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Secret sharing schemes are used to protect a secret among a group of par-
ticipants by issuing each participant with a share of the secret. The access
structure of a secret sharing scheme is the set of subsets of participants that
are desired to be able to reconstruct the secret by pooling their shares. For
a good introduction to the potential applications of secret sharing schemes,
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In this paper we concentrate on unconditionally secure secret sharing
schemes. A scheme is unconditionally secure if its security is indepen-
dent of the time and resources available to any party attempting to break
the scheme. We will only consider access structures that are monotone; a
monotone access structure defined on a participant set P is a collection I"
of subsets of P such that, if A €' and B 2 A then B €T (for A,B C P).
We assume that I' # @ and that I' # {0}. Let I'" denote the collection of
minimel sets of I, that is, A € '™ precisely when A € I" and A\a ¢ T for
all @ € A. If there exists A € '™ such that |[A| > 2 then we say that T is
non-trivial (otherwise I is trivial). We say that I is connected if for each
z € P there exists A € I'" such that = € A.

A secret sharing scheme is often loosely defined by saying that “a set
in the access structure can determine the secret” and “a set not in the
access structure can not determine the secret”. Further, a scheme is often
loosely defined as being perfect if “a set not in the access structure can
not determine any information about the secret”. We are interested in
attempts to make rigorous these concepts through the establishment of
precise mathematical models.

Combinatorial theory provides a very natural setting in which to model
unconditionally secure secret sharing schemes. The first papers on the
subject ([3] and [22]) dealt with the special case of threshold schemes (see
Section 5). Particular combinatorial implementations of threshold schemes
were discussed (using affine geometry and finite polynomials respectively).
Since that time over 100 papers have been published in the area of secret
sharing. As more theory is developed it is important to be aware of the
subtle differences between the various existing models for secret sharing..
We concentrate here on three combinatorial models that have received par-
ticular attention in recent work. We briefly review combinatorial models in
Section 2 and then compare the three main models in Section 3. In Section
4 we consider the ideal cases of these models and discuss the relationships
between them. In Section 5 we give a combinatorial classification of id! eal
threshold schemes.

2 Review of combinatorial models

Throughout this paper P will denote a finite set of participants, I' will
denote a monotone access structure defined on P and s will denote the
secret (s € P). If A and B are finite sets we will write AB for AU B.
Where appropriate, if = is an element from some finite set we will write z
for the set {z}. For each z € sP we associate some finite set (). For a set
X C sP let (X) be the set of tuples 7 = (7z)zex (where m; € (z)). For
Y C X and 7 € {(X) let my denote the tuple (m,)yey. In each of the models
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we discuss, a secret sharing scheme M will (partly) consist of a subset [sP]as
of (sP). Given [sP]py and X C sP, let [X]y = {mx | 7 € [sP]s}. We will
omit the subscripts M where there is no ambiguity. We denote the number
of (distinct) tuples in [X]a by |[X]a].

We start by reviewing three of the most referenced combinatorial models
for secret sharing.

2.1 Brickell-Davenport model (BD)

Let p be a probability measure defined on (sP) and let @ = {r € (sP) |
p(m) > 0}. We say M = (P, s,p) is a BD-secret sharing scheme (or BD-
scheme) for T if [sP]y = Q and for AC P,

(BD1) if A €T then |[sA]| = |[A];
(BD2) if A ¢ T then |[sA]| = |[s]| - |[4]].

We say that M is BD-ideal if |[z]| = |[s]| for all z € P. This model was
proposed in [7] (see also [21]). To implement a BD-scheme, a tuple 7 € [sP]
is selected with probability p(r). The secret is given by m; and participant
z € P is given share m,. The basic property of a BD-scheme is that if an
unauthorised set A of participants (that is, A ¢ T") pool their shares then
complete knowledge of M will leave a non-zero probability that any o € [s]
is m5. Note that the properties (BD1) and (BD2) are independent of p.

2.2 Brickell-Stinson model (BS)

Let ! be a mapping from (sP) to the set of non-negative integers and let p
be a probability measure defined on {s). For A C P, a € [4] and 7 € [s],
let Aa(0,@) = ¥ (re(sP)mamo,ma=ay i) (f A = @ then let Ag(0,a) be
denoted by A(c)). For each w € (sP) let p(r) = p(ms)l(m)/A(7s) and let
Q = {m € (sP) | p(r) > 0}. We say M = (P, s,p) is a BS-secret sharing
scheme (or BS-scheme) for I if [sP]y = and for AC P,

(BS1) if A €T then |[sA4]| = |[A]l;
(BS2) if A ¢T and a € [A] then As(0, @) is independent of o € [s].

