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We describe several techniques for constructing proper n-dimensional Had-
amard matrices, for arbitrarily large n, from any perfect binary array, gen-
eralised perfect binary array, or cocyclic perfect binary array. We reconcile
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the two possible interpretations of the “weak difference set” construction
of [8] and show that this construction derives from a relative difference set.

Much of our attention will be focussed on {*1}-matrices which are
group developed over a finite group Gj that is, the rows and columns of the
matrix are indexed by the elements of G (under some fixed ordering) and
there is a map ¢ : G — {%1} such that the entry in position (g1,g2) is
#(g192). (When columns indexed by g and 9~ 1,Vg € G are interchanged,
the resulting matrix is referred to as group invarient. When G is abelian,
group developed matrices are also known as Type 2 matrices.)

A v x v matrix H with all entries in {£1} is called a (2-dimensional)
Hadamard matrix of order v if HHT = vI, and necessarily v must be 1,
2 or a multiple of 4. If a group developed matrix with entries in {+1} is
Hadamard then it is regular and, if v > 2, it must be a perfect square:
v = 4t2. If, in a regular Hadamard matrix, the entries —1 are replaced by
0, it is the incidence matrix of a symmetric (4t2,2t2 + ¢, 12 & t)-design, and
conversely. For general material on Hadamard matrices, see [18, 9].

Section 2 describes and compares known construction methods for gen-
erating higher dimensional Hadamard matrices from 2 dimensional ones.
Section 3 notes that the equivalence of perfect binary arrays (PBAs) and
abelian group developed Hadamard matrices permits construction of n-
dimensional Hadamard matrices from PBAs (Proposition 3.4) for any n >
2, optimally improving a result of Yang [20]. In Section 4 a generalisa-
tion of group developed Hadamard matrices is used to define “cocyclic”
perfect binary arrays, whose energy v is not restricted to being a perfect
square. There are many more cocyclic PBAs than PBAs. In particular,
all the generalised perfect binary arrays (GPBAs) of Jedwab [13] are in-
cluded. An effective construction of proper higher dimensional Hadamard
matrices from cocyclic PBAs is already known, but we show it has two in-
terpretations. We clarify the definition of this construction to resolve any
ambiguity. Finally we show that the reconciled construction is a relative
difference set construction which generalises the difference set construction
for PBAs. We suggest this is a profitable new area to search for binary
sequences and arrays with ideal correlation properties.

2 Higher Dimensional Designs

Shlichta [16] discovered that there exist higher dimensional {+1}-arrays
which possess a range of orthogonality properties; in particular, he con-
structed 3-dimensional arrays (A;;x) with the property that any sub-array
obtained by fixing one index is a Hadamard matrix. In a later paper (17),
he extended some of his constructions to n dimensions, and pointed out
that these designs may have security coding and error-correcting coding
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applications. Subsequently, de Launey [6] showed that the set of proper
n-dimensional Hadamard matrices of order 2 is equivalent to a coset of the
first-order Reed-Muller code.

A proper n-dimensional Hadamard matriz of order v, forn > 2, is a
{*1}-array (A(i1,22,...,%a)) With 1 < ix < v, 1 < k < n, where every
section (ie. sub-array obtained by fixing all but two indices) is a Hada-
mard matrix. It follows that a proper n-dimensional Hadamard matrix
must have order 1, 2 or a multiple of 4.

That is, an n-dimensional {+1}-array is a proper n-dimensional Had-
amard matrix if, on fixing all but the k*® and I** coordinates, letting the
k*® coordinate take values z and ¥, and letting the I** coordinate run from
1 to v,

N Al Ty ity i) AL Yy ety i) = U 8oy (1)

1<i <y

A surprisingly simple method for generating a proper n-dimensional
Hadamard matrix from a (2-dimensional) Hadamard matrix is due to Yang
[19, Theorem 1] and de Launey [4]: if H = (h(4, j)) is a Hadamard matrix,
then (A(%1,42,...,%n)), where

A(il,'i2,...,in) = H h(iaait)1 (2)

1<s<t < n

is a proper n-dimensional Hadamard matrix. (Proof follows immediately
from the definitions.) We term this the product construction.

