Necessary and sufficient conditions for some two variable orthogonal designs in order 44

C. Koukouvinos
Department of Mathematics,
National Technical University of Athens,
Zografou 15773, Athens, Greece

M. Mitrouli

Department of Mathematics, University of Athens, Panepistemiopolis 15784, Athens, Greece

Jennifer Seberry
School of IT and Computer Science,
University of Wollongong,
Wollongong, NSW, 2522, Australia.

Dedicated to Anne Penfold Street.

Abstract

We give a new algorithm which allows us to construct new sets of sequences with entries from the commuting variables $0, \pm a, \pm b$, with zero autocorrelation function.

We show that for eight cases if the designs exist they cannot be constructed using four circulant matrices in the Goethals-Seidel array.

Further we show that the necessary conditions for the existence of an $OD(44; s_1, s_2)$ are sufficient except possibly for the following 8 cases:

which could not be found because of the large size of the search space for a complete search. These cases remain open. In all we find 399 cases, show 67 do not exist and establish 8 cases cannot be constructed using four circulant matrices.

We give a new construction for OD(2n) and OD(n+1) from OD(n).

We note that all $OD(44; s_1, 44 - s_2)$ are known except the OD(44; 16, 28). These give 21 equivalence classes of Hadamard matrices.

1 Introduction

Throughout this paper we will use the definition and notation of Koukouvinos, Mitrouli, Seberry and Karabelas [2].

We note from [3] that we have to test $\frac{1}{4}n^2 = 484$ cases. We find 397 cases, show 67 do not exist and establish 12 cases cannot be constructed using four circulant matrices. There are 8 open cases which could not be found because of the large size of the search space for a complete search.

2 New orthogonal designs

Theorem 1 An $OD(44; s_1, s_2)$ cannot exist for the following 2-tuples (s_1, s_2) :

```
(3,5)
                    (4, 23)
                              (6, 10)
                                        (8, 14)
                                                    (10, 24)
                                                               (12, 20)
                                                                           (15, 20)
(1,7)
                                                               (12, 21)
                                                                           (15, 25)
(1, 15)
          (3, 13)
                    (4, 28)
                              (6, 26)
                                        (8,30)
                                                    (11, 13)
                                                    (11, 16)
                                                               (12, 29)
                                                                           (16, 19)
(1, 23)
          (3,20)
                    (4,31)
                              (7, 9)
                                        (9, 15)
                                                                           (16, 23)
                                        (9, 23)
                                                    (11, 20)
                                                               (13, 19)
(1, 28)
          (3,21)
                    (4,39)
                              (7, 16)
                                                               (13, 27)
                                                                           (16, 28)
                              (7, 17)
                                                    (11, 21)
(1,31)
          (3, 29)
                    (5, 11)
                                        (9, 28)
                                                                           (17, 23)
(1,39)
          (3, 37)
                    (5, 12)
                              (7, 25)
                                        (9,31)
                                                    (11, 29)
                                                               (14, 18)
(1,42)
          (3,40)
                    (5, 19)
                              (7, 28)
                                        (10, 17)
                                                    (12, 13)
                                                               (15, 16)
                                                                           (19, 20)
                                                               (15, 17)
                                                                           (19, 21)
                    (5, 27)
                              (7, 33)
                                        (10, 22)
                                                    (12, 15)
(2, 14)
          (4,7)
                              (7, 36)
(2,30)
          (4, 15)
                    (5, 35)
```

Proof. These cases are eliminated by the number theoretic necessary conditions given in [1] or [2, Lemma 3].

Example. To illustrate how we used the number theoretic conditions to establish the non-existence of an OD(4n; 11, 20) we consider the product $11 \times 20 = 4^1 \times 55$ now this is a number of the form $4^a(8b+7)$ which cannot be written as the sum of three squares and hence an OD(4n; 11, 20) cannot exist.

Remark. A computer search, which we believe was exhaustive, was carried out which leads us to believe that

1. there are no 4-NPAF(7,19) sequences of length 7.