We say that M is BS-ideal if |[z]| = |[s]| for all z € P. This model first
appeared in [8] (although a similar idea was first discussed in [7]), where
the tuples of [sP] were written as rows of a matrix in which row 7 was
repeated precisely I(r) times (see also, for example, [5]). In [18] the BS-
model was used under the assumption that the probability measure p on
(s) was uniform. Note that for this model, this is equivalent to p being
uniform on [s]. In [25] the special case of the BS-model with {(m) = 1
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for all # € [sP] was used. Note that Example 1 shows the existence of
BS-schemes that have I(7) # 1 for some 7 € (sP).

To implement a BS-scheme, a secret o € (s) is selected according to
probability measure p and then a tuple 7 € [sP] with 7, = o is chosen with
probability I(w)/A(c). This is effectively equivalent to selecting a tuple
7 € [sP] with probability p(m). BS-schemes have a stronger property than
BD-schemes in that, if an unauthorised set of participants pool their shares
in a BS-scheme, the probability that o € [s] is 7, is the same as that for
someone outside the scheme who knows M but not the values of any shares.

Example 1 Let P = {a,b}, ' = {ab} and [s] = [a] = {0,1}, [b] = {0, 1,2}.
Let M = (P,s,p) be the scheme with tuples indezed by s,a,b given by
10,0,0) = 1, {(0,1,1) = 2, {(0,0,2) = 1, i(1,1,0) = 1, {(1,0,1) = 2,
1(1,1,2) = 1. Let p be a probebility measure defined on [s] such that p(0)
and p(1) are non-zero. Then M is a BS-scheme for I.

2.3 Entropy model (E)

We first introduce the idea of the entropy of a finite set (see [12]). All
the logarithms in this paper are to the base 2. Suppose p is a probability
measure on (sP). Let A C sP and let §(A) be the random variable defined
by the projection (sP) — (A). The measure p induces the probability mass
function p4 of 8(A) such that for each a € (4),

pa@)= Y ).

{n€(sP) |ma=a}

We let [A], = {a € (4) | pa(a) > 0}. The entropy H,(A) of 6(A) is defined

to be
Hy(A)=— > pa(e)logpa(a).
a€[A),

When there is no ambiguity we write [A] for [A], and H(A) for H,(A). Let
B g sPr ac€ [A] and ﬂ € [B]' Let pAB(ai ﬂ) = z{ﬂ-e[AB] | TA=a,rp=0} p("r)'
The measure p induces the conditional probability mass function p4 g such
that for each a € [A] and 8 € [B],

_ paB(a,B)
pA|B(aaﬂ) = PB(ﬁ) .

We define the conditional entropy H(A|B = ) of 0(A) given §(B) =  as

H(AIB = ﬂ) =- Z pAIB(a: ﬂ) IngAlB(ar ﬂ);
a€[A]
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and the conditional entropy H(A|B) of 6(A) given 6(B) as

H(AIB)= Y ps(B)H(A|B = p).
Be(B)

We say M = (P, s, p) is an E-secret sharing scheme (or E-scheme) for I if
[sP]m = [sP], and for AC P,

(E1) if A€T then H(s| A)=0;
(E2) if A¢T then H(s| A) = H(s).

We say that M is E-ideal if H(z) = H(s) for all £ € P. This model was
used to describe perfect threshold schemes in, for example, [14, 15] and
perfect schemes with general monotone access structures in, for example,
[4, 9]. In [2] a similar model was used, except that ideal was defined to be
l[z]| = |[s]] for all z € P. E-schemes are implemented in the same way as
BD-schemes. As with BS-schemes, if an unauthorised set of participants
pool their shares in an E-scheme then the probability that o € [s] is 7, is
the same as that for someone outside the scheme who knows M but not
the values of any shares.

