms acting regularly on vertices. Thus Cay(G, S)
is a vertex-transitive graph. Conversely, see [1], a vertex-transitive graph
I" is isomorphic to a Cayley graph for some group if and only if Autl’
has a subgroup which is regular on vertices. There are vertex-transitive
graphs which are not Cayley graphs. For example, the Petersen graph on
10 vertices is a non-Cayley, vertex-transitive graph. Thus 10 € AC and in
fact 10 is the least non-Cayley number.

IfT = (V, E) is a graph and X is a partition of V, then the quotient graph
Ty is defined as the graph with vertex set ¥ such that {B, B’} is an edge,
where B, B’ € 3, if and only if, for some a € B and o € B, {a,0'} € E.
For a subset B of V the induced subgraph B is the graph with vertex set
B and edge set {{a,8} € E | a,8 € B}. In particular if G < AutT, G is
vertex-transitive, and ¥ is a G-invariant partition of V', then the induced
subgraph B, for B € T, is independent (up to isomorphism) of the choice
of B. The two graphs, ' and B will be analysed in detail for many pairs
G, X in this paper.

For a graph I' = (V, E) and a vertex a € V, we denote by I';(a), or
simply I'(c), the set {3 | {a,8} € E} of neighbours of a in I'. Two disjoint
nonempty subsets U, W of V are said to be trivially joined if either, for all
a € U, we have W C I'(a), or for all @ € U, we have I'(a) NW = 0. The
lexicographic product T'y[['y] of 'y = (Va, E2) by I'1 = (W4, E1) has vertex
set V1 x V, and two vertices (a3, 1) and (ag, B2) are adjacent if and only
if either {ay, a2} € E) or a; = ay and {6, 05.} € E.
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3 Preliminary results

The following theorem which can be found in [12, Theorem 2.1] is one
of the most important facts about generalised orbital graphs of transitive
permutation groups. It underlies all of our analysis in later sections.

Theorem 3.1. A group G is a vertex-transitive subgroup of automor-
phisms of a graph T' if and only if T" is a generalised orbital graph for G,
namely for the self-paired generalised orbital A := {{a,B} | {a, B} € E}.

In other words every graph admitting a vertex-transitive subgroup G of
automorphisms is a generalised orbital graph for G corresponding to some
self-paired union of orbitals. The next lemma which was proved in [11] is
useful for proving that a graph I" contains a larger group of automorphisms
than a given group. Note that in this lemma, for a graph I' = (V, E) and
an automorphism h which fixes a subset U C V setwise, AV will denote the
permutation of V' which fixes V\U pointwise and which induces the same
permutation of U as h does.

Lemma 3.2. [11, Lemma 3.1] Let T = (V, E) be a finite graph, and sup-
pose that {U,W,,...,W,} is a partition of V, wheret > 1. Let H be a
subgroup of Aut I’ which fixes each of U, Wy, ..., W, setwise, and such that
for each H-orbit U' C U,U’ is trivially joined to each of Wy, Ws, ..., W;.
Then HY (the group which fixes V\U pointwise and which induces the same
permutation group of U as H does) is a subgroup of AutT.

The next lemma can sometimes be used to prove that a graph has the

structure of a nontrivial lexicographic product. It can often be applied
after an application of Lemma 3.2 above.

Lemma 3.3. Let I' = (V, E) be a graph and G < AutT" be such that G

is imprimitive on V with block system . Let B € L. If there exists
H < G such that H fixes B € T pointwise and H is transitive on every

B’ € T\{B}, then T = I'y(B].
Proof. By assumption each block B’ € I is trivially joined to every poix;t
of B. Hence by (14, Lemma 1.1}, ' & I'g[B]. O

If both I'; and I'; are Cayley graphs, it turns out that the lexicographic
product I';[I'7] is also a Cayley graph.

Lemma 3.4. Suppose that T'; = (W1, E;) and T = (V,, E;) are Cayley
graphs of orders m and n respectively. Then the lexicographic product
I'1[[2) of T'y and Ty, is a Cayley graph.
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Proof. Suppose that M and N are regular subgroups of AutT'y and AutT’;
respectively, so |N| = n and |M| = m. Then K := MIN =M"N is a
subgroup of AutT; { AutT'z which is transitive on V1 X V2 (see [13] pages
32-33). Let

D :={(z,z,...,z) |z € M} < M".

From the definition of multiplication in the wreath product M ! N, D and
N centralise each other. Also DN N =1, and hence D x N is a subgroup

of K. Since D 22 M, (and D and N centralise each other) we conclude that
D x N is transitive on V; x V2 and has order mn. Thus D x N is regular
on V; x Vo. So AutT; t AutT; (and thereforeAutT';[I'g]) has a regular
subgroup. Hence I'1[['7] is a Cayley graph. a

We shall need the following result about Hall w-subgroups, sometimes called
the Frattini argument.

Lemma 3.5. Let 1 # K < G and 7 be a nonempty set of primes. Also
suppose that

(i) there exists a Hall -subgroup H of K, and
(ii) all Hall w-subgroups of K are conjugate in K.
Then G = KNg (H).

Proof. Let g € G. Since |K : H?| = |K : H| is a n’-number, HY is a Hall
n-subgroup of K, and since all Hall 7-subgroups of K are conjugate in K
there exists a k € K such that H? = H*, so gk™! € Ng (H). Therefore
G = KNg (H). a

4 Some minimal transitive groups and their
graphs

In our analysis of this problem we need to deal with several families of
transitive permutation groups of degree pgr. We present these families of
groups here, with the information we need about them. Our first family of

groups is similar to the family studied in [11, Proposition 3.1]. We denote
Z,\{0} by Z,". Recall that, for z € Z,", o(z mod p) is the least positive
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integer i such that ' = 1 (mod p). Let c € {1,2} and € € Z,* with o(e?
mod q) = r°~1. We define a group G by generators and relations as follows

G=(a1,...,ar,y |y P =0 = [a;,a;] = 1 for all 4,5,

a! =a;yy fori <r-1and e’ =a,°. (1)

Note that the above relations and generators form a power-conjugate pre-
sentation or AG-System for G [4].