Hammer and Seberry [10, Theorem 4] used a different technique to
construct higher dimensional Hadamard matrices. If a Hadamard matrix
(#(9192))g:cc is group developed over an abelian group G, they noted that
(A(91,92,-19n))gicc, Where A(g1,92,..,9n) = ¢(g192 .- gn), is & proper
n-dimensional Hadamard matrix.

In fact, this construction holds for non-abelian groups: if for any group
G and map ¢ : G — {1}, D = (¢(9192))g.ec is a group developed Hada~
mard matrix, and

Hﬂ(glag2a--°vgn) = ¢(9192 gn), g € G’ (3)

then every section of H, is a Hadamard matrix. The argument is as
follows. Fix the entries of Hy, in all but coordinates k and I, and put
hi = g192---gk—1, h2 = Grs19k+2---1-1 and hg = gi110142°* - ga- In
any section D* obtained from H, in this manner, the formal inner prod-
uct of the two “rows” in coordinate k indexed by group elements a and b

8 cqgd(gr-..a...c...gn) $(g1...b...c...g9,) = Y cec $(haahs . chg)
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@(h1bhs . chs) = ¥ ceg $(A-C)$(B.C) = véap = véap, S0 D* is also Had-
amard.

We term this the difference set construction, by virtue of the difference
set structure of an abelian group developed Hadamard matrix (Corollary
3.3 below).

If G is abelian, each section is itself group developed over G. The
mapping ¢°* : G — {£1} given by ¢*(a) = é(a . h1hzhs), e € G, shows
that D*(a,c) = ¢(h1ahachs) = ¢*(ac). Thus we have derived the following
result.

Lemma 2.1 The difference set construction (3) applied to a G-developed
Hadamard matriz H determines a proper n-dimensional Hadamard matriz
H,, for any n > 2. If G is abelian, H, is proper G-developed. O

The product and difference set constructions each have advantages and
disadvantages: the product construction requires O(n?) operations to cal-
culate each entry, while the difference set construction requires only O(n)
operations. However, the product construction applies to any Hadamard
matrix; the difference set construction applies only to group developed
Hadamard matrices (but is also applicable to other designs). For abelian
group developed Hadamard matrices, the restrictiveness of this property is
outlined in the next section.

More recently, de Launey [5] and de Launey and Horadam (8] intro-
duced a variant of the difference set construction which significantly en-
larges the set of Hadamard matrices to which the faster technique can be
applied. The resultant proper n-dimensional Hadamard matrices have the
form (®(e1€2 ... €x))e;cr, Where R is a subset containing v = |G| elements
of a group extension E of {1} by G, and & : E — {+1}. Asa consequence,
calculating a single entry of these designs requires n — 1 multiplications in
E and one lookup of a table of length |E| = 2v; that is, O(n) operations. In
§4, this construction will be reviewed and redefined, and R will be identified
as a (4t, 2, 4t, 2t)-relative difference set in E.

Although the focus of this paper is on construction of proper higher dim-
ensional designs, constructions satisfying a weaker orthogonality condition
than (1) are also known. In its most general form, an n-dimensional Had-
amard matriz of order v is an array (A(i1,2,...,1n)) With 1 < 4 < v,
1 < k < n such that when the k** coordinate takes values z and y,

> ,2 A,y @y ity in) AL 0Byl ) =v"" 16,
I#£k i
(4)
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For example, the Kronecker product construction can be used to create
higher dimensional Hadamard matrices. If Hy,...,H, are all Hadamard
matrices of order v, then H; ® --- @ Hy is a 2-dimensional Hadamard
matrix H of order v™, with entries H((%1,%2,...,%n),(J1,72:+++2Jn)) =
H;(41,751)Ha(i2,j2) - . - Ha(in,jn). In particular, if H; is group developed
over Gi, 1 <i < n, then H is group developed over Gy X - -+ X Gp.