2.4 Other combinatorial models

The three combinatorial models discussed in Section 2.3 have been selected
due to their frequency of reference and their generality. Other models have
been used that are combinatorial in nature. In [6] and [27], a general secret
sharing model based on vector spaces was used. In, for example, [13], [23]
and [24], projective geometry was used as a framework for modelling secret
sharing. Both these models can be shown to be special examples of BS-
schemes (see [13]).

A different combinatorial model for perfect threshold schemes was used
in [10, 20, 26]). Schemes of this type have been referred to as anonymous
for the reason that, on implementation, a participant need not identify
themselves when they present their share. As anonymous schemes model a
slightly different problem, we will not include them in our later discussion.
The schemes under discussion in this paper are easily made anonymous, at
the expense of increasing the size of each share through incorporation of
the participant’s identity.

3 Comparison of combinatorial models
Let T" be a monotone access structure defined on P. In this section we

make a comparison between the three combinatorial models featured in
Section 2.3.
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Lemma 2 Let p be a probability measure defined on (sP) and let A,B C
sP.

1. The following three statements are equivalent:
(a) H(A| B) =
(b) pas(ma,mg) = pp(mg) for all 7 € [sP];
(c) [AB],| = |[B],l-
2. The following two statements are equivalent:
(a) H(A| B) = H(A);
(b) pas(ma,m8) = pa(wa)ps(ng), for allm € [sP].
Thus if H(A | B) = H(A) then [AB], = [A], x [B], and so |[AB],| =
[Al|I[Blol-
Proof. First, note that H(A | B) = Oif and only if H(A | B = ) = 0 for all
B € [B],, if and only if for all m € [sP] we have that pAB(7rA,1rB) = pg(mg).
This happens if and only if for all 7,7’ € [sP], with 7p = mz; we have that
74 = 'y, which happens if and only if |[AB],| = |[B],|. This proves 1.
Similarly, H(A | B) = H(A) if and only if H(A | B = 8) = H(A) for
all B € [B],, if and only if for all 7 € [sP] we have that pap(ma,75) =

pa(ma)ps(ng). Soif H(A | B) = H(A) then for @ € [A], and g € [B],
there exists 7 € [sP] with 74 = a and mg = . The result follows. o

The next result shows that a BS-scheme is a special type of E-scheme.

Theorem 3 M = (P,s,p) is a BS-scheme for I if and only if M is an
E-scheme for T and pp|s takes only rational values.

Proof. Let M = (P, s, p) be a BS-scheme for I'. Note that for any X C sP
we have that [X], = [X]u. Note also that for any o € (s), we have
ps(0) = p(o). For AC P, a € [A] and ¢ € [s], we have that

g)a(o,a
pea0,0) = S m= 2P g
{m€[sA] | ma=0,ma=a}
If A €T then by (BS1), |[sA4]| = |[A]|. Thus H(s|A) =0 by Lemma 2 (1).
Now suppose A ¢ I. Then from (BS2) and (1),

pa@) = 3 palore) = B 5 ) Me)

a€ls) o€ls]
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Thus psIA(Ua a) = psa(0,a)/pa(a) = ps(o). By Lemma 2 (2), H(s|A =
a) = H(s) and thus H(s|A) = H(s). So M is an E-scheme for I. Further,
for @ € [P] and o € [s], we have by (1) that pp|,(a, o) = psp(0,a)/ps(0) =
Ap(o,a)/\(o), which is rational.

Conversely, let M = (P, s, p) be an E-scheme for I such that pp|, always
takes rational values. Then there exists a positive integer A such that for
each o0 € [s] and a € [P], ppjs(e, o) can be expressed as pp|s(a,0) =
a(a, o)/, for some non-negative integer a(a, ). Define a mapping I from
(sP) to the set of non-negative integers such that l(7) = a(mp,m,). For any
0 € [s] we have A(0) = ¥ (re(sP)imu=c} HT) = X(re(sP)ime=0} &(TP:0) =
A. Then letting p(c) = ps(o) for each o € (s), we have that for each 7 €
[sP], p(ms)i(m)/M(ws) = ps(ms)a(mp, Wa)/A = ps(ms)ppis(np, Ws) = p(7), 88
required. Property (BS1) follows from Lemma 2 (1). Suppose that A ¢ I’
and let a € [A]. Then for each o €![s],

/\(0‘,(2) - Z Ap(m) _ Apsa(0,a) = Apa(a),

{r€[sP]| ms=0,ka=a} ps(0) ps(0)
by Lemma 2 (2). Hence (o, &) is independent of o and thus (BS2) holds.
It follows that M is a BS-scheme for I'. o

Note that not every E-scheme is such that pp|, takes only rational val-
ues. Consider the following trivial example (note that examples with non-
trivial access structures can be found).