Proposition 4.1. Let p, q, and r be distinct odd primes such that p divides
q—1. Suppose that ' = (V, E) is a graph of order pgr admitting the group
G defined in (1) as a vertex-transitive group of automorphisms, where the
action of G on V is such that, for some a € V, G, = (ay,...,a,,y"P).
Then T is a Cayley graph.

Proof. Set H = G4 and Q = (ay,...,a,). The action of G on V is equiv-
alent to its action by right multiplication on {Hg | ¢ € G}. The set
T={a1'y’ |0<i<q—1,0<j<rp—1}is a set of coset representatives
for H in G, and so we may identify V with T in such a way that a = 1¢
and g € G maps t € T to g € T where for z € G, we write Z for the unique
element of T such that Hz = Hz. With this identification, the actions of
the generators a,,...a,,y, and the clement y™ are given as follows. (Note
that a;¥" = a;° for all i, 80 a;¥" = a;¢ for all i; also yay = agy if £ > 2
and ya; = a,° 'y, where e~! is the element of Z4 such that ee™! = 1 in
Z,.)
ajy’*! f0<j<pr—2

:ai '|_) .
y: oy {a'f” if j=pr—1

V" aly s oy

i aly’ ifj#€—1 (modr)
Qg . a’ly7 —_ ite k J op .
aj W fj=kr4+f—1and0<k<p-1.
That the actions of y and y”" are as claimed follows from our remarks above.
To see that the action claimed for a, is correct, note that if j = kr+ 5’ where
0<k<p-1land0<j <r—1,thenif j# £—1 then aiy’a, € Haiy’,

s0 ay fixes ajy’, while if j' = € — 1 then aiyia, = aly* a7 = a‘i"“_ky-".
The set T of Q-orbits in T = V is a block system for G. It consists of pr
blocks of size g, namely B; = {aly’ |0<i < g—1},for0< j < pr—1. Our
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next task is to identify all of the H-orbits in V' and find the paired orbits
for each of them. From the actions determined above we see that y*" and
each of the a; fixes setwise each block B; € . Moreover, if j # 0 (mod r)
then there exists £ such that 2 < £ < rand j = £—1 (mod r); hence a, € H
and (ag) is transitive on Bj. Thus for 0 < j < pr—1 and j # 0 (mod 7),
Aj(@) = Bj is an H-orbit. Since y~7 maps the pair (1,99) to (yP™9,1) it
follows that the H-orbit A;*(a) paired with Aj(a) is Ap,—j(a). Consider
now j = kr where 0 < k < p— 1. The group QN H = (az,as,...,ar) fixes
each of the points ajy?, so the H-orbit containing ajy’ is equal to the (y*")-
orbit containing aiy’. If e? = 1in Z, then H has gr orbits A; ;() = {aiy’}
of length 1, and since y~7a;* maps (1,aiz’) to (af’kiypr =3,1) it follows
that

Ai.kr. (a) = A—e"i,(p-k)r(a)

(reading the first subscript modulo r). On the other hand if o(e? mod q) =
7 then we see from the action of yP" that (yP") fixes the point 3’ and has
(g —1)/r orbits of length r in B;. Thus the H-orbits in B; are Ao r(@) =
{y*r} and Agxr(a) = {aiy*" | i € d} for each coset d of the multiplicative
subgroup (eP) of Zy* of order 7. Arguing as above

AO,kr‘(a) = AO,(p—k)r(a)
(where we have to read (p — k)r modulo pr if k = 0) and
Adypr” (@) = A_erg (p—ryr(@)

for each coset d of (€?) in Z,*. (Note that —e*d is a coset whenever d is,
and —d # d.) In the case where e? = 1, each coset of (eP) is a singleton
subset of Z,. Thus in this case also we may use the notation Agkr(a) for
A; kr(a) where d = {i}.

By Theorem 3.1 any graph I' with vertex set V = T admitting G asa
vertex-transitive subgroup of automorphisms is a generalised orbital graph
for G and the set I'(a) of vertices adjacent to c is a union of H-orbits in
V\{a} which is closed under pairing. Thus

I(a) = ( U Ad_j(a)) U (U Aj(a))

(dj)eEK j€J
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where J C {j |0 < j < pr,j #0 (mod r)} and j € J implies pr — j € J;
and K C ({0} U {i(e?) | i € Z,°}) x {kr | 0 < k < p— 1} is such that
(d, kr) € K implies (—e*d, (p — k)r) € K (where the second entry must be
read modulo pr if £ = 0). Now we apply Lemma 3.2 to the the group H
and the partition of V with parts Co := J{Z3 Bxr, and the B; with j Z 0
(mod 7). Suppose that there is an edge e from some point aly*" € Cp to a
point ai 37" in Bj» where j' # 0 (mod 7). Then y~*"a* maps e to an edge
¢/, where ¢’ = {1,ay7"~*7} if j > kr and is {1, 0} ¢ yi +(P-F)T} if § < k.
Thus J contains j” = j'—kr (if ' > kr) or j” = j'+(p—k)r (if j* < kr), and
it follows that & = 1¢ is joined to each point of B;». Applying a,*y*" € G,

for all #/, to these edges we conclude that every point of By, is joined by
an edge to every point of Bj:. Since Bg, is a union of H-orbits, it follows

that every H-orbit in Cy is trivially joined to every Bj: for j' # 0 (mod ).
Hence by Lemma 3.2, the group HS = {h% | h € H} < AutT. (Here hCo
denotes the permutation of V which is equal to k in its action on points of
Co, and fixes V\Cy pointwise.) In particular up := (y*7)¢° € AutT'. For
each£=0,...,7—1,set Cp := ByUByp4+U- - -UBypy(p—1)r, and ug := (y?7)Ce.
Then ugy; = up? for£ =0,1,...,7—2 and u?_, = up; and each u, € AutT.

Now we wish to find a regular subgroup R of A = (G, uo,...,ur_1) <
AutT'. Recall that this will imply that T is a Cayley graph. Suppose first
that |y| = pr, so e? = 1. If r does not divide g— 1 then the map z — z" is
a bijection on Z,*, and so there exists m € Zg* such that m” = e (mod g).
Also if r divides g — 1 then, since in this case o(e mod ¢q) = 1 or p, e is an
Tth power, so again there exists m € Zg" such that m"™ = e (mod g). Set

r—1 r—2 [ R
a:=a™ a™ "...ar~1™a,. Then (a) is transitive on every block of T,
le] = ¢, and
mrl g2 m_ e mrt g2 m, \m
a¥ =ay as ..ax™ay® = (ag as covtp1Ma,)™ =a™.