Shlichta [17] points out that by orienting the factors of the Kronecker
product in appropriate directions, it is an n-dimensional Hadamard matrix
of order v2. Equally, it can be thought of as an 2n-dimensional Hadamard
matrix of order v, on setting

A(ilajlaiza j2) e :”:naj'u) = Hl(il ’jl)H2(i2’j2) R Hn(im jﬂ)‘ (5)

3 Perfect Binary Arrays

A v x v matrix C = (c(4, j)) is circulant if (3, ) = ¢(0, j — 1), where the in-
dices are reduced mod v. Each circulant matrix determines a back circulant
matrix by column (or row) permutation. Clearly, “back circulant” means
the matrix is group developed over the cyclic group Z,. The only known
back circulant Hadamard matrices are of order 4, and it is conjectured that
there is no (back) circulant Hadamard matrix of order greater than 4. For
general material on circulant Hadamard matrices, Barker sequences and
related topics, see [14].

Evidently, the next question to ask is if there are group developed Had-
amard matrices over any other abelian groups. The answer is that an
abelian group developed Hadamard matrix exists if and only if there is a
corresponding perfect binary array.

Definition 3.1 An m-dimensional array (a(i,...,4m-1)) with a(i,...,
im—1) =*1for 0 <ix < sx—1,0 < k < m—1iscalled an sox 51 X...X8n—1
perfect binary array and denoted by PBA(sy,...,8m—1) if

so-1 Sm-1—1
z z a(io, ... ,im-1)alio + jo, . - -, im—-1 + Jm—-1)
i9g=0 tm-1=0
m—1
= H si, f jo=51=...=Jm—1=0; and =0, otherwise (6)
i=0

for all jo, ..., jm-1, where the index i+ is reduced mod sx. (We assume
that 3 i : s; # 1.) The energy of the PBA(sp,..., Sm—1) is its volume

I2s s
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For general material on perfect binary arrays, see (2, 13]. The energy of
the PBA(so, ..., Sm—1) is 4t2 for some t > 1. It is well known that Menon-
Hadamard difference sets over abelian groups of order 4t2 and nontrivial
PBAs are equivalent [13, Theorem 3.1].

The equivalence with abelian group developed Hadamard matrices is
also apparent, since if M is group developed over G = Z,, X ... X Zg_, _,
by the mapping ¢ : G — {*1}, and its rows and columns are indexed by
the lexicographically ordered elements (ig,...,im-1) of G, the entry in the
(iO) vee aim—l)th row and (jO: ase 7jm—1)th column is ¢(i0 + jO: coosimoy +
jm—1)- So the inner product of the (ko,...,kmn—1)" row and the (ko +
Jos - ey km—-1 + jm—l)“l row is

2::-—_-(} st :’:-—11;(} ¢(i0$ ey im—l) ¢(1'0 + jO’ KR s":m—l + jm—l)-

We have:

Remark 3.2 The top row of a Hadamard matriz which is group developed
over Zg, X ...x Zs,,_, is a PBA(so,...,8m-1), and vice versa. O

For example, the top row of the Z3z x Z3 x Z4-developed Hadamard
matrix of order 36:

Attt bt —— b= =t b —t —p—— ——— +——t -
where the elements are ordered lexicographically, is a PBA(3,3,4).

Corollary 3.3 (This translates [13, Theorem 3.1).) Let G be an abelian
group. A G-developed {£1}-matriz ($(g192))g:cc i3 Hadamard if and only
if the set {g € G : ¢(g) = —1} is a Menon-Hadamard (4t2,2t% + t,12 + t)-
difference set in G. O

Over the past few years, substantial effort has been made by many
researchers, to find and characterise perfect binary arrays, because of their
engineering applications in digital communications. Until very recently
there was a paucity of positive results: there were constructions for t =
223% but many nonexistence results outside this condition. Then Xia found
sufficient conditions for many more constructions having ¢ = 223%w?2, where
w is the product of not necessarily distinct primes = 3 (mod 4), and
subsequently, examples with primes = 1 (mod 4) have been found. See
[3] for a good coverage of recent results,