Example 4 Let P = {a}, ' = {a} and [s] = {0,1}, [e] = {0,1,2}. Let
M = (P, s, p) be the scheme with tuples indezed by s,a given by p(0,0) = u,
p(0,1) =, p(1,2) =1—u—v, where 0 < u,v < 1, u is irrational and v is
rational. Then M is an E-scheme for T' and p,s(1,0) = v/(u + v), which
is irrational.

Note that it is possible for p to take irrational values in a BS-scheme.
Example 5 Let P = {a,b}, ' = {ab} and [s] = [a] = [b] = {0,1}. Let
M = (P, s, p) be the scheme with tuples indezed by s, a,b given by 1(0,0,0) =
{(0,1,1) =1(1,0,1) = 1(1,1,0) = 1, and p(0) = u,p(1) =1 — u, where 0 <
u < 1, and u is irrational. Then p(0,0,0) = p(0,1,1) = u/2, p(1,0,1) =
p(1,1,0) = (1 — u)/2 and M is a BS-scheme for ' with p(w) is irrational
for all 7 € [sP).

We now show that every E-scheme for I is a BD-scheme for T

Theorem 6 M = (P,s,p) is an E-scheme for T if and only if M is a
BD-scheme for I' and (E2) holds.
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Proof. Let M = (P,s,p) be an E-scheme forT andlet ACP. f Ael’
then H(s|A) = 0 and by Lemma 2 (1), |[sA4]|] = |[4])]. If A ¢ T then
H(s|A) = H(s) and by Lemma 2 (2), |[sA]| = |[s]||[A]}|- Thus M is a BD-
scheme for I'. Conversely, let M = (P, s, p) be a BD-scheme for I’ such that
(E2) holds. If A €T then |[sA]| = |[A]| and by Lemma 2 (1), H(s|A) = 0.
Since (E2) holds we have that M is an E-scheme for T'. o

Note that there exist BD-schemes where (E2) does not hold.

Example 7 Let P = {a,b}, I' = {ab} and [s] = [a] = [bt] = {0,1}.
Let M = (P,s,p) be the scheme with tuples indexed by s,a,b given by
(0,0,0) = p(1,1,0) = u, 0(0:111) = p(1,0,1) = (1/2) — u, where 0 <
u < 1, and u is irrational. Thus, in particular, u # 1/4. Then M is a
BD-scheme for ' but H(s|a) < H(s) =1 and so (E2) does not hold.

Corollary 8 M = (P,s,p) is a BS-scheme for T if and only if M is a
BD-scheme for T, pp), takes only rational values and (E2) holds.

Proof. Follows from Theorems 3 and 6. m]

In summary, from Theorems 3 and 6 it is clear that there is a hierarchy
of schemes with BD-schemes at the top (most general) and BS-schemes at
the bottom.

4 Ideal secret sharing schemes

In Section 3 we noted that a hierarchical relationship exists between the
combinatorial schemes of Section 2.3. Does this hierarchy also apply to the
ideal cases of each of the these models? We will review the relationship
between ideal schemes and matroids and then use this relationship to prove
(perhaps surprisingly) that there is a hierarchy among the ideal cases of the
models, but that it is different from the general model hierarchy. We also
show, however, that in the ideal case the underlying combinatorial structure
behind the three models is essentially the same. Finally we show that, re-
gardless of the definition of ideal, the associated matroid of an ideal scheme
is determined uniquely by the access structure of the scheme. Throughout
this section I"' will denote a connected monotone access structure.

4.1 Ideal schemes and matroids

Some important connections have been established between ideal secret
sharing schemes and matroids. A matroid T = (FE,I) consists of a finite
set E and a collection I of subsets of E such that (1)@ € I; (2)if Ae I
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and B C A then BeI; (3)if A,B € I and |A| < |B| then there exists an
element b € B\ A with Ab € I. A set in I is referred to as independent and
a subset of E not in I is referred to as dependent. A minimal dependent set
of T is a circuit and a maximal independent set of T is a base. Given any
set A C E, the sizes of the maximal independent set(s) B C A are constant
and this size is referred to as the rank of A. The rank of T is the rank of
E. For a good introduction to matroid theory see [19].

