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Abstract

In this paper we establish necessary and sufficient conditions on
m and n in order for Km x K,, the cartesian product of two complete
graphs, to be decomposable into cycles of length 4. The main result
is that Km % Kn can be decomposed into cycles of length 4 if and
only if either m,n = 0 (mod 2), m,n = 1 (mod 8), or m,n = 5
(mod 8).

1 Introduction

All graphs considered in this paper are finite and have no loops or multiple
edges. By V(G) we denote the vertex set of the graph G. By K, we denote
the complete graph on n vertices, and by Km,» we denote the complete
bipartite graph with m vertices in one part and n vertices in the other
part.

The cartesian product of two graphs, G, and Gy, is the graph G, x G2
having vertex set V(G;) x V(G2) and in which vertex (u,us) is adjacent
to (v1,ve) if and only if either u; = v; and ug is adjacent to vz in G, or
us = vz and u; is adjacent to v; in Gj.
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A cycle is a 2-regular connected graph (or subgraph of a graph). A
t-cycle is a cycle containing exactly ¢ edges. A t-cycle decomposition of a
graph G consists of a set of t-cycles of G which partition the edge set of G.

Cycle decompositions of graphs has been a topic of much research [1, 12],
dating back to the now classic result that K, is 3-cycle decomposable if and
only if n =1 or 3 (mod 6) [11]. More recently, it has been shown that K,
is 4-cycle decomposable if and only if n =1 (mod 8) [9, 15).

To date, decomposition results for cartesian products of graphs appear
to have been limited to Hamilton decompositions [2, 3, 10, 14, 17]. In this
paper we consider the question:

Question 1 For a given value of t, what values of m and n are necessary
and sufficient for the graph K, x K, to be t-cycle decomposable?

It is clear that for ¢ = 3, the necessary and sufficient conditions for
Km % Ky, to be 3-cycle decomposable are m = 1 or 3 (mod 6) and n = 1 or
3 (mod 6). For larger values of ¢, the question becomes more difficult. We
focus on the case in which ¢ = 4, proving as our main result the following
theorem:

Theorem 1 K, x K, is 4-cycle decomposable if and only if either
1. m,n=0 (mod 2),
2. mn=1 (mod8), or
3 mn=95 (modS8).

It is interesting to observe that K, x K, is the line graph of K, ,,
and so our result also serves to establish necessary and sufficient conditions
for L(Km,n) to be 4-cycle decomposable. Cycles in line graphs have been
another topic of study, albeit primarily concerning line graphs of complete
graphs [6, 7, 8].

Before proceeding, we introduce some terminology. A pure 4-cycle in
Ky x Ky, is a 4-cycle whose edges are all contained within one copy of K,
or one copy of K,,. If we consider K, x K, as having its vertices arranged in
a rectangular grid with m rows and n columns, a pure 4-cycle thus contains
four vertical edges or four horizontal edges. A mized 4-cycle is a 4-cycle
which is not pure; it contains two vertical edges and two horizontal edges.

Also, we will use the following result, due to Sotteau [16):

Theorem 2 K, ,, is t-cycle decomposable if and only ift > 4, m=n =
t=0 (mod2),t<2m,t <2n, andt|mn.

In particular, we are interested in the following corollary of this theorem:

Corollary 1 K,, , is 4-cycle decomposable if and only if m = n = 0
(mod 2), m>2, andn > 2.
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2 Necessary Conditions

Lemma 1 Given that K, X K, is 4-cycle decomposable, then either
1. mn=0 (mod2),
2. m,n=1 (mod8), or
3 m,n=>5 (mod8).

Proof. We first observe that K, x K, has mn vertices, each having degree
m +n — 2. Hence K,, x K, has .('_"EL(M edges.