Thus y normalises (a) and {a,y) is regular on V.

Suppose now that |y| = r2p. Since p # r, there exists an integer f such
that fp = —1 (mmod r), say fp = kr — 1. Set m := e* ¢ Z4. Note that
m" = e*" = e!*/P € Z,. Now set z := yup’. Then in their actions on I,
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2% =y, so |2| is divisible by pr and (2} is transitive on I; also

2 = (yuo! )" =y (wo? ) (ue”)Y . (a0 ) (wo)
= o (1) (urm2)” - (1) (w0} = Y (Ur—1ttr—2.. . w1u0)’

2
= yr+prf = yr k,

S0 zP" = ™" Pk = 1. Further (a) is transitive on every block of T, so (g, 2) is
transitive on V'; note that, since g = (y”')c“, it follows that ug centralises
as,...,a,. Thus,

r—1 r—2 I/ r—1 r=2 !
o® = (™ ax™  ...a)¥™ =(a™ ag™ .. .a."a, )"
r—1 r—2 prf r—1 r—2 1+pf
=a™ ag™ ...e,™(@®)Y =a™ ag™ ... a."a;¢
r—1 r—2 r
=a;™ a3™ ...a;"a;" =a™.
(Recall that e'*?/ = e*™ = m".) Hence (a) is normalised by z, and so
(a, z) has order pgr, and hence is regular on V. This completes the proof
of Proposition 4.1. o

Now we introduce the next family of groups. For 2<t <rlet f,...,0t €
Z, with 8, #0, let 6 € Zp with 6" =1 (mod p), and let n € Zg, with o(n
mod q) = r¢"!, where e = 1 or 2 (so n = 1 if ¢ = 1). In the case where
e=2sett=71,0=--=pF =0and p =n. We define a group G by
generators and relations in terms of these parameters as follows

G = {(ay,a3,...,a1,6,z | af =F =3 = [ai,a;] = [ai, ] = 1 for all 4,7,

a.-“’ = Qi1 for ¢ <t- 1; and af = 0.1'6l .o .a,_lﬁ"“,cz = 6). (2)

Note that [c,z"] = 1.

Proposition 4.2. Let p,q,r be distinct odd primes. Suppose that T’ =
(V, E) is a graph of order pgr which admits the group G defined in (2) as
a vertex-transitive subgroup of automorphisms, where the action of G on
V is such that, for some a € V, Go = (a2, ... ,a,z7). Then T is a Cayley

graph.

Proof. Set H = Gqo. The set T = (a1,¢)U(a1,¢)zU---U (a1,c)z™"! is a set
of right coset representatives for H in G, and so we may identify V with
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T in such a way that @ = 1g and ¢ € G maps t € T to g € T where, for
x € G, we denote by T the unique element of T such that Hx = HT. First
we determine the actions on T of the generators and of the element z". For

6 € Z,", by 61 we denote the element in Z,, such that 616 =1 (mod p).
c:aidz™ — aid e ™
aidz™! f0<m<r-2

caiddz™ o
Frmew '_’{a;"c’ ifm=r—1

(Recall that n =1 if ¢ = 1.) Thus the action of z" is given by
z":aidz™ — aitIr™,

The set of orbits of the normal subgroup @ = (a,as,...,a:) of G is
a block system for G. It consists of pr blocks of size ¢ and we denote

them by Bji = (¢/z*)? = {aicddz* | i € Z,}, for j € Z,, k € Z,. Let
D = {dy,dz,...,dg—1)/re-1} denote the set of cosets of the multiplicative
subgroup (n) in Z,*. For a € Q, since Q is a normal subgroup of G,
we have ¢z™a € ¢Jz™Q = Qcz™, and so (since QN H = (ay,...,a:))
dz™e € Ha;*'cz™ for some ;1 € Zp, depending on a,j and m. If
a = ax then we write a; = a(k, j,m). Moreover in the case where € = 2,
zay = ag—1z if £ > 2, and za; = a,"_lx, where n~! is the element of
Z," such that nn~! = 1 (mod g). Hence z™a; € (as—.,)c™ (where the
subscript £ —m is to be read modulo ), and so a(k,j,m) is 0 if £ £ m+1

and is 1if £ = m+1. Thus the action of a; on an arbitrary element a,c’z™
of T, in the case ¢ = 2, is as follows.

o aicigm., Jo1T Pz f0<Sm<r—landf=m+1
A aiciz™ if0<m<r—-landl#m+1.

In the case where £ = 1, the action of a; on an arbitrary element a,ic/z™
of T is given by:

a: aticjxm —_— a‘l’(ltjtm)""'cixm
where 0 < i < g-1,0<j<p-1land 0 < m < r—1. Note that
a(¢,4,0) = 0 for each , j, since ¢ centralises Q.

Now we show that the set F' = of fixed points of H in V is contained

in U;.’;é Bjo. If € =2 then t = 7 and, for each k € Z,*, {(ax41) is transitive
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on B; and ax41 € H. Thus in this case F' C ?;3 B;o. Now consider the
case € = 1. Set P = (c). In this case H < Q and we have Q = (H,a:) and
Q x P C N¢ (H). Since Q x P is maximal in G, and since H is not normal
in G, we have Ng (H) = Q x P. Now Ng (H) is transitive on F (see [16,
Theorem 3.6]) and |F| = |[Ng (H) : H| = gp. From the action of az,...,a:
on T we see that each of these generators of H fixes each Bjo pointwise.
Hence if € = 1 then F' = U?____é B;o.