- 2. there are no 4-NPAF(3,31), 4-NPAF(5,30), 4-NPAF(6,29) and 4-NPAF(8,27) sequences of length 9. This means that there are also no 4-NPAF(1,5,30), 4-NPAF(1,6,29) and 4-NPAF(1,8,27) of length 9.
- 3. there are no 4-NPAF(2,41) sequences of length 11.
- 4. there are no 4-NPAF(6,37) sequences of length 11.

Lemma 1 OD(44;1,1,42) and an OD(44;1,3,40) do not exist (this is proved theoretically). The Geramita-Verner Theorem says that if an OD(44;3,40) exists then an OD(44;1,3,40) will exist, and if an OD(44;1,42) exists then an OD(44;1,1,42) will exist. Hence the OD(44;1,42) and OD(44;3,40) do not exist.

Lemma 2 The following OD(44; 1, a, 43 - a) and OD(44; a, 43 - a) cannot be constructed using four circulant matrices in the Goethals-Seidel array:

Proof. By the Geramita-Verner theorem if an orthogonal design $OD(n; x_1, x_2, \dots, x_{u-1}, x_u)$ with $\sum_{i=1}^u x_i = n-1$) exists, $n \equiv 0 \pmod{4}$, then an $OD(n; 1, x_1, x_2, \dots, x_{u-1}, x_u)$ exists.

Now for each of the cases in this lemma we have an OD(44; a, 43 - a) and that is by the Geramita-Verner theorem an OD(44; 1, a, 43 - a).

Using the sum-fill matrix method we write $1 = 1^2 + 0^2 + 0^2 + 0^2$, $a = a_1^2 + a_2^2 + a_3^2 + a_4^2$ and $43 - a = b_1^2 + b_2^2 + b_3^2 + b_4^2$. We require the sum-fill matrix to be a 3×4 orthogonal matrix with the first row containing 1, 0, 0, and 0, the second row containing $\pm a_1$, $\pm a_2$, $\pm a_3$, and $\pm a_4$, in some order and the third row containing $\pm b_1$, $\pm b_2$, $\pm b_3$, and $\pm b_4$, in some order.

However, as we illustrate for OD(1, 20, 23), this is not possible for the cases mentioned in the enunciation. Using the sum-fill matrix method for OD(1, 20, 23), $1 = 1^2 + 0^2 + 0^2 + 0^2$, $20 = 4^2 + 2^2 + 0^2 + 0^2$ and $23 = (-1)^2 + 2^2 + 3^2 + 3^2$. There is no way to form an orthogonal matrix unless both 20 and 23 can be written as the sum of ≤ 3 squares.

3 New Algorithm

The algorithm previously used to find OD via four sequences of length $t \leq 10$ was prohibitively slow for length 11. Hence we tried a new algorithm, which depended on the previous algorithm, to find first a W(4t, k) made

with four sequences of length t with PAF = 0 or NPAF = 0. In the new algorithm MATLAB was used to set up a series of equations to be solved for each individual k and then all solutions to these equations were found. **Example.** We illustrate the algorithm by trying to construct the OD(44; 11, 27). We first notice that 11 has a unique decomposition into squares $11 = 3^2 + 1^2 + 1^2 + 0^2$, while 27 has three decompositions into four squares. All three can be used in this construction as they must be able to be used in an integer matrix (the sum-fill matrix) which is orthogonal. Hence we use $27 = 3^2 + 3^2 + 3^2 + 0^2 = 4^2 + 1^2 + 1^2 + 3^2 = 5^2 + 1^2 + 1^2 + 0^2$. So we have the matrices

$$\begin{bmatrix} 3 & 1 & 1 & 0 \\ 0 & 1 & -1 & 5 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 1 & 0 \\ -1 & 4 & -1 & 3 \end{bmatrix} \text{ or } \begin{bmatrix} 3 & 1 & 1 & 0 \\ 0 & 3 & -3 & 3 \end{bmatrix}$$

We now fill each of the positions which are represented by 0 by one of 17 variables x_1, x_2, \dots, x_{17} . We now use MATLAB to expand the first rows to make four circulant 11×11 matrices with row inner product zero: this corresponds to forming four sequences with PAF = 0. The equations will be those that involve some x_j , $1 \le j \le 17$ with a, and those which have no terms in a.