Given that K,, x K, is 4-cycle decomposable, not only must each vertex
in the graph have even degree, but the number of edges in the graph must
be divisible by 4. Hence m = n (mod 2) and 8 | ((mn)(m + n — 2)); these
conditions are both satisfied precisely when

1. m,n =0 (mod 2),

2. m,n =1 (mod 8),

3. m =3 (mod 8) and n = 7 (mod 8),

4. m =7 (mod 8) and n = 3 (mod 8), or
5. m,n =5 (mod 8).

Consider now the case in which m = 3 (mod 8) and n = 7 (mod 8). Ob-
serve that each pure 4-cycle in K, x K,, uses an even number of horizontal
edges (0 edges if the 4-cycle is vertical, 4 if it is horizontal) and that each
mixed 4-cycle uses two horizontal edges. Thus the total number of hori-
zontal edges used by all 4-cycles will be even. The number of horizontal
edges present in K, X K, is M(.h',‘—"l-)- Note that m is odd, n is odd, and
that 251 = 3 (mod 4). We find that the total number of horizontal edges
in K,, x K, is odd, and so we have a contradiction.

The case in which m = 7 (mod 8) and n = 3 (mod 8) is similar to that
in which m = 3 (mod 8) and n = 7 (mod 8). (m]

3 Saufficient Conditions

To show that the stated necessary conditions are sufficient, we consider
each in turn, and show a means of constructing a 4-cycle decomposition of
Ko x K,.

Lemma 2 Ifm,n =0 (mod 2) then K, x K, is 4-cycle decomposable.
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Proof. Each column of vertices in K x K, will induce a subgraph iso-
morphic to K,,, while each row is isomorphic to K. In each column and
each row we use the maximum number of pure 4-cycles that is possible;
given that m and n are both even, we thus use all edges but a 1-factor in
each of K,;, and K, [9, 15]. By using the same decomposition in each row
(resp. column), each row (resp. column) will have the same 1-factor left
over, say F (resp. F'). To complete the 4-cycle decomposition we use the
mixed 4-cycles of F' x F'. (m]

Lemma 3 If m,n =1 (mod 8) then Kp, x K, is 4-cycle decomposable.

Proof. Each column of vertices corresponds to K,,. Since m =1 (mod 8),
we can completely decompose Ky, into 4-cycles. Hence we can use all of
the vertical edges of K, X K, in the construction of pure 4-cycles.
Likewise, since n = 1 (mod 8), all of the horizontal edges of K, x K,
can be used by pure 4-cycles. ]

Lemma 4 If m,n =5 (mod 8) then K, x K, is 4-cycle decomposable.

Proof. Since K, x K, and K, x K, are isomorphic, we assume, without
loss of generality, that m < n. Thus, with m and n both equivalent to 5
(mod 8), we have precisely two cases:

l. m=n
2. m<n

We consider each case separately.

Case 1 (m = n). Consider first the case of K5 x K5. We present a 4-cycle
decomposition of K x K3, obtained by the unique 4-cycle decompositions
of each of the subgraphs of K5 x K5 shown in Figure 1.

For m = n with m > 5, we use an iterative construction. From K,, x
K, we first remove four embedded copies of Km-s X Km-3 and one copy
of K5 x K. Pictorially, we remove the four copies of K mes X K mos from
the four corners of K, x K, and the Ky x K from the centre, as illustrated
in Figure 2.

K me3 X K m-3 can be assumed to be 4-cycle decomposable since m = 5
(mod 8) implies that either 253 = 1 (mod 8) in which case a 4-cycle
decomposition exists by Lemma 3, or else 252 = 5 (mod 8) in which case
we note that 5 < 222 =3 < m and so we can assume the existence of a 4-cycle
decomposition by mduct10n

Now consider the three middle rows and three middle columns, each of
which is now isomorphic to K, \ K5. Each of these rows and columns can
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Figure 1: A 4-Cycle Decomposition of K5 x K
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Figure 2: Subgraphs Embedded Within K, x K,
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be decomposed into pure 4-cycles. To see that this is so, let A be the set
of five vertices from the deleted K5 and let B be the other m — 5 vertices.
Fix one vertex v of A. The subgraph induced by B U {v} is a complete
graph on m — 4 vertices, which is 4-cycle decomposable since m —4 = 1
(mod 8). The remaining edges now induce a complete bipartite graph with
partition (A \ {v}, B); this graph is isomorphic to K4 m-s, which is 4-cycle
decomposable by Corollary 1.