Our next step is to determine the H-orbits in V. We use the following

convention for labelling the H-orbits contained in [J52

iz Bj,o. For subsets

u, v, w of Zg, Zp and Z, respectively we set
Auvw(a) ={aidz™ |i€u,j €v,m € w}

and if one of these sets is a singleton, say u = {i} we will write A, , w() =
Ay w(a). Since ay,...,a; all fix Bjo pointwise (j € Zp), the H-orbits in
B are the same as the (z")-orbits. Thus, the H-orbits in Bjo (j € Zp)
are in 1 — 1 correspondence with the set D U {0}, where D is the set of
(g — 1)/rs~? cosets of (n) in Z,*, namely we have the orbits

{5} ifd=0

A . = .
d,5.0(c) {{atltcy |lued} ifdeD.

Since a7 “c~7 maps the pair (1,a}¢’) of vertices to the pair (a7¥c™4,1), we
have (noting that —d is a coset of (n) if d is) that Ag,j,0" (@) = Ao,-j,0(c)
and Ag ;0" (a) = A_g,_jo(a) foreachde D .

We claim that the other H-orbits are the sets Ajx(a) = Bjx for j € Z,
and k € Z,*. Each of the generators ag,...,a:,z" of H fixes each of these
sets B;) setwise, so Bjx is a union of H-orbits. If & = 2 then, as we
remarked above, {ar+1) is transitive on Bjx and so Bj is an H-orbit. If

€ = 1 then we showed that H is a g-group acting nontrivially on Bj i (since

p—1

in this case F = |J;-

Bjo) and hence again Bjx is an H-orbit. Since

z*c=7 maps the pair (1,cz*) to the pair (¢'z*,1), where j' = —j6*,
we have that

Aji"(a) = A_jsr, k(@) = B_jok k-

Let T be a graph with vertex set V, which admits G as a vertex-
transitive subgroup of automorphisms. Then by Theorem 3.1, I is a gen-

eralised orbital graph for G, and the set I'(a) is a union of orbits of H in
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V\{a} which is closed under pairing. Thus

(@)= (U Aoso@)u( U Base@)u U B,

J€N (d.j)EJ2 (4,k)eJs

where J1 C Z," is such that J; = —Jy; J; € DxZ, and J, has the property
that if (d, j) € J2 then (—d, —j) € Jo, that is J, = —Jp; and J3 C Z, x Z,%,
and J3 has the property that if (j, k) € J3 then (—j8%, —k) € Js. Note that

some of the J; may be empty.

Our aim is to show that AutT' contains a regular subgroup. To do this
we apply Lemma 3.2 to the partition M of V consisting of U = ;-’;3 B;o
and each of the B;; for j € Z,, k € Z,.*, relative to the group L = (z") if
€ =2 or the group Q if e = 1.

Suppose first that € = 2. From the action of L = (z") on an arbitrary
element of T, we see that L fixes setwise U and each of the Bji, k €
Z,". Furthermore the L-orbits in U are the sets {a}c’ | u € d} for d €

DU {0}, j € Zp. Suppose that there is an edge e from a;%“¢’ to a point
a¥'¢'z* in By for some k # 0. Then the image of e under c=Ja; =" is
{1,a3¢7' 357" z*} for some v, and is an edge. Hence (j' — 6k k) € Js.
Since H is transitive on Aji_js k() it follows that a = 1¢ is joined by an
edge to each point of Aj_; x(a), and hence that a;%¢’ is joined by an
edge to each point of Bj x. It follows that the L-orbit containing a,%c’ is
completely joined to Bj: k. Since this is true for all B;/ , with k # 0, each
L-orbit in U is trivially joined to each B;; with j € Zy, k € Z,*. Hence
by Lemma 3.2, o := (z")V € AutT, where (z")V denotes the permutation
of V' which fixes V\U pointwise and induces the same permutation as ="
on U. For i > 2, since a; fixes U pointwise, it follows that a;° = a;, while
a small computation shows that 0~'a;0 induces the same action on V as
a?, and hence a,? = a,™. Moreover the action of 6~1¢o on V is as follows

(@17 9)%7 = (@, TH)T = g i H! ifk=0

iighyorer _ .
(e’ {(aliC’xk)w = (a,'c*® kxk)v =a'd ek ifk #0

and therefore ¢ = c. Consider the subgroup Y := (g,c,07'z) of AutT,
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where g = a,"a;3 . ..a,. By the definition of o,

an 'z ifm=0
o lz:aidr™ — {aldr™t! fl<m<r—2

airdd ifm=r—1

A further straightforward computation shows that (6~'z)" acts as the iden-
tity element on V. Therefore ¢~z has order r.
Also

o.—l

-1
¢° *=(a1"az...a,)° ®=(a102...0,)° = (a1 a2...a;) =g

1

since a;° = a,™ and a;° = q; for i € {2,3,...,7}. Thus 0™z centralises g.

Since also c centralises g, {g) = Z, is normal in Y. Also ¢ Tz oot = (f,

so o~z normalises (c). Hence Y = ({g) x (c¢}).{(o™'z) and so |[Y| = pgr.
Moreover it is easy to check that Y is transitive on V; the set of images of
1¢ under (g)c/(0~'z)* is Bjx. Thus Y is a transitive subgroup of Autl’

of order pgr. Hence Y is regular and so I is a Cayley graph in this case.
Now we consider the case where € = 1. Suppose that there is an edge e

joining a point e;°c?z* € Bj (where k € Z,*) and a point a; ¥' € By o.
Since =*F does not normalise H, there exists an element a € @Q\H and an
element b € H such that az* = z*b. Since @ € Q\H we can write a = a]V’
with &' € H and v # 0. Now H fixes Bjs o pointwise, and so a; i’ is joined
by an edge to the image t of (a;°c’z*) under b. We have Ht = Ha,'cz*b =
Ha'daz* = Ha, "+ z* and so t = a,**7ciz*. Repeatedly applying b we
see that al"'c"' is joined to every point of Bjk. Also by considering the
action of Q we see that Bj o and Bj are completely joined. Thus each
Q-orbit in U is trivially joined to each of the B;; with k # 0, and hence by
Lemma 3.2, QY is a subgroup of AutT. Since z € Naur (@), Q=" =QYn
is also a subgroup of AutI', where Uy, = U=" for m € {0,1,...,7 — 1}.
Thus AutT > [T772, QU= = ZI. Let QV = (Xo) and define Ay, = A7, _; for
m € {1,...,7r—1}. Then A\]_; = Xo® = Ag since z" = 1, and therefore
(MM - - Ar=1)® = (AoA1 - .- Ar—1). Since each point of V belongs to exactly
one of the Un, the group generated by (AoA: ... Ar—1) is transitive on Bj
for each j, k, and {c) permutes the Bj in r orbits of length p. Also z
maps Um to Upy for all m (subscripts must be read modulo p). Hence
Z = (oM. Ar=1,6,7) = ({AoA1...Arm1) X {c))-(z) is transitive and
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regular on V. Consequently in this case also I' is a Cayley graph. This
completes the proof of Proposition 4.2. O