This gives at most 6 independent equations. A search is now made through the 17 variables, allowing them to assume the values 0, ± 1 , where six of them must always be zero, and using the extra constraints that

$$\sum_{i=1}^{3} x_i = -1, \quad \sum_{i=4}^{5} x_i = -1, \quad \sum_{i=6}^{11} x_i = 3, \quad \sum_{i=12}^{17} x_i = 0.$$

We start with the following four sequences of length 11 and PAF = 0.

We replace the ± 1 by a variable such as a and we replace the 17 zeros by the variables. Thus we have the sequences

We then use MATLAB to set up a series of equations, that when solved, yield, among others, the following solution:

We now replace the variables in the original four sequences by these solutions to obtain the OD(44; 11, 27).

Remark. Using this algorithm we tested all unknown two variable cases and found 10 cases which we were unable to resolve due to the extremely large search space. We estimate that a complete search for the OD(44; 5, 34) using this algorithm requires 2^{30} operations.

4 New Results

Theorem 2 Write $X(a,b) = \{e_1x_1, e_2x_2, \dots, e_{n-1}x_{n-1}, e_nx_n\}, Y(a,b) = \{f_1y_1, f_2y_2, \dots, f_{n-1}y_{n-1}, f_ny_n\}$ for the sequences of length n, NPAF = 0, where e_i and f_i are chosen from a, b where a, b are commuting variables and x_i , y_i have elements 0, ± 1 and the sequences $X(\pm 1, \pm 1)$ and $Y(\pm 1, \pm 1)$ have NPAF = 0. Suppose a occurs a total of s_1 times and b a total of s_2 times then we say the two sequences we have are $2-NPAF(n; s_1, s_2)$.

Write $\alpha_i = b$ if $e_i = a$ and $\alpha_i = a$ if $e_i = b$ for i = 1,...,n, and similarly, $\beta_i = b$ if $f_i = a$ and $\beta_i = a$ if $f_i = b$ for i = 1,...,n.

$$X(a,b), Y^*(b,a)$$
 and $Y(a,b), X^*(-b,-a)$

where Z^* denotes the reverse of the sequence Z or

$$\{e_1x_1, e_2x_2, \cdots, e_{n-1}x_{n-1}, e_nx_n, \beta_ny_n, \beta_{n-1}y_{n-1}, \cdots, \beta_2y_2, \beta_1y_1\}$$

and

$$\{f_1y_1, f_2y_2, \dots, f_{n-1}y_{n-1}, f_ny_n, -\alpha_nx_n, -\alpha_{n-1}x_{n-1}, \dots, -\alpha_2x_2, -\alpha_1x_1\}$$

are two sequences with elements $\{0, \pm a, \pm b\}$ with NPAF = 0. These sequences are $2\text{-NPAF}(2n; 2s_1, 2s_2)$.

(ii) If x_{n-1} and y_{n-1} are both zero then the sequences

$$\{e_1x_1, e_2x_2, \cdots, \beta_ny_n, e_nx_n, \beta_{n-2}y_{n-2}, \cdots, \beta_2y_2, \beta_1y_1\}$$

and

$$\{f_1y_1, f_2y_2, \cdots, -\alpha_nx_n, f_ny_n, -\alpha_{n-2}x_{n-2}, \cdots, -\alpha_2x_2, -\alpha_1x_1\}$$

are two sequences with elements $\{0, \pm a, \pm b\}$ with NPAF = 0. These sequences are $2\text{-NPAF}(2n-2;2s_1,2s_2)$.

(iii) Similarly with 4-NPAF $(n; s_1, s_2)$, X(a, b), Y(a, b), Z(a, b) and W(a, b) we have

$$X(a,b), Y^*(b,a), Y(a,b), X^*(-b,-a), \text{ and}$$

 $Z(a,b), W^*(b,a), W(a,b), Z^*(-b,-a),$

where Z^* denotes the reverse of the sequence Z are 4- $NPAF(2n; 2s_1, 2s_2)$.

- (iv) Similarly with $4-NPAF(n; s_1, s_2)$, if the second last element of each of the four sequences is zero then proceeding as in (ii) we obtain $4-NPAF(2n-2; 2s_1, 2s_2)$.
- (v) Similarly if there are 4-NPAF $(n; s_1, s_2)$, and the second last element of two of the sequences is zero and the last element of two of the sequences is zero then combining the methods of (ii) and (iii) we can get 4-NPAF $(2n-2; 2s_1, 2s_2)$.