The two rows (resp. columns), one on each side of the three middle
rows (resp. columns), are now isomorphic to K,, with one copy of Kj
and two copies of K ms deleted, such that the two copies of K m-s are
disjoint from each other but each shares a single vertex with the K5. To
see that each of these rows and columns is 4-cycle decomposable, let A
and B be the sets of "‘T‘3 vertices from the deleted K mo3 ’s and let X

be the set of five vertices from the deleted Ks. Let {u} = AN X and
{v} = BN X. Consider now the complete bipartite graphs with partitions
(A\{u}, B\ {v}), (A\ {u}, X\ {u}), and (B\ {v}, X\ {v}); each is 4-cycle
decomposable by Corollary 1.

All that now remains is to consider the ’"T‘s top-most rows, the -'-"—2‘—5
bottom-most rows, the 252 left-most columns, and the 252 right-most
columns. Note that each of these rows and columns contains m vertices
and "‘—2’"6%'12 edges; in particular, note that w = 2 (mod 4) and
hence we cannot fully decompose the remaining edges into pure 4-cycles.
However, the removal of a 6-cycle from each of these rows and columns does
leave the proper number of edges for the rest of the edges to be decomposed
into pure 4-cycles.

Let X be the set of the middle three vertices of some row (resp. column),
A be a set of three of the 52 left-most (resp. top-most) vertices of the
row (resp. column), and B be a set of three of the 273 right-most (resp.
bottom-most) vertices of the row (resp. column). Then let P and Q be
sets of 232 vertices such that AU P and BU Q form the sets of 252

)
vertices corresponding to the two copies of K mea that have been deleted.

The complete bipartite graphs having partitions (P,B U X), (Q,A U X),
and (P,Q) are each decomposable into 4-cycles by Corollary 1. All of
the remaining edges are incident only with vertices of A4, B, and X; the
subgraph induced by the vertex set A U B U X is isomorphic to Ky with
two disjoint 3-cycles deleted.

Now fix a 1-factorisation of the complete bipartite graph having parti-
tion (A, B). We choose two of these 1-factors to form the 6-cycle we desire.
We pair each of the three edges of the remaining 1-factor with one of the
three edges having both end-vertices in X. Each of these pairs of edges
can then be extended into a 4-cycle by the addition of one edge between A
and X and one edge between B and X. The remaining twelve edges can
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be uniquely decomposed into three 4-cycles.

At this point we have only to handle the set of 6-cycles which remain
in each of the outer 2= 5 rows and columns; their combination we wish to
decompose into mixed 4-cycles. Given that the edges of the 6-cycles are
incident only with vertices belonging both to one of the &= 5 outer rows
and one of the 23> 5 outer columns, we consider the m — § by m — 5 grid
of vertices formed by the deletion of the middle 5 rows and 5 columns of
our original m by m grid. In order to successfully obtain a decomposition
into mixed 4-cycles, we need to have chosen each set A and B as well as
each 6-cycle carefully in our previous step. Enumerate the first ™ T rows
(resp. columns) in our present m — 5 by m — 5 grid, from top to bottom
(resp. left to right) with the odd integers from 1 to m —6, and the following
m=5 rows (resp. columns) with the even integers from 2 to m — 5. Given
the choice available in our selection of 6-cycles, we can assume to have
selected our 6-cycles such that rows (resp. columns) 1 and 2 each have
the 6-cycle (1,2,3,4,5,6,1). For rows (resp. columns) 2i — 1 and 2¢, we
have selected the 6-cycle 0°71(1,2, 3,4,5,6,1), where ¢ is the permutation
(m-5m-1,...,6,4,2)(m—6,m-8,...,5,3,1),for 2 < i < 275, Having
chosen our 6-cycles in such a fa.shion, we find that the edges from these