5 Proof of Theorem 1.1

Suppose that p,q and r are distinct odd primes such that pg, gr,pr € MC
and {p,q,7} € N3, and suppose that I' = (V, E) is a vertex-transitive
non-Cayley graph of order pgr such that AutT" has a genuinely 3-step im-
primitive subgroup G. We shall derive a contradiction by constructing a
regular subgroup of AutI". We may assume that G is minimal by inclusion
subject to being genuinely 3-step imprimitive. Thus G is transitive on V
and we have 1 < N < K < G, with N, K normal subgroups of G, K in-
transitive on V, and the N-orbits on V are proper subsets of the K-orbits.
Let X denote the set of K-orbits and A denote the set of N-orbits. Since
|V| = pgr, it follows that |Z| is a prime, say |[Z| = r. Also the N-orbits
have prime length, say p. Moreover we may assume that K is equal to the
kernel G(g) of the action of G on X, and also that N is equal to the kernel
G(a) of the action of G on A. Note that G is not regular on V since we
are assuming that I’ is not a Cayley graph. Thus pgr divides |G| (si}nce G
is transitive on V') and |G| > pgr.

Our first aim is to describe the structure of G in greater detail. We
prove in Proposition 5.3 that G = PQR where P is the unique (normal)
Sylow p-subgroup of G, @ is a Sylow g-subgroup of G, PQ is normal in G,
and R, a Sylow r-subgroup of G, is cyclic and normalises Q. We complete
the proof by analysing the various possibilities for P,Q and R using the
results of Section 4. We prove in all cases that AutI' contains a regular
subgroup.

Lemma 5.1. Suppose that X, the set of K-orbits has order r. Then
G/K = Z,.

Proof. Since G% is transitive there exists z € G \ K, such that z* is an
r-cycle. Replacing z by some power z* if necessary we may assume that
z is an r-element. Then (z) acts transitively on the K-orbits, so (K, z) is
transitive on V. Since (K, z) has a chain of intransitive normal subgroups
1< N < K < (K,z), it follows from the minimality of G that G = (K, z).
Moreover z" fixes each K-orbit setwise and hence z” € K and G/K = (zK)
is cyclic of order r. O

Lemma 5.2. The group N has a unique Sylow p-subgroup P.
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Proof. Let P be a Sylow p-subgroup of N. Since each N-orbit has length
p, it follows that P has no fixed points, for if P < N, then p = [N : Ny|
would divide |N : P| which is not the case. Hence P has gr orbits of length
p. By Lemma 3.5, G = NNg (P), so Ng (P) is transitive on A. Since
every block in A is an orbit of P it follows that Ng (P) is transitive on
V. Moreover Ng (P) N K = Nk (P) has index r in Ng (P), since Ng (P)
is transitive on ¥ and G/K = Z,, and hence N¢ (P) is a genuinely 3-step
imprimitive group relative to the chain 1 < Ny (P) < Nk (P) < Ng(P)
of normal subgroups. By the minimality of G, we must have G = Ng (P).
Hence P is the unique Sylow p-subgroup of N. O

Since |G/K| = r and pqr divides |G|, the Sylow g-subgroup @ of K is
nontrivial. As in the proof of Lemma 5.2, Q has no fixed points in V, and
a similar argument shows that Q does not fix setwise any block of A.

Proposition 5.3. The group G = PQR, where P,Q,R are a Sylow p-
subgroup, a Sylow g-subgroup and a Sylow r-subgroup of G respectively,
and P 4 G, PQ < G, R is cyclic, R normalises Q, and P is elementary
abelian.

Proof. Let P be the unique Sylow p-subgroup of N (see Lemma 5.2), and
let Q be a Sylow g-subgroup of K and hence of G. By Lemma 3.5, G =
KNg (Q), so N¢g (Q)2 o 7, and we may choose the r-element z (in the
proof of Lemma 5.1) to lie in Ng(Q). Set R := (z). By our remarks
above, Q fixes no point of V and hence PQ is transitive on each block of
Y. Then since R® is transitive it follows that PQR is transitive on V.
Also PQR is a genuinely 3-step imprimitive group relative to the chain
1 < P < PQ < PQR of normal subgroups. By the minimality of G, we
have G = PQR. Since |G/P| = |QR| = |Q|.|R], it follows that P is a Sylow
p-subgroup of G. Also R is a Sylow r-subgroup of G and R is cyclic. Now
P is isomorphic to a subgroup of []pca PP, where PP is the permutation
group induced by P on D. Since |D| = p, the group PP ig cyclic of order
p, and hence P is elementary abelian. a

Our next step is to deal with the case |P| = p.

Proposition 5.4. Suppose that G = PQR as in Proposition 5.3. Then
|P| > p.

Proof. We shall show that G has a power-conjugate presentation as in (2).
Set R = (z) where |z| = r° and suppose that P = (c) & Z,. By Proposition
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1.2, r2 does not divide p — 1, since rp ¢ MC. Hence z" centralises P.
Similarly, if |@Q| = q then, since R normalises @, we find that =" centralises
Q. Suppose that |Q| = q. Then (z") < G. Since z" € K the length of
the orbits of the r-group (z") must divide the length pq of the K-orbits,
and hence |z| = r. Therefore |G| = pgr which is a contradiction. Hence
IRl > q.