The relationship between ideal secret sharing schemes and matroids was
first studied in Uehara et al [27). It was shown that BS-ideal secret sharing
schemes whose access structures have minimal sets of a constant size can
be linked to matroids. Brickell and Davenport (7] considered the general
case and proved the following fundamental result.

Result 9 A BD-ideal scheme M = (P,s,p) for T is associated with a
connected matroid T(M) on sP such that

1. the sets A(M) = {A C sP | there ezists a € A with |[A\d]| = |[4]|},
form the dependent sets of T(M);

2. the circuits of T(M) through s are precisely the sets sA where A€ I'~;
8. if AC sP then |[A]| = |[s]|"4D, where r(A) is the rank of A in T(M).

We can show an equivalent theorem to Result 9 for the case of E-ideal
schemes.

Theorem 10 An E-ideal scheme M = (P, s,p) for ' is associated with a
connected matroid T(M) on sP such that

1. the sets A(M) = {A C sP | there ezists a € A with H(a | A\a) = 0},
form the dependent sets of T(M);

2. the circuits of T(M) through s are precisely the sets sA where A€ I'—;

3. if A C sP then r(A) = H(A)/H(s), where 7(A) is the rank of A in
T(M).

Proof. Follows in a straightforward way by arguing as in the proof of Re-
sult 9 and recalling that by Lemma 2 (1) H(a | A\e) = 0 if and only if
|[4]] = |[4\a]]. o

We note that Kurosawa et al [16] proved Theorem 10 under the assump-
tions that H(s) = log|[s]| and |[z]| = |[s]| for all z € P. We will see in
Lemma 11 that for non-trivial access structures these assumptions are not
necessary.
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4.2 Combinatorial models of ideal schemes

We now compare the ideal cases of the three combinatorial models. We show
first that although BS-schemes are special cases of E-schemes (Theorem 3),
E-ideal schemes are special cases of BS-ideal schemes. First we need two
lemmas.

Lemma 11 Let I’ be a non-trivial monotone access structure. If M =
(P, s,p) is an E-ideal scheme for T' then p is uniform on [sP], |[z]| = |[s]|
for all z € P and H(s) = log|[s]|.

Proof. Let B be a basis of T(M) and let b € B. Then H(b | (B\b)) =
H(B) — H(B\b) = H(s), by Theorem 10 (3). Since M is E-ideal, H(b |
(B\b)) = H(b) and thus, by Lemma 2 (2) we have [B] = [b] x [B\}]. By
repeated applications of this argument, (B] = [bi] x ... x [b;]. As B is
a basis, H(sP | B) = H(sPB) — H(B) = 0 (by Theorem 10 (3)). Thus
Lemma 2 (1) and (2) imply that for 7 € [sP)],

p(m) = pa(rp) = [] po(m). ()

beB

Further, by Lemma 2 (1),
IisP]l = I(B]l = T 1e)l- 3

beB

Let z € P. Suppose Az € I'", A C P\ z. By Theorem 10 (2) sAz is
a circuit of T(M) and so Az is an independent set. Hence there exists
B D Az with B a basis of T(M). Then sB\z is also a basis (see [19, p21,
Ex. 6} for example). Applying (3) twice, we get [T,c |0l = [Toesn\2 bl
and so |[s]| = |[z]|, as required.

As T is non-trivial, there exists y € P with y € I". Suppose D C sP \y
such that Dy € T'~. Then Dy is independent in T(M) and thus there
exists E D Dy such that E is a basis of T(M). As above, sE\y is a basis
of T(M). As y ¢ T, H(s | y) = H(s) so by Lemma 2 (2) [sy] = [s] x [y].
Let ¢ € [s] and 9 € [y]- Then there exists m € [sP] such that 7, = o
and 7, = ¥. Applying (2) twice (with bases E and sE\y) we see that
py() = ps(0). Since o € [s] was chosen arbitrarily, it follows that p, is
uniform on [s] and that H(s) = log|[s]|. As M is ideal, H(z) = H(s) for all

z € P and since |[z]| = |[s]] it follows that the probability mass function on
[z] is also uniform. Using this with (2) shows that the probability measure
p is uniform on [sP]. o