6-cycles can be uniquely decomposed into the mixed 4-cycles

(0= (1), 0* (1)), (675 (1), 0* (8)), (¢ *(2), 0¥(8)), (0 =¢(2), 0¥ (1)) (¢~ (1), 23 (1)),
((0“(1) a*(1)), (6“‘(1),0 ‘(2)),(¢7*(6), 0% (2)), (¢7¥(6), 0° (1)), (¢ =*(1), * (1)),
(6™ (1), 6*(3)), (e~ (1), 0" (4)), (0 * (m = 5),0%(4)), (¢~ (m - 5),0°(3)), (¢ 7" (1), 7*(3))),
(e~ ‘(1) a*(3)), (67 (1), ¢*(2)), (¢~*(2), 0°(2)), (0"(2). a'(3)),(¢~*(1), 0% (3))),
((e™(1),0° (5)), (¢~* (1), 0 (8)), (0 " (m — 5)y¢‘(3)) (o™i (m - 5),0(5)), (¢ 7" (1), 0* (5))),
(™5 (1), 0" (5)), (¢ =" (1), 0* (4)), (0 ™*(2), 0 (4)), (0¥ (2), & (8)), (0™ (1), 0° (D)),

for 0 <i < B, T where each ordered pair (a, b) refers to the vertex in row
number e and column number b of the m — § by m — 5 grid.

Case 2 (m < mn). We begin by removing from the graph K,, x K, an
embedded K,, x K,_g, induced by the vertices of the right-most n — 8
columns of our m by n grid of vertices. Since n — 8 = 5 (mod 8) and
5 < n—8 < n, we can inductively assume that the edges of this K, X Kn—s
are 4-cycle decomposable.

If m > 5 then we decompose the remaining edges in each of the bottom-
most m — 5 rows into pure 4-cycles. Let A be the set of the left-most eight
vertices, let B be the set of the right-most n — 8 vertices, and let v € B. The
complete bipartite graph with partition (A4, B\ {v}) is 4-cycle decomposable
by Corollary 1. The remaining edges now constitute a complete graph, Kp,
on the vertex set AU {v}, which is 4-cycle decomposable.

Also if m > 5, then in each of the left-most eight columns we obtain
several pure 4-cycles. Let A be the set of the top-most five vertices, let
B be the set of the bottom-most m — 5 vertices, and let v € A. The
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complete bipartite graph with partition (4\{v}, B) is 4-cycle decomposable
by Corollary 1. Furthermore, the vertices BU {v} induce a complete graph
on m — 4 vertices, which is 4-cycle decomposable since m — 4 =1 (mod 8).
Each of these columns is thus left with the edges of a K5, contained within
the subgraph induced by the top-most five vertices A.

The remainder of the construction (including when m = 5) involves only
the top-most five rows. In each of these five rows, we choose two disjoint
sets of vertices, A and B, each consisting of four of the eight left-most
vertices in the row. Let C be the set of the n — 8 right-most vertices in the
row and let u, v, w be distinct vertices in C. First we note that we can use
Corollary 1 to obtain pure 4-cycles from the two complete bipartite graphs
with partitions (4,C \ {u,v,w}) and (B,C \ {u,v,w}).

What now remains in each row is the subgraph induced by the set of
vertices AU B U {u, v, w}; this subgraph is isomorphic to K;; with one 3-
cycle deleted. We remove the copy of K 4 having partition (A, B) but we do
not decompose the edges of this Ky 4 into 4-cycles; rather they will be used
to form mixed 4-cycles. The 36 remaining edges can now be decomposed
into pure 4-cycles as shown in Figure 3.