Suppose now that [P, Q] # 1. Since P < G and P = {c) & Z, the order
of G/Cg (P) divides p — 1 and therefore ¢ divides p— 1. Since pg &€ AC, by
Proposition 1.2, ¢2f(p —1). So |Q : Cq (P)| = q and hence C = Cq (P) #
1. Now C <« G, since C is a characteristic subgroup of PQ. It follows
that all the orbits of C' have length q. Thus CPR is a proper transitive
subgroup of G which is a genuinely 3-step imprimitive group relative to the
chain 1 < P < CP < CPR of normal subgroups, which is a contradiction.

Hence [P,Q] = 1. Thus @ is normalised by P and also by R and
hence @ is normal in G. It follows that all orbits of @ have length ¢ and in
particular Q & Z,‘, for some t > 2. Suppose that there is a nontrivial proper
R-invariant subgroup @ of @. Since @, is centralised by P and @ it follows
that @1 < G, and that PQ, R is a proper subgroup of G which is genuinely

3-step imprimitive relative to the chain 1 < P < P@Q; <-P@; R of normal
subgroups, contradicting the minimality of G. Hence R acts irreducibly on

Q. So we may write @ = {(a1,...,a¢) = Z} such that Qa = {(az,...,a:),
af = aiyy fori € {1,...,t — 1}, and af = a;,#...a;P* for some §; € Z,
with 8; # 0. Also since [P,Q] = 1 we have [a;,c] = 1 for all %, and since
R = (z) normalises P = (c), and z" centralises P, we have ¢* = ¢® for some
6 € Zp with 6" =1 (mod p). If || = r then G = (ay,...,as ¢, z) and all
the relations of (2) hold. So by Proposition 4.2, I' is a Cayley graph, which

is a contradiction.
Hence |z| = ¢ > 2. Consider the transitive group G = Q2.R2 of

degree gr. The subgroup @2 .(z")* of G2 of index r has r orbits of length
g in A, and since Q4 < G2 it follows that Q4.(z")2 is isomorphic to a
subgroup of AGL(1,q)" = (Z4.Z¢-1)". By Proposition 1.2, % does not
divide ¢ — 1 and so Q*.(z")2 contains no elements of order r2. Hence
(z")A > Z,, that is ™ € N = G(a). Now N has gr orbits of length p,
and P < N. Moreover the centraliser of P in N is a p-group. However,
z™ centralises P, and hence |z| = r2. If (z") centralises Q then (z")
centralises PQ and hence is a characteristic subgroup of K, so {z")} < G.
This implies that the length r of the {z")-orbits divides the length pq of
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the K-orbits, which is a contradiction. Hence R acts faithfully as a cyclic
group of automorphisms of @ = Zfl. We have already shown that R is
irreducible on @, and so 72 divides ¢* — 1 and 72 does not divide ¢" —1 for
any t' € {1,...,t—1}.

Let S € T be the K-orbit containing a. Then |Q : Qa| = |a®| =g, and
Q. fixes a point in each of the P-orbits in S. Since [P, Q] = 1 it follows
that Q5 = 1 and therefore (PQ)3 is regular and is cyclic of order pg. In
particular, (PQ)S is self-centralising in Sym(S). Now z” € K and z" # 1.
Hence (z7)5 # 1. Since (PQ)% is self-centralising in Sym(S), (z7) does
not centralise (PQ)S. However, =" centralises P and normalises Q and
hence (z")S normalises but does not centralise Q5 2 Z,. Hence r divides
g — 1. Since r2 does not divide g — 1, 7 divides

¢ -1

-q-:—1-=q"'1+q“2+---+q+1El+1+---+1=t (mod 7).

Thus t = 0 (mod r); that is r divides ¢. However

g -1
g-—1

=q¢ 14¢ 24+ .- +q+1=r=0 (modr).

Hence 2 divides q" — 1. Since ¢ is the least integer such that r? divides
¢t — 1, it follows that ¢t = r. Thus £ = {S1,...,S,}, where S} = Sip
fori € {1,...,r —1} and S = S,. Since |Q| = ¢ it follows that Q =
Q1 X - -+ X Qy, where Q; = (a;) & Z, acts nontrivially on S; and fixes S
pointwise for all j # 1. Moreover we may choose the a; such that af = a1
for i € {1,...,7 — 1}, and af = af = a} for some n # 0. Since |z| = r?

r

and (z) is faithful on Q, it follows that n # 1 and a; = al”rz =a".
Hence o(n mod g) = r. Thus G = (ay,...,ar,¢,z) and all the relations
of (2) hold. Also G, = (a2,...,ar,2"), and hence by Proposition 42, T
is a Cayley graph which is a contradiction. This completes the proof of
Proposition 5.4. a

We consider now the case where |P| > p?. Suppose that S € ¥ and choose
a € D, where D€ A, D C S, and write

F=fixy(Pa)={B€V|p° =pforall g € Pa}.
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Lemma 5.5. (a) F is a block of imprimitivity for G in V; F is a union of
blocks of A, and in particular D C F; and |F| = pt, where t divides qr
andt < gr.

(b) Moreover the group PF := {gF | g € P}, where gF is defined by

gt _ [P iBeEF
|8 ifBgF

is contained in AutT.

Proof. (a) Let g € G be such that FN F9 # § and let y € F N F9, say
7 = B° where f € F. Then Pa < Py and |Py| = |} = |Pal, s0 P. = P,
Hence F' = fixy(P,). Since 8 € F, by the same argument F = fixy (Ps).
Hence F? = (fixy (Pp))? = fixy(Pgs) = fixy(Py) = F. Thus F is a block

of imprimitivity for G. Since P is abelian, P, is normal in P and since P
acts transitively on D, it follows that P, fixes D pointwise, that is D C F.

It follows that F is a union of blocks of A. Thus the set ' of blocks of A
contained in F forms a block of imprimitivity for G in A and so t = |F|

divides gr. Since |P| > p?, F # V, so t < gr; also |F| = pt.

(b) Let {8,7} € E, and let g¥ € PF. If both of 8 and « lie in
V\F then {ﬂyp,'ygp} = {6,7} € E . If both of B and 7 lie in F then
(8,797} = {69,749} € E, since g € AutT. So suppose finally that
one of B, v is in F and the other is in V\F, say § € F and y € V\F.
Then {ﬂgp,'ygr} = {8,719}, and we note that 79 € 4 and the P-orbit
vP is a block of A, say vP = D’. We showed above that P, = Pg (since
B € F) and so Pg is transitive on D’ (since D’ C V\F). Thus since 3 is
adjacent to v € D', B is adjacent to every point of D’ and in particular
B is adjacent to . Hence g¥ maps every edge of I to an edge and this
implies that g € AutT (since I is finite). Since this is true for all g € P,
PF C AutT. a

Lemma 5.6. Suppose that t = |F|/p as in previous lemma. Then t # 1.