Lemma 12 Let M = (P, s,p) be an E-ideal scheme for the trivial access
structure T' defined on P. If x € P then |[z]| = |[s]|-
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Proof. Let £ € P. Since H(s|z) = 0 it follows that |[z]| > |[s]|. For
o € [s], let o(z) = {a € [z]| 37 € [sP] such that 7y = 0,7, = a}. Thus,
ps(a) = EGEU(E) p’:(a)' Hence,

H(z) = _Z z pz(a)logpz(a)z_z Z pz(a)log ps(0)

o€ls] a€o(zx) o€[s) a€a(z)
= - Z log ps() Z pz(a) = - Z log ps(0)ps(0) = H(s).
o€[s] aco(z) o€ls)

Since H(z) = H(s) we have equality in the above and so pz(a) = ps(0) for
all a € o(z). Thus |o(z)] = 1 and hence |[z]| = |[s]|, as required. o

Theorem 13 M = (P, s, p) is an E-ideal scheme for I' if and only if M is
a BS-ideal scheme for I with p, uniform or I’ trivial.

Proof. Let M = (P,s,p) be an E-ideal scheme for I. Suppose that ' is
non-trivial. Then by Lemma 11, p is uniform on [sP] and p, is uniform
on [s]. Thus for any a € [P] and any o € [s] we have that pp|;(a,0) =
pla,0)/ps(c) = |[s]l/|[sP]|. Hence pp|, always takes rational values and
thus by Theorem 3, M is a BS-scheme for I Further, by Lemma 11,
lz]| = |[s]| for all z € P and thus M is a BS-ideal scheme for I'. If I is
trivial then for all 2 € P we have H(z|s) = 0 and hence by Theorem 3, M
is a BS-scheme for I". The fact that M is BS-ideal follows from Lemma 12.

Conversely, let M = (P, s, p) be a BS-ideal scheme for I'. By Theorem 3,
M is an E-scheme for I'. Suppose p; is uniform. Now for any z € P,
H(z) > H(s) (a straightforward generalisation of a result first shown in
[14] for threshold schemes), and thus log|(z]| > H(z) > H(s) = log|[s]|.
Since M is BS-ideal it follows that we have equality throughout, and in
particular H(z) = H(s). Hence M is E-ideal for I'. Now suppose that I' is
trivial. Let = € P. Since |[z]| = |[s]| it follows that for any pair =, T € [sP],
7z = Tz if and only if 7; = 7,. Thus H(z) = H(s) and consequently M is
E-ideal for I. o

Note that Example 5 is a BS-ideal scheme that is also an E-scheme, but
that is not E-ideal, since H(s) < H(a) = H(b) = 1. We now consider the
relationship between BD-ideal schemes and BS-ideal schemes.

Theorem 14 M = (P, s, p) is a BS-ideal scheme for ' if and only if M is
a BD-ideal scheme for T', (E2) holds, and pps takes only rational values.

Proof. Let M = (P,s,p) be a BS-ideal scheme for I'. By Theorem 3 it
follows that M is an E-scheme for I' (hence (E2) holds) and that ppy,
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takes only rational values. Further, by Theorem 6 it follows that M is a
BD-scheme for . Since |[z]| = |[s]| for all z € P, M is in BD-ideal for I'.

Conversely, let M = (P, s, p) be a BD-ideal scheme for I such that (E2)
holds and pp|, takes only rational values. By Theorem 6 it follows that M
is an E-scheme for I'. Further, by Theorem 3, since pp, takes only rational
values, it follows that M is a BS-scheme for I'. Since |[z]| = |[s]| for all
z € P, M is BS-ideal for I

Corollary 15 M = (P, s, p) is an E-ideal scheme for I' if and only if M is
a BD-ideal scheme for T', (E2) holds, pp|s takes only rational values, and
either py ts uniform or I is trivial.

Proof. Follows from Theorems 13 and 14. a

Note that Example 7 is a BD-ideal scheme that is not an E-scheme and
consequently is neither E-ideal nor BS-ideal. We now consider the under-
lying combinatorial structure [sP] of the ideal case of the three models. If
A C sP and « € [A] then let p4(a) = |[{7 € [sP]|7a = a}|. Similarly for
A,BC sP and a € [A],B € [B], let pap(a,B) = |{m € [sP]|7a = a,7p =
BYH.

