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Abstract
Two graphs are matching equivalent if they have the same match-
ing polynomial. We prove that several infinite families of pairs of
graphs are pairwise matching equivalent. We also prove some divis-
ibility relations among matching polynomials. We also show that
matching polynomials of certain graphs are a polynomial model for
the Fibonacci numbers and for the Lucas numbers.

1 Introduction.

Most of this section is based on Farrell’s introductory paper [1]. Let G be
a graph. A matching M is a spanning subgraph of G with components
consisting of nodes and edges only. A k-matching is a matching containing
k edges. If G has p nodes, then 0 < k < |p/2] where |z] denotes the
greatest integer less than or equal to z. When G has p nodes, a k-matching
of G will contain p — 2k nodes (as components of the matching).

Let M be a k-matching of G where G has p nodes. To each node of
M, we assign the weight w;. To each edge of M, we assign the weight wy.
Thus we associate with M the weight w? ?*wk. (The weight associated
with a matching is the product of the weights of its components.) The
matching polynomial of G, denoted M(G; 1), is obtained by summing over
all matchings of G. Let a; denote the number of k-matchings of G. Thus

we have
Lp/2]

M(G,w) = Z arw? 2k,
k=0

The weight vector w is given by w = (w;,ws). If we let w) = wy = z,
then the resulting polynomial is called the simple matching polynomial of
G, denoted M(G;z).
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From the definition of a matching, we know that the edges of a match-
ing are independent. Thus, the inclusion of an edge « in a matching M
implies the exclusion of all edges adjacent to . The set of all matchings of
a graph G can be partitioned into two classes: (i) those matchings which
contain the edge a and (4i) those matchings which do not contain the edge
a. Thus, we have the following theorem which is Theorem 1 in [1].

Theorem 1 Let o be an edge of G. Let G’ be the graph obtained from G by
deleting o. Let G” be the graph obtained from G by removing the endnodes
of a. Then, we have

M(G; %) = M(G’; @) + woM(G"; W)
The following theorem is Theorem 2 in [1].

Theorem 2 Let G be a graph containing a node y with valency vy. Let
G - {y} be the graph obtained from G by removing y. Let G be the graph
obtained by removing node y and an adjacent node i. Then

M(G; @) = wi M(G - {y}) + w2 z M(G!; ).
i=1

Let P, denote the path with p nodes. The following equation is Equation
1in [1).

M (Py; @) = wy M (Pp-y; W) + woM(Pp—2; W) for p>2 (1.1)

The following theorem is Theorem 9 in [1]. This theorem shows that the
binomial coefficients are the coefficients of M (Pp; 7).

Theorem 3 Let P, be a path with p(> 0) nodes. Then
— p- k -2k
M (Pp; W) = Z ( k )'w” ws.
k=0
The following theorem is Theorem 10 in [1].
Theorem 4 M (P45, W) = M(Py; ©)M (Py; W)+w2M (P, 13 W) M (Pi—1; W)

Let Cp denote the cycle with p nodes. By removing any edge of Cp
where p > 3, we obtain the path P,. The following theorem is Lemma 1 in

[1].
Theorem 5 M (Cp; @) = M(Pp; W) + woM(Pp—2;W) for p22.

The following theorem is part of Theorem 12 in [1].
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Theorem 6 M(C,;w) satisfies the following recurrence
M(Cp; W) = wi M(Cp_y;0) + w2 M(Cp_2; W) for p >3,
with the initial conditions M(Cy; @) = wy and M (Cy; W) = w? + 2w,.

A @-graph is a connected graph consisting of 3 edge-disjoint paths be-
tween two vertices of degree 3. All other vertices have degree 2. Let these
paths have p, ¢ and r nodes. We denote this graph as Op.q,r- We observe
that 6,4, has p+ g+ 7 — 4 nodes and p + g + r — 3 edges. The following
theorem is a correction of Theorem 14 in [1]. This corrected theorem is
proven in the next section.