Proof. Suppose that t = 1. Then F = D, and P, fixes D pointwise and
is transitive on each D’ € A, D’ # D. By Lemma 3.3, I' 2 ['s (D). Since
gr,p & NC, both T'p and D are Cayley graphs. Hence T is a nontrivial
lexicographic product of two Cayley graphs. By Lemma 3.4, T is a Cayley
graph, which is a contradiction. 0o
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Let ® := {F9 | g € G}. Then & is a block system for G, since F is a block
of imprimitivity for G in V.

Lemma 5.7. Either
(a) F=S, =X andt=gq,or
(b) F consists of one block of A from each block of L and t =r.

Proof. (a) If § C F, then F is a union of complete blocks of X. For if
S’ € ¥ and FN S’ contains a point v, then for B € S and g € G mapping
B to vy, F N F? contains 9 = 7. So (as F is a block) F = F? and hence
S9 C F. But §9 € ¥ and S9 contains 39 = «, so $¢ = §’. Thus the
set F of blocks of & contained in F is a block of imprimitivity for the
primitive action of G on . Since F # T (because |F| < |V|), we must
have |I?‘| = 1, that is, F = S and therefore t = q. By the definition of @,
o={S9|geG}=1.
(b) Thus we may assume that FNS # §. Now FNS (the intersection
of two blocks) is a block of imprimitivity for G containing D. It is also a
block of imprimitivity for the action of Gs on S of degree pq. Since D is a
maximal block of imprimitivity for Gs in S it follows that FNS = D. By
Lemma 5.6, F # D, so there is an §' € Z\{S} such that F NS’ # 0.
By the proof of part (a), we see that FN S’ # &, so FN S’ is a block
of A. Thus F consists of one block of A from each of a certain subset S
of blocks of T, and S is a block for the primitive action of G on . Since
I5]>2, 5 =% and so |F| =pr. Thust =r. ]

For F' € ® let PF' denote the permutation group on V which fixes
V\F' pointwise and acts on F’ in the same way that P does. Set Py :=

[res PF’, By Lemma. 5.5, Py < AutT". Also G normalises Fp.
Proposition 5.8. Case (b) of Lemma 5.7 does not arise.

Proof. Suppose that case (b) holds. Then |®| = g and Q2 is transitive.
Let L be the kernel of G on ®. Then L contains P and we consider the
following cases:

1. The L-orbits have size p. In this case the L-orbits are the blocks of A, so
L C G(a). On the other hand by Lemma 5.7(b) it follows that G(a) C L.

So L = G(a) and G/L = G?® is transitive of degree ¢ with a normal g-
subgroup (PQ)L/L = Q/QNL. Hence G/L < AGL(l,q) = Z4.Z,-1.
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Since L = G(a) C K, it follows that r divides |G/L| and hence 7 divides
g—1 Now L < [IpeaL? < (AGL(1,p))" = (Zp.Zp-1)*". Since 7
divides g — 1 it follows from Definition 1.1 that g does not divide p — 1
and hence ¢ does not divide |[L|. Thus QN L = 1 and |Q| = q. We
may assume that & = {F} = F, Fy,..., Fy} is labelled in such a way that
Q = (b) and F} := F;4, for all i (reading subscripts modulo g). Let
PF1 ;= (a;) & Z,, and define a;4; := af for all i < g so that PFi = (a;)
for all 4, and the group Po = (a1,...,aq) & Z3. By the remark preceding
the statement of Proposition 5.8, Po < AutI'. Since b9 = 1, the element
a := a1a3...a, is centralised by Q = (b). Set P1 = (a). Then Ngp, (Q)
contains G; := (P}, @, R) and G, is transitive with normal subgroup Q of
order q. Also G, preserves the partition ¥ and the kernel of G; on I is
K, = (Gl)(}:) = (PI,Q,Z'r) of index r in G, so G)l:: = Z.. Let A; be
the set of Q-orbits and set Ny := (G1)(a,). Then N; contains Q = Z, as
a normal Sylow g-subgroup. Applying the arguments and analysis of this
section to the group G, with chain of normal subgroups 1 < N1 < K; < Gy
(and interchanging p and q) we find (essentially by Propositions 5.3 and
5.4) that I is a Cayley graph in this case, which is a contradiction.

2. The L-orbits have size pr. Let b € G\L, be a g-clement. Then b
permutes the blocks of @ transitively, so (L, b) is transitive on V. Also (L, b)
is genuinely 3-step imprimitive relative to the chain of normal subgroups
1< LNK < L < {L,b). Thus by the minimality of G, G = (L,b). Also
G/L = Z, and it follows that G/(LNK) = (L/(LN K)) x (K/(LNK)) &
Z,r. Moreover LN K fixes setwise each F; N Sj;, which are the blocks of A.
Thus LN K C G(a) and conversely G(a) fixes each of the blocks of ® and
¥ setwise, so LN K = G(a). Since P C LN K, the (L N K)-orbits are the
blocks of A of size p. Hence G = (LNK,y), where y is a {g, r}-element (that
is |[y] = g™r™ for some m > 1, n > 1). Using a similar argument, we see
that (P,y) is transitive on V, and is genuinely 3-step imprimitive relative
to the chain of normal subgroups 1 < P < (P,y?) < (P,y). Thus by the
minimality of G, G = (P,y). Again we set P™* = (a;) and @iy, := af
for i € {1,2,...,q9 — 1}, and P, = {(a1,...,a,). By the remark preceding
the statement of Proposition 5.8, Pp < Autl’, and P < Py & Z,?. Now