Result 16 [7] Let M = (P, s,p) be a BD-ideal scheme for I'. Let A¢ T’
and @ € [A]. Then ps;a(0,a) is independent of ¢ € [s] (if A = O then
1sa(0,@) = ps(0)).

Lemma 17 Let M = (P, s,p) be a BD-ideal scheme for I'. Let T be the
uniform probability measure defined on [sP). Then M’ = (P,s,T) is an
E-ideal scheme for T'.

Proof. Let M = (P, s,p) be a BD-ideal scheme for I and let 7 be uniform
on [sP]. Let A € I'. By Lemma 2 (1), H(s|A) = 0. Now suppose A ¢
I and a € [A]. By Result 16, ps4(0,a) is independent of 0 € [s]. So
7514(0,@) = Toa(0,@)/Ta(@) = paa(0,@)/pa(e) is independent of o € [s].
Thus 7, 4(0, @) = 1/|[s]|. By Result 16 with A = @, we see that 7, is uniform
on [s]. Thus 7,4(0,a) = 'r,,(o) By Lemma 2 (2), H(s|A = a) = H(s),
H(s|A) = H(s) and thus M’ is an E-scheme for I.

It remains to show that M’ is E-ideal. Let z € P. If z € ' then
since |[z]| = |[s]| and H(s|z) = O, it follows that H(z) = H(s). Now
suppose that z ¢ I'. Since 7, is uniform on [s] and I is connected we have
log|[z]| = H(z) = H(s) = log|[s]|. Thus we have equality throughout, and
in particular H(z) = H(s). Thus M’ is an E-ideal scheme for I. o

Let BD(I") be the set of all collections of tuples [sP]y for which there
exists a probability measure p such that M = (P, s, p) is a BD-ideal scheme
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for I". In a similar way we can define sets BS(I') and E(I'). We show that
these sets are all identical and hence the set of combinatorial structures
that underly ideal schemes for a connected monotone access structure " is
independent of the model being used.

Theorem 18 Let T’ be a connected monotone access structure on P. Then
BD(I')=BS(T") =E(I").

Proof. By Theorems 13 and 14 we see that E(I') C BS(I') € BD(T'). Sup-
pose that BD(I') # @. Then there exists M = (P, s, p), a BD-ideal scheme
for I'. By Lemma 17, there exists an E-ideal scheme M’ = (P, s,7) for T
such that [sP]a = [sP]as. Hence [sP]ym € E(T). Thus BD(T') C E(T) and
hence BD(I')=BS([)=E(T).

4.3 Uniqueness of the associated matroid

The following theorem was first given for BS-ideal schemes in Martin [17)
and stated in Beimel and Chor [2)].

Theorem 19 Let M be either a BD, BS or E-ideal scheme for I'. Then
the matroid T'(M) associated with M is independent of M, and uniquely
determined by T.

Proof. If M is either a BS or a E-ideal scheme for T, then from Theorem 14
and Corollary 15 we see that M is a BD-ideal scheme for I'. Hence by
Result 9 we see that the circuits of T(M) are precisely the sets sA for
A € I'". As T(M) is connected it follows by [19, p133] that T(M) is
uniquely determined by the circuits through s and hence by T'. (]

In the light of Theorem 19 we refer to the matroid associated with
a BD,BS or E-ideal scheme for I" as the associated matroid T(T") of T
For further results concerning the relationship between ideal secret sharing
schemes and matroids see [2, 7, 21].

5 Classification of ideal threshold schemes

For the purposes of this section (and in the light of Theorem 14 and Corol-
lary 15) we will use the term ideal scheme to mean a BD-ideal scheme. We
say that an access structure I' is ideal if there exists an ideal scheme for I'.
In this section we present a combinatorial classification of ideal threshold
schemes. Let 1 < k < |P| = n. A (k,n)-threshold access structure is an
access structure defined on P, such that I' = {A C P||A| > k}. Note that
all (k, n)-threshold access structures are ideal ([22]). We describe any secret

261



sharing scheme for a (k,n)-threshold access structure as a (k,n)-threshold
scheme.

Lemma 20 Let ' be a (k,n)-threshold access structure. Then the bases of
the associated matroid T(T') are precisely the subsets of sP of size k.