In [20], Yang gives a method to construct a (m + 1)-dimensional Hada-
mard matrix of order  from an m-dimensional perfect binary array PBA(r,
...,r) of energy r™. However, only construction in a single higher dimen-
sion will result. Furthermore, the higher dimensional Hadamard matrix so
constructed will not be proper. Finally, the requirement that r™ = 4t2,
significantly restricts the perfect binary arrays to which his method applies.
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The observations above improve Yang’s result optimally. By Remark
3.2, any construction of a higher dimensional Hadamard matrix from an
abelian group developed Hadamard matrix applies to the corresponding
perfect binary array. This includes the Shlichta and Kronecker power (5)
constructions (with factors all equal), product (2) and difference set (3)
constructions. The latter two constructions determine proper n-dimen-
sional Hadamard matrices and of these, the second is faster, and hence is

preferable.

Proposition 3.4 For any PBA end any n > 2, there erists an n-dimen-
-sional Hademard matriz. In particular, by the difference set construction, if
the elements of the PBA (so,...,5m-1) are a(@), 1 € Zgy X ... % Ls,,,_, with
lexzicographical order, then for anyn > 2 e proper n-dimensional Hadamard
matriz of order 4t% = H:';;l s;, group developed over Zsy X ... X Zs,,_,, is

given by A(Zf,...,ij:a(i+i+...+l—§. a

Addition in Z,, X ... X Z,,, _, is fast to implement since it involves n—1
additions mod s in coordinate k, for each of the m coordinates.

To illustrate, consider calculation of a proper 3-dimensional Hadamard
matrix from the PBA (3,3,4) given above. The entry A((0,1,0),(1,0,2),
(2,1,3)), using the product construction, is a((1,1, 2))a((2, 2, 3))a((0,1,1))
= 1.—1.—1 = 1; while, using the difference set construction, it is a((0, 2, 1))
= —1. So the constructions determine different 3-dimensional Hadamard
matrices.

4 The Cocycle Construction

In this section we briefly describe the construction of de Launey and Ho-
radam and clarify and update its use in extending the results for PBAs.
First we generalise the notion of group development of designs. In [8, 11)
the concept of cocyclic development of designs is introduced, in which a
binary cocyclic matrix over a finite group G is defined to be a {+1} matrix
with rows and columns indexed by the elements of G, such that the entry

in position (g1,92) is ¥(g1,92)9(g192). Here ¢ : G — {£1} is a set map
and ¢ : G x G — {£1} is a (2-dimensional) cocycle; that is, it satisfies

¥(91,92)¥(9192, 93) = ¥(92,93)¥(91,9293), V01,92,93€G.  (7)

Note ¥(1,9) = ¥(g,1) = ¥(1,1),Vg € G. Any cocycle 3 determines
a group extension Ey of Zy & {+1} by G consisting of the set Ey, =
{(1,9), (-1,9) : g € G} with multiplication (z, g)(y, h) = (¥(g, h)zy, gh).
If’l,bEl, E¢=22XG.
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Proposition 4.1 (Weak Difference Set Construction) [8, Theorem
2.7]

If a cocyclic matriz ((91,92)9(9192))g9:cc is Hadamard, there is a
proper n-dimensional Hadamard matriz (A(g1,92,...,9n))gicc , for any
n > 2, where

n i—-1
A(glyg2) ce 1911) = H"p(H gjagi)¢(glg2 . 'gn)’ o (8)
=2 j=1

Given 9, any set mapping ¢ : G — {£1} determines a set mapping
Dy : E‘J’ - {il}, given by Qt‘b.dr(z’g) = a:¢(g) In Eﬂh H:l=l(lvgi) =
(H?:z w(H;;ll 9irGi)s glgz---g,.) so the right hand term in (8) is the
image under ® 4 of this product of elements from the v-element subset
R = {(1,9) : g € G} C Ey. It was this derivation in terms of the set
R which prompted the “weak difference set” terminology. However, as we
shall see, this construction can be interpreted as a generalisation of the
difference set construction in either of two ways.