9 q
af = a¥ € PPy = (a,), s0o @y = a1¥" = af for some e € Z,". Also
i—-1

for all i > 2, a?’ = g = (a9 = (0¥ ) = af. Hence if
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a = @182...aq, then a¥' =a°. So P, := (a) 2 Z,, and is normalised
by (y9). If e = 1 then y centralises @ and so G; := (Py,y) is transitive
on V, and is genuinely 3-step imprimitive relative to the chain of normal
subgroups 1 < P, < (P,y") < G:1. Since P, 2 Z, and P, is the unique
Sylow p-subgroup of G} it follows (from the arguments of Propositions 5.3
and 5.4) that I is a Cayley graph, which is a contradiction. Hence e # 1.
Then (y%) acts nontrivially on (a). In fact ¥? maps o’ to (a’)¢ for
all @' € Py, that is y? acts as “Scalars” on Pp. We may assume that
R = (z) < (y9), so there is an f € Z," such that 2 maps a’ to (a')/ for all
a’ € Py. If R centralises P, then R centralises P and hence R 4 G = (P, y).
The R-orbits therefore all have the same length which divides pgr and |R),
and hence the R-orbits have length 7, so R is elementary abelian as well
as cyclic, and hence |R| =r. So we have 1 < R < PR < G and now G is
a genuinely 3-step imprimitive permutation group with normal subgroup
R of order r. By the arguments of Propositions 5.3 and 5.4 (replacing
D, q,7 by r,p, g respectively) it follows that I is a Cayley graph which is a
contradiction. Hence R acts nontrivially on Py and hence on (a). Hence r
divides p— 1. By Proposition 1.2, r?J(p— 1) and so (z") centralises Py and
hence (™) I G. If " # 1 then the (z")-orbits all have length r and are
subsets of the K-orbits of length pg, which is a contradiction, since 7 }pq.

Hence z" = 1.
In a similar way we shall show that |Q| < ¢?. We may assume that

Q = (b) < (y) and hence (b?) < (y9) and so b? acts as “Scalars” on P,.
By Proposition 1.2, ¢2 f(p — 1) so (b7) centralises P, and R and hence
(b"’) < G. Arguing as in the previous paragraph, if b9° # 1 then (qu) has
order g, and the (b7 )-orbits all have the same length g and are subsets of
K(a)-orbits of length p, which is a contradiction. So b =1.

Hence |y| = ¢°r where c is 1 or 2. Now consider the subgroup (P, y) =
(a1,...,0q,y) of AutT. We shall show that the generators a,,...,aq,y
satisfy all of the relations of the group defined in (1) (with p, g, r replaced by
7, P, ¢ respectively). We have, for all i and j, that a;,? = y7°" = [a;,a;] = 1.
Moreover a;¥ = a4, for i € {1,...,4 — 1} and ¢;¥ = a,°. We claim
that o(e” mod p) = ¢°~!. Since a;¥" = a;® and |y| = ¢°r, we have a; =

c c—1
W _ e? r
i =

a a; . Thus o(e mod p) divides ¢°"'r and so o(e” mod p)

divides ¢g°~!. If ¢ = 1 then o(e” mod p) = 1 = ¢°~!. So assume that
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¢ = 2 and suppose that e” = 1. Since a¥"" = a;® = a; for all i, then
49" centralises (Po,y). Hence (y7") < (Po,y) and all of the (y?")-orbits
have length ¢ and are subsets of the G(a)-orbits of length p, which is a
contradiction. So e” # 1. Hence o(e” mod p) = ¢ = ¢°~! in this case,
since o(e mod p) divides q. Therefore in all cases o(e” mod p) = ¢!
and the group (Po,¥) = (a1, ---,aq,y) satisfies all the relations specified in
(1). Also 7 divides p — 1 and the stabiliser of  in (Po,y) is the subgroup
(a2, .- -,aq,y™). It follows from Proposition 4.1 that I' is a Cayley graph,
which is a contradiction.

o
This leaves us with case (a) of Lemma 5.7.

Proposition 5.9. Case (a) of Lemma 5.7 does not arise.

Proof. Suppose that case (a) of Lemma 5.7 holds and consider Q4, which
has r orbits of length ¢. If |Q2| > q?, then Q5 fixes exactly g blocks of
A (namely those contained in S) and is transitive on the other Q2-orbits
of length ¢. (This can be proved with a similar argument to that used for
Lemma 5.7(b)). In this case it follows that K, is transitive on S; for each
i € {2,...,r}. By Lemma 3.3, T = I'g[5], and since pg,r ¢ AC it follows
from Lemma 3.4 that I' is a Cayley graph, which is a contradiction. Thus
|Q2| = q, and G = Q2.(z2). Now if ® centralises Q*, then G* has a
normal subgroup (z2) of index g with g orbits of length 7. Hence G has a
normal subgroup of index g with g orbits in V' of length pr. In this case,
interchanging q and r we see that case (b) of Lemma 5.7 holds, and we
have already shown in that case that all graphs arising are Cayley graphs.
Hence z2 acts nontrivially on Q#, and so r divides ¢—1. If (z™)2 # 1, then
(z7)2 centralises Q2 (since 72 J(g — 1)) and so ((z")*) < G*. However
{(z")®) C K which has r orbits of length g, and (z")2 is an r-element,
and so we have a contradiction. Hence (z")® = 1. Let L = G(a). Then
G/L is a Frobenius group of order gr. Consider Q N L (of index ¢ in Q).
Since Q N L fixes each S; setwise, @ N L normalises each PySt. Since r
divides q — 1, it follows that ¢f(p — 1), since {p,q,7} ¢ N'3. Hence QN L
centralises PpS¢ for each i, so Q N L centralises Py and hence P. Thus
QN L <« G. However L has gr orbits of length p and QN L is a g-group.
Hence QNL =1 and |Q| = q. Since ¢ does not divide p— 1, it follows that
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Q & Z, centralises each of the Py>:. Thus Q centralises P and so Q<G
By interchanging p and g, we have a genuinely 3-step imprimitive group G,
which has a chain of normal subgroups, 1 < @ < PQ < G where |Q| = p.
By the arguments of Propositions 5.3 and 5.4, I is a Cayley graph, which
is a contradiction. O

Propositions 5.8 and 5.9 complete the proof that there are no possibilities
for G with |P| > p2. This completes the proof of Theorem 1.1.
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