Theorem 7
M(apyq,r; 'LU) = M(Pp+q+1‘—4; ﬂ)‘) + w'-’(M(Pp—Z; "E)M(Pq+r—4; 15)+
M (Py—2; W)M (Ppyr—a; W) + M(Pr—2; B) M (Ppyq_4; W) -
M(Pp—Z; T-U)A/I(Pq—Z; "E)M(PT—Z; d’.))
The following theorem is Theorem 8 in [2].

Theorem 8 For all positive integers T,

M(P,; B)M(Cyy1; W) = M(Payyr; @)

2 Main Results.

Before we derive our main results, we need a few definitions and some
notation. Let G and H be two graphs whose vertex sets are disjoint. Let
G U H be the graph whose vertex set is union of the vertex set of G and
the vertex set of H and whose edge set is the union of the edge set of G
and the edge set of H. Let Y;;« denote the y-shaped graph obtained by
taking a path on i nodes, a path on j nodes and a path on k nodes and
identifying one of the endnodes of each of these three paths. The resulting
graph has i+ j + & — 2 nodes. Let C}; denote the graph obtained by taking
a cycle on ¢ nodes along with a path on j nodes and identifying one of the
endnodes the path with one of the nodes of the cycle. The resulting graph
has i+ j — 1 nodes. In the proofs of Theorems 7, 13, 14 and 15, we will use
the notation for a graph to mean the matching polynomial of that graph.

Proof of Theorem 7.
—_— *
oP-‘Iv" - Cq+r—2,p—l + szi’—Z,q—l,r—l

=rp—2U c'q+'r—‘2 + w2Pp—3 U Pq+r—3
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+wyM (Pr—gU Ppig—a + WiPp_3U Py_3 U P_3)
= (Pp—2U Pgyr—2 + waPp_2U Pyyr—q +waPp3U Pyyr_s
+w2Pp2U Py gUP,_3 +wiPy_3g UP;3UPr_g +wsPp3U Py 2UPr_3
= P,_aUPg4r—2+wyPp_2UPy_sUP; _a+w3 Pp_2UP;_3UPr _3+w2 Pp—3UPir—3
+wyM(Pp—y U Py_g U Pr_2; W) + Wi M(Pp—3 U Py_a U Pr_2; W)
+wiM (Pp—3 U Py_p U Pr_3; )
= Pprgir—a +2w2PpaU Py 2 UPr_g + wh(Pp—2 U Py3 U Pr_3+
P, 3UP;_2U P._3+ Pp_3U P,_3U P._3)
since Ppygir—4 = Pp—2aUPyyr_2 + w2Pp_3U Pyir—3. We add and subtract
waPp_a2 U Py2U Pr_a.
Op,qr = Pprqtr—a +3w2Pp_aU Py2U Pr_a+
w3 (Ppa UPy_3 UP,_3+ Pp_sUP; 2UPr3+ Pp_3UFPg_3U Pr)-
w2Pp_.2 U Pq_z UP._o
= Ppigir—a + w2(Pp2U Py 2UPr_a +waPp 2 UPy3UPr3+
Pp..z U Pq_.z UP,._2+ szp_;; U Pq_g UP._3+
Pp2aUPy 2UPr_3+wPp3UP; 3UP_3) ~waPp2UP;2UPr
= Ppyqir—a + W2(Pp—2U Pyir—a + P2 U Ppyra+
PregUPpig 4 —PpgUP,3UP;) O
Theorem 9 0, 2,2, and Oy, 4,4, are matching equivalent if there ezists

multisets {ai, a2, a3} = {1, 2,23} and {b1,b2,b3} = {v1,y2,y3} such that
the following conditions hold:

(i) a1 +1=by + b3 and by + 1 = a2 + as;
(1‘1‘) {a'l - 1,(12,03} = {b] - 1rb2y b3}'

A: B:B

Proof. In the figure above, graph A is 0a,,a,,a; With one edge denoted «
and graph B is 0, 5,6, With one edge denoted 8. We apply Theorem 1
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to graph A obtaining M (A; W) = M(A’; W) + waM(A”;@). Letting edge 3
in graph B play the role of edge  in Theorem 1, we apply Theorem 1 to
graph B obtaining M (B; @) = M(B'; W) + woM(B";@). By Theorem 7 in
(2], we have M(A’; W) = M(B';w). Since graph A” is isomorphic to graph
B", we have M(A";w) = M(B";w). O

Ky(a,b,c,d,e, f):

Theorem 10 Ky(a,1,1,2,1, f) and Ka(a',1,1,2,1, f') are matching equiv-
alent whenever a+ f =o' + f'.