Cocyclic matrices clearly specialise to group developed matrices when
% is the trivial cocycle which always maps to 1. However group developed
matrices also arise intrinsically as cocyclic matrices: the group developed
matrix (¢(9192))gec is Hadamard equivalent to the normalised matrix
(80(91,92) = ¢(91) " (92) "' ¢(9192))g.c, and this particular type of co-
cycle 3y is known as a coboundary.

Therefore, application of the weak difference set construction to a group
developed Hadamard matrix determines two distinct n-dimensional Hada-
mard matrices.

Corollary 4.2 Let H = (¢(9192))g:cc be a group developed Hadamard
matriz over a (not necessarily abelian) group G. Then

(Aj(gla g2,... ’gn))giec: i=1L2

is a proper n-dimensional Hadamard matriz, for any n > 2, where

(") Al (911921 v 1gn) = (p(9192 ttT gn); and

(i3) A2(91,92,- -+ 9n) = [Ticy O0(TT521 941 93)-

Proof. (i) Set 4 = 1 in Proposition 4.1. (ii) H is Hadamard equivalent to
the coboundary matrix (9¢(g1,92))e;ec Which is therefore Hadamard. Set
¢ =1 in Proposition 4.1. 0O

The first construction, (A,), is precisely the difference set construction
(3) for an arbitrary group G. The relationship of (Az) to this difference set
construction is easily explained.

Lemma 4.3 Let H = (¢(9192))g.cc be a group developed Hadamard ma-
triz. Then



A2(91,92,---,9n) = (ITi=y ©(9:) 1) A1(91,925-- -, gn)-

Proof. By definition,
iz 8(I1;21 9 95) .
= [Tle(T;) 99) e(9:) e(TTj=; 94)]
= (H?:l (p(gi)—l)(p(n:;l g")‘
Alternatively, there is an isomorphism a : Ey, — Z2 X G given by a(z, g) =
(x‘/’(g)_lag), so that ‘1’1.¢(0(H?=1(1»9i))) = ‘pav,l(rl?:l(l:gi))' o

Thus, (A2) can be thought of as a normalised version of (A;), just as
(8yp) is the normalised version of ().

Similarly, alternative constructions can be applied for any cocyclic Had-
amard matrix (¥(g1, 92)¢(9192))g:€q, since it will be Hadamard equivalent
to the normalised cocyclic Hadamard matrix ((% - 8¢)(g1,92))g.cc- In or-
der to prevent any confusion arising in application of Proposition 4.1, it is
preferable to establish equivalent but simpler definitions of cocyclic matri-
ces and the corresponding construction of higher dimensional matrices.

Definition 4.4 A binary cocyclic matrix over a finite group G is a {%1}-
matrix with rows and columns indexed by the elements of G, such that the
entry in position (g1, g2) is ¥(g1,92), where 9 : G x G — {£1} is a cocycle
(7). O

(This definition of cocyclic matrices is now in more general use.) We see
that in a cocyclic matrix, the inner product of the rows indexed by elements
aand bof G is 3 . ¥(a,9)¥(b,g). The cocyclic matrix is Hadamard if
and only if

D (e, 9)¢(b,g) = véas, Va, bEG. (9)
9€G

For convenience, we assume in what follows that |G| = 4t, though the
results below also go through analogously when |G| = 2.

In this situation, R is a relative difference set in Ey and Corollary 3.3
generalises. For general material on relative difference sets, see [15]. A
version of the next result was known to de Launey [7] at least as early as
1993; the proof below is new.