Proof. The proof follows by writing out the sequences and checking the NPAF.

Example. We use \bar{a} to mean -a and \bar{c} to mean -c. To illustrate part (v) of the theorem we note that

are 4-NPAF(7; 2, 16) and 4-NPAF(7; 4, 16), respectively. In fact we note

are 4-NPAF(7;1,2,16) and 4-NPAF(7;1,4,16), respectively. We also note that

are 4-NPAF(11; 2, 4, 32) and 4-NPAF(12; 2, 8, 32), respectively.

are 4-NPAF(11;4,32) and 4-NPAF(12;8,32), respectively.

Lemma 3 If there exist $2\text{-NPAF}(n; s_1, s_2)$ then there exist $4\text{-NPAF}(n + 1; 2, 2, 2s_1, 2s_2)$.

Corollary 1 Since there exist $2-NPAF(n; s_1, s_2)$ for the values listed in the table we get the corresponding larger $4-NPAF(n+1; 2, 2, 2s_1, 2s_2)$.

$2\text{-}NPAF(n;s_1,s_2)$	⇒	$4-NPAF(n+1;2,2,2s_1,2s_2)$
(9;13)		(10;2,2,26)
(11;13)		(12;2,2,26)
(14;17)		(15;2,2,34)
(18;25)		(19;2,2,50)
(4;4,4)		(5;2,2,8,8)
(6;2,8)		(7;2,2,4,16)
(6;5,5)		(7;2,2,10,10)
(8;8,8)		(9;2,2,16,16)
(10;10,10)		(11;2,2,20,20)
(14;13,13)		(15;2,2,26,26)

Corollary 2 Using the previous theorem we see that

$4-NPAF(n;s_1,s_2)$	⇒	$4\text{-}NPAF(2n;2s_1,2s_2)$
NPAF(5;1,18)		NPAF(10;2,36)
NPAF(5;1,19)		NPAF(10;2,38)
NPAF(5;2,17)		NPAF(10;4,34)
NPAF(5;2,18)		NPAF(10;4,36)
NPAF(5;3,17)		NPAF(10;6,34)
NPAF(7;3,18)		NPAF(14;6,36)
NPAF(5;4,16)		NPAF(10;8,32)
NPAF(7;4,17)		NPAF(14;8,34)
NPAF(7;4,18)		NPAF(14;8,36)

and

$4\text{-}NPAF(n;s_1,s_2)$	⇒	$4\text{-}NPAF(2n;2s_1,2s_2)$
NPAF(5;5,14)		NPAF(10;10,28)
NPAF(5;5,15)		NPAF(10;10,30)
NPAF(7;5,16)		NPAF(14;10,32)
NPAF(7;5,17)		NPAF(14;10,34)
NPAF(7;5,18)		NPAF(14;10,36)
NPAF(5;6,14)		NPAF(10;12,28)
NPAF(7;6,16)		NPAF(14;12,32)
NPAF(7;7,14)		NPAF(14;14,28)
NPAF(7;7,15)		NPAF(14;14,30)
NPAF(5;8,11)		NPAF(10;16,22)
NPAF(5;8,12)		NPAF(10;16,24)
NPAF(5;9,10)		NPAF(10;18,20)
NPAF(5;9,11)		NPAF(10;18,22)
NPAF(7;9,12)		NPAF(14;18,24)

Theorem 3 The sequences given in the Appendices can be used to construct the appropriate designs to establish that the necessary conditions for the existence of an $OD(44; s_1, s_2)$ are sufficient, except possibly for the following 12 cases which cannot be constructed from four circulant matrices:

and the following 8 cases which are undecided:

Remark. There are 484 possible 2-tuples. Table 1 lists the 397 which correspond to designs which may exist in order 44: 67 2-tuples correspond to designs eliminated by number theory (NE). For 12 cases, if the designs exist, they cannot be constructed using circulant matrices (Y). 8 cases remain undecided.

P indicates that 4-PAF sequences with length 11 exist; n indicates 4-NPAF sequences with length n exist.