Proof. It suffices to show that K4(a—1,1,1,2,1, f+1) and K4(a,1,1,2,1, f)
are matching equivalent. Applying Theorem 1 to the edge "c¢” in both
graphs, we obtain

M(Kqy(a—1,1,1,2,1, f + 1); W) = M(8a,2,542; W) + wo M (Poys; W)
and
M(K4(a1 1’ 1’ 2) 11 f)) 117) = M(0‘1+1-2:f+1; u.;) + sz(Pa'*‘f; 13)

By Theorem 9, 0,2,s42 and 6,41,2,/+1 are matching equivalent. Thus,
Kq(a - 1,1,1,2,1, f + 1) and K4(a,1,1,2,1, f) are matching equivalent.
0

Theorem 11 K,4(1,1,1,d,¢, f) and K4(1,1,1,d', €, f') are matching equiv-
alent wheneverd+e+ f=d' +¢ + f'.

Proof. By symmetry, it suffices to show that K4(1,1,1,d,e, f) and Kq(1,1,1,d-
l,e, f + 1) are matching equivalent. Applying Theorem 1 to the edge ”a”
in both graphs, we obtain

M(K4(11 1) la d’ €, f)a w) = M(0d+e,2:f; 117) + w2M(Pd+e+f-2; u-i)
and

M(K4(1,1,1,d—1,e, f+1);w) = M(Oaye—1,2,541; W) +woM (Pijetf—2; W)
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By Theorem 9, 044,25 and 8aqe—1,2,541 are matching equivalent. Thus,
K4(1,1,1,d,e, f) and K4(1,1,1,d — 1,e, f + 1) are matching equivalent.
O

Let K denote the complete graph on one node.

Theorem 12 C,UK, andY,_, 2,2 are matching equivalent for every pos-
itive integer n > 3.

Proof. This result can be easily verified by applying Theorem 1 to appro-
priately selected edges. O

Theorem 13 M (Py,; %)|M(Pi(ns1)4n; ©) for k > 0.

Proof. When k = 0, the statement of this theorem becomes the triviality
P.|P,. Assume that Pp|Pj(nt1)+n for some j > 0. Let us prove this
statement for & = j + 1. Changing the notation in Theorem 4, we obtain
Poyp = PPy +wa Py 1Py—q1. Let a =j(n+1)+nand b=n+ 1. Then,

Potb = P(i1)(n+1)4n = Pintn)4nPat1 + wW2Pj(ns1)4n-1Fn-

The assumption that Pp|Pj(n+1)+n is equivalent to Pj(n41)4n =0  (mod Pp)
whence

Pit1)n41)+n = W2Pjins1)an1Pn =0 (mod P). O

Theorem 14 M(Coyb; W) = M(Py; W)M (Cp; @) +waM (Po_1; W)YM(Ch-1; W)
forb > 2.

Proof. By letting p = a + b in Theorem 5, we have
Cotb = Pags + w2 Payp—2.
By applying Theorem 4 twice, we obtain
Catb = (PaPo+ waPa_1Po_1) + wo(PaPo—2 + w2Ps-1Po—3)

= Po(Py + waPy—2) + w2Pa_1(Po—1 + w2 Py_3)
= P,Cp+ waPy_1Cp-1. a

Theorem 15 M (Cy;0)|M (Cakntn; W) for k 2 0.