Theorem 4.5 [de Launey] Let G be a group of order v = 4t and o :
G x G — {£1} be a cocycle. The cocyclic matriz (Y(g1,92))g1.9:€G S
Hadamard if and only if R = {(1,9) : g € G} is a (4t,2,4t,2t)-relative
difference set in E,, relative to {(+1,1)} = Z,.
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Proof. By [15, pp.10-11], R = {(1,9) : g € G} is a (4t,2,4t, 2t)-relative
difference set in E, relative to {(£1,1)} & Z; if and only if, in the integral
group ring ZEy,
Z:geG Zhea(l,g)(I, h)~!
= 4(1,1) +2t3,40ec(1:9) + 2 4gea(-1,9)-

But (lih)—l = (p(h, h‘—l)ah-l) in Ey and '/)(hwh-l) = "/)(h‘—l’h)) so
deG Zhea(la 9)(1, )t
EgeG' Zhec(w(gvh‘_l)’p(ha h‘-l)—lvgh’_l)
Y gec Lnea(W(gh™, h)"9(g, A= h),gh™?)
Zkea Zhec(i"p(k’ h)_li k)
4t(1» 1) + El’#QGG(ZhGG(:ﬂ/}(g: h’)_l: g))

Then the result follows since for 1 # g, ¥(g, h)™! takes the values +1
equally often as h runs through G if and only if for 1 # g, 3, ¢ ¥(9,h) =0,
if and only if (by [1, Lemma 2.6]) (¥(g1,92))g g2¢c is Hadamard. O

In the terminology of this section, existence of a coboundary Hadamard
matrix over Zs, X ... X Z,_,_, and existence of a PBA(so,...,8m-1) are
equivalent. Therefore, existence of a cocyclic Hadamard matrix over a (not
necessarily abelian) group G corresponds to existence of a generalised form
of perfect binary array, which we will term a cocyclic PBA. Equation (9) is
the requisite generalisation of (6). A cocyclic matrix always has a constant
top row, so it is not feasible to generalise the equivalence of a PBA with a
coboundary Hadamard matrix by using a row-based definition of a cocyclic
PBA.

Definition 4.6 (i) Let G be a finite group. A G-cocyclic perfect binary
array (G-CPBA) is a {£1}-array (¥(g1,92))g:,9.€G Such that  : G x G —
{#1} is a cocycle which also satisfies Equation (9). The energy of a G-
CPBA is |G|.

(ii) For any n > 2, the relative difference set construction of a proper n-
dimensional Hadamard matrix (A(g1,92,-..,9n))e:cc from a G-CPBA (v)
is

n i—-1
A(91,92,---,9n) = [[¥(I] 95 90)- (10)
i=2 =l

We can now state the appropriate generalisation of Proposition 3.4.

Theorem 4.7 For any G-CPBA and any n > 2, there ezists an n-dim-
ensional Hadamard matriz. In particular, by the relative difference set
construction, if the G-CPBA is (¥), then for any n > 2 a proper n-
dimensional Hadamard matriz of order 4t is given by A(g91,92,...,9n) =

T "1’(1-[;;11 9:9:)- O
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G-CPBAs are far more numerous than PBAs. For example, there is
no PBA(9,2,2) but there are 3240 Zy x Z}-CPBAs with energy 36. There
can be no PBA(5,2,2) since 20 is not a perfect square, but there are 120
Zs5 x Z%-CPBAs with energy 20. Over the non-abelian dihedral group of the
same order, CPBAs are even more numerous: there are 2380 D2o-CPBAs
with energy 20.

Since Jedwab’s generalised perfect binary arrays (GPBAs) are equiv-
alent to certain abelian (4t,2,4t, 2t)-relative difference sets [13, Theorem
3.2, Result 4.9], we see that every GPBA corresponds to a CPBA and hence
determines higher dimensional Hadamard matrices. Hughes [12] has iden-
tified this correspondence precisely. But the GPBAs do not account for all
CPBAs: none of the CPBAs mentioned above can be GPBAs because the
corresponding relative difference sets are not abelian.

This leads us to suggest that this is a profitable area to search for binary
sequences and arrays with ideal correlation properties. Furthermore, the
proper higher dimensional Hadamard matrices which arise by the relative
difference set construction (10) have a hierarchy of orthogonalities which,
as well as applications to security and error-correction coding, should be
suitable for more general targetting problems, such as in fault-tolerant com-
puting.
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