Proof. By Result 9, the circuits of T(T") containing s are precisely the
sets of H = {A | A= Xs,|X| = k}. Further, by (19, p133], the remaining
circuits of T'(") are the minimal sets of the form D(4;4;) = (A:i4;)\{A €
H|A C A;A;}, where A;, A; are distinct members of H. Note that for
distinct A;, A; € H we have that N{A € H|A C AiA;} = {s}, and
hence the minimal sets D(A;A;) will be those of the form D(A;A;) where
|4; N AJI = k. In this case ID(A,A_,)' =k+1.

Now let X be a subset of sP of size k+ 1. If s € X then X € H.
Otherwise, let z,y € X. Then sX \ z and sX \ y are both in H and
intersect in k points. Hence X = D((sX \ z)(sX \y)) is a circuit of T(T’).
Thus every subset of sP of size k+1 is a circuit of T(I") and so any subset
of size k is a base of T'(T'). m]

A transversal design TD,(t,7,q), D, is an incidence structure consisting
of gr points and uq* blocks. The points of D are partitioned into r classes of
g points each and each block of D intersects each point class in precisely one
point. Further, every set of ¢ points from distinct point classes is incident
with precisely g blocks.

Theorem 21 M = (P,s,p) is an ideal (k,n)-threshold scheme for which
\s)a| = q if and only if the tuples of [sP]m form a TDy(k,n+1,q).

Proof. Let D be a TD;(k,n+1,qg) and order each block of D such that for
each i (1 <i < n+ 1) the point in class 7 of a given block lies in position %
of the ordered block. Consider the ordered blocks as tuples €2 indexed by a
set P of n participants and a secret s. It is straightforward to verify that by
defining an arbitrary probability measure on {2 we have that M = (P, s, p),
with [sP]y = §, is an ideal (k,n)-threshold scheme with |[s}a| = g.
Conversely, let M = (P, s,p) be an ideal (k,n)-threshold scheme with
|[s)la| = g. Relabel the sets [s]s and [z]m (z € P) using elements of dis-
tinct sets S1,...,Sn+1, €ach of size g. Now let D be an incidence structure
whose points are the points of UZH!'S; and whose blocks are the tuples of
[sP)am. Suppose X C sP such that |[X| = ¢t. By Lemma 20, B is a base
of T(T'). Then by Result 9, |[B]am| = ¢*, and hence every possible tuple of
[B]as occurs in some 7 € [sP]a. In other words every possible t points from
distinct classes of D occur together in some block of D. But, by Result 9,
we see that |[sP]a| = |[B]a|, and so every t points from distinct classes of
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D occur together in exactly one block of D. Hence D is a TD;(k,n + 1 q)
as required.

We note that the classification in Theorem 21 has previously appeared in
[17] and in [11] for special classes of BS-ideal threshold schemes. Both BS-
ideal and E-ideal threshold schemes will also give rise to transversal designs,
however when constructing either a BS-ideal or an E-ideal threshold scheme
from a transversal design only certain probability measures can be imposed
on the induced tuples [sP] (for E-ideal schemes only the uniform measure
on [sP] can be imposed).

6 Conclusions

We have discussed three combinatorial models that have been proposed for
secret sharing schemes, and have compared them. The precise combina-
torial requirements of a perfect secret sharing scheme are subjective and
thus there is no concept of a ‘correct’ model. While BD-schemes have been
shown to be the most general, it is probably more realistic to require the
property that an unauthorised set of participants who pool their shares ob-
tain no extra probabilistic information about the value of the secret. While
BS-schemes are perhaps the more combinatorially asthetic of the other two
models, the greater generality of E-schemes has led to this model for secret
sharing being the most used and the most cited. We have shown, interest-
ingly, that E-ideal schemes are more specialised than BS-schemes, but that
the underlying combinatorial structures behind the ideal case of the three
models are the same.

Amongst this discussion are two results of particular interest. The
uniqueness of the associated matroid of an ideal secret sharing scheme
has useful implications in the classification of ideal access structures. It
means that the properties of matroids can be applied directly to an access
structure when testing to see if the access structure is ideal. The combi-
natorial classification of ideal threshold schemes is of theoretical interest
as more literature exists on the construction of transversal designs than
on the construction of threshold schemes (see [1] for example), hence such
a classification increases our knowledge of the parameters for which such
schemes exist.
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