Proof. We proceed by induction on k. If k = 0, the statement of this
theorem becomes the triviality C,|Cr. Let us prove that the theorem holds
for k = 1. By Theorem 14, taking a = 2n and b = n, we obtain

Cian = P2nCn + w2 Pan1Cn1 = waPan-1Cn1 (mod Ch).
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By letting r =n — 1 in Theorem 8, we have C3, =0 (mod C,). Thus,
the theorem holds for ¥ = 1. Assume that it holds for 0 < k < j where
j 2 1. Applying Theorem 14, we obtain

Cajntn = Pojn-nCon + W2 Pajn_n_1Con_1.
From our assumption, it follows that
Prjn-nCon + w2 Pajn—n-1Con-1=0 (mod C,). (2.1)
Let k = j + 1 and apply Theorem 14, obtaining
Cakntn = Cojnt3n = PojnenCon + w2 P2jnyn—1C2n 1.
Now we apply Theorem 4 to Pyj5+n and to Pzjp4n—1, obtaining

Cajntan = (Pajn-nPan+w2Prjn—n-1P2n-1)Can+w2(P2jn—n-1Pintw2 P2jn-n-2P2n-1)Con-1

= Pa(P2jn-nC2a+w2Psjn-n-1C2n-1)+02 P2n-1(P2jn-n-1C2n+w2Psjn-n-2C2n-1)

= woPyn1(P2jn-n-1C2n + w2 P2jn-n-2C2n-1) (mod Cy)
by equation 2.1. By Theorem 8, we have
w2 Pon—1(P2jn—n—-1Can + W2Pajn—n-2C2m—1) =0 (mod C,). O
Theorem 16 M (Cp; W)|M(Pegn—1;W) for k> 1.

Proof. Theorem 8, with r = n — 1, shows that this property holds for
k = 1. Assume that it holds for 1 < k < j. By Theorem 4, we have

Pyi1yn—1 = Pen—1Pojn + waPon_2Pajn_1
which, by our assumption, becomes

Pyj+1yn-1=0  (mod C,). O

3 Fibonacci and Lucas Numbers.
The Fibonacci numbers are defined as follows:
F=1FR=1F=F+F,_a for p>2.
The Lucas numbers are defined as follows:

L1 =11L2=3’LP=LP—1+LP—2 fOT p23
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From Theorem 3, we obtain that M (Py; W) = 1 and M (Py; W) = w,. Based
on these initial conditions and the recurrence in Equation 1.1, we can prove
that

M(P;(1,1))=F, for p>0.

In words, the matching polynomials of paths are a polynomial model for
the Fibonacci numbers. In Theorem 6, the initial conditions and recurrence
for M(C,p; W) are given. Based on these initial conditions and recurrence,
we can prove that

M(Cp;(1,1))=L, for p2>1.

In words, the matching polynomials of cycles are a polynomial model for
the Lucas numbers.
If we let wq = ws = 1, then Theorem 3 yields the following equation.

F,,=kz=o(”;k> for p>0 (3.1)

Let Z*+ denote the positive integers. If we let w; = w2 = 1, then Theorem
4 yields the following equation.
Foyx = FoFx 4+ Fo_1Fr_1 where nke Z* (3.2)
If we let w; = we = 1, then Theorem 5 yields the following equation.
Ly=Fp,+F,_2 for p>2 (3.3)
If we let w; = wp = 1, then Theorem 13 yields the divisibility relation.
Fal|Fi(n41)4n for k20 (3.4)
If we let w; = w2 = 1, then Theorem 14 yields the following equation.
Loys = FoLy + Fo_1Ly—1 where a,be Z* (3.5)
If we let w; = we = 1, then Theorem 15 yields the divisibility relation.
Lu|Loknsn where k€ ZT U{0} (3.6)
If we let wy = wa = 1, then Theorem 8 yields the following equation.
F.L 41 = Fpryy where 1€ 2% (3.7

After making some slight adjustments for a different definition of the
Fibonacci numbers, we see that Equations 3.1, 3.2 and 3.3 correspond to
Problems 4, 7 and 8 on page 204 of [4].
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