u

Figure 3: Nine Pure 4-Cycles in Each Row

The only edges in the K5 x K, which have yet to be decomposed into
4-cycles are the ten edges in each of the left-most eight columns and the
sixteen edges associated with the K4 4 remaining in each of the five rows.
Together, these 160 edges will be decomposed into mixed 4-cycles. Fo-
cussing on the vertices of the K5 x K,, which are incident with these edges,
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we need only consider the left-most 5 by 8 grid of vertices; let H be the
subgraph induced by these forty vertices. Note that we had choice in our
selection of the sets A and B, and hence in the vertices forming the par-
tition of each of the copies of Ky 4; we may thus assume that the K44 in
each row was selected such that the eight vertices in each row of H fall into
two colour classes as shown in Figure 4.

o] [ ] (¢} o [ ] o [ ] L]

(] o [ ] ® (o] [ ] o o

Figure 4: Vertices of the Graph H

A 4-cycle decomposition of H can now be obtained by the unique 4-cycle
decompositions of each of the subgraphs of H shown in Figure 5. a

4 Main Result

As previously stated, the main result of this paper is the following theorem:
Theorem 3 K,, x K, is 4-cycle decomposable if and only if either

1. m,n=0 (mod 2),

2. m,n=1 (mod8), or

3. m,n=25 (mod8).

Proof. That the stated conditions are necessary is proved in Lemma 1;
their sufficiency is shown in Lemmata 2, 3, and 4. a

5 A Second Construction for m,n = 5 (mod 8)

We note that the proof of Lemma 4 is recursive. In this section we present a
direct construction technique which uses only a handful of smaller decompo-
sitions; specifically those for the graphs K, x K, where r, s € {5,13,21,29,37},
each of which we can obtain from Lemma 4.
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Figure 5: A 4-Cycle Decomposition of the Graph H

224



Again, we visualise an m by n grid of vertices. Let r,s € {5,13,21, 29,37}
such that r = m (mod 40) and s = n (mod 40). In each of the m rows,
identify 2= disjoint sets of five vertices, C; fori =1, ..., 22, and one set
of s vertices, Co. Likewise, in each of the n columns, identify =L disjoint
sets of five vertices, R; for j =1,..., =L, and one set of r vertices, Rp.

Using the sets C; to index the columns of vertices, and the sets R; to
index the rows of vertices, consider now the vertices found in the intersection
of C; and R;j, fori = L...,%%andj=1,..., =L, these vertices form a 5
by 5 grid inducing the subgraph K x K5, which we decompose into 4-cycles.
The vertices found in the intersection of Cy and Rj, for j = 1,..., 25,
form a 5 by s grid inducing the subgraph K5 x K,, which we decompose
into 4-cycles. The vertices found in the intersection of C; and Ry, for
i=1,..., 222, form an r by 5 grid inducing the subgraph K, x Ks, which
we decompose into 4-cycles. And the intersection of Cy and Ry forms an r
by s grid that induces the subgraph K, x K, which again we decompose
into 4-cycles.

All remaining 4-cycles in our decomposition of K, x K, will be pure.

Notice that 2z2 is divisible by 8, and so the number of sets of vertices,
Ci, in each row is congruent to 1 (mod 8). If we identify each set into a
single point, we thus obtain a complete graph, K, +o52s which is 4-cycle
decomposable. We use a 4-cycle decomposition of this complete graph to
dictate the manner in which we obtain pure 4-cycles for our decomposition
of Km x Kn. Specifically, if (Cy,Cz,Cy,C:,Cy) is a 4-cycle in the 4-
cycle decomposition of K, e, then we obtain pure 4-cycles in K, x Kp
by decomposing the complete bipartite graph having the partition (C,, U
Cy,Cz U C,) into 4-cycles, using Corollary 1.

Similarly, =L is divisible by 8, and so we can obtain a 4-cycle decom-
position of the complete graph, K, EELY obtained by identifying each set
R; into a single vertex. Each 4-cycle (Ry, Rz, Ry, R;, R,) in this K 14mer
is then used to obtain pure 4-cycles in K,, x K, by decomposing the com-
plete bipartite graph on partition (R, U Ry, R; U R,) into 4-cycles, again
using Corollary 1.
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