References

- [1] A.V.Geramita, and J.Seberry, Orthogonal designs: Quadratic forms and Hadamard matrices (Marcel Dekker, New York-Basel, 1979).
- [2] C.Koukouvinos, M.Mitrouli, J.Seberry, and P.Karabelas, On sufficient conditions for some orthogonal designs and sequences with zero autocorrelation function, Australas. J. Combin. 13 (1996), 197-216.
- [3] C.Koukouvinos and Jennifer Seberry, New orthogonal designs and sequences with two and three variables in order 28, *Ars Combinatoria* (to appear).

s_1	s_2	n	$ s_1 $	82	n	$ s_1 $	s_2	n	s_1	s_2	n
1	1	1	$\frac{1}{1}$	22	7	- i	43	11	$\frac{1}{2}$	22	7
1	2	1	1	23	NE	2	2	1	2	23	7
1	3	1	1	24	7	2	3	2	2	24	7
1	4	2	1	25	7	2	4	2	2	25	9
1	5	2	1	26	9	2	5	3	2	26	7
1	6	3	1	27	7	2	6	2	2	27	9
1	7	NE	1	28	NE	2	7	3	2	28	8
1	8	3	1	29	9	2	8	3	2	29	9
1	9	3	1	30	11	2	9	5	2	30	NE
1	10	3	1	31	NE	2	10	3	2	31	9
1	11	3	1	32	9	2	11	5	2	32	9
1	12	4	1	33	9	2	12	5	2	33	9
1	13	5	1	34	11	2	13	5	2	34	9
1	14	5	1	35	11	2	14	NE	2	35	10
1	15	NE	1	36	11	2	15	5	2	36	10,11
1	16	5	1	37	11	2	16	5	2	37	11
1	17	5	1	38	11	2	17	5	2	38	10, 11
1	18	5	1	39	NE	2	18	5	2	39	11
1	19	5	1	40	11	2	19	7	2	40	11
1	20	7	1	41	11	2	20	6	2	41	P
1	21	7	1	42	NE	_2	21	7	_2	42	11

Table 1: The existence of $OD(44; s_1, s_2)$.

$ s_1 s_2 n$	s_1 s_2 n	$\begin{bmatrix} s_1 & s_2 & n \end{bmatrix}$	s_1 s_2 n
$\frac{31}{3} \frac{32}{3} \frac{3}{2}$	$\frac{3}{3}$ 41 11	$\frac{51}{5} \frac{52}{5} \frac{3}{3}$	$\frac{31}{6} \frac{32}{9} \frac{1}{5}$
3 4 3	4 4 2	5 6 3	6 10 NE
3 5 NE	4 5 3	5 7 3	6 11 5
3 6 3	4 6 3	5 8 5	6 12 5
3 7 3	4 7 NE	5 9 5	6 13 7
3 8 3	4 8 3	5 10 5	6 14 5
3 9 3	4 9 5	5 11 NE	6 15 7
3 10 5	4 10 5	5 12 NE	6 16 7
3 11 5	4 11 5	5 13 5	6 17 7
3 12 5	4 12 5	5 14 5	6 18 7
3 13 NE	4 13 5	5 15 5	6 19 7
3 14 5	4 14 5	5 16 7	6 20 7
3 15 5	4 15 NE	5 17 7	6 21 7
3 16 7	4 16 5	5 18 7	6 22 7
3 17 5	4 17 7	5 19 NE	6 23 9
3 18 7	4 18 7	5 20 7	6 24 8
3 19 7	4 19 7	5 21 7	6 25 9
3 20 NE	4 20 7	5 22 9	6 26 <i>NE</i>
3 21 NE	4 21 7	5 23 7	6 27 9
3 22 7	4 22 7	5 24 9	6 28 9
3 23 7	4 23 NE	5 25 9	6 29 P
3 24 7	4 24 7	5 26 9	6 30 9
3 25 7	$4 \ 25 \ 9$	5 27 NE	6 31 10
3 26 9	4 26 8	5 28 9	6 32 10
3 27 9	4 27 9	5 29 9	6 33 P, 20
3 28 9	4 28 <i>NE</i>	5 30 10	6 34 10
3 29 NE	4 29 9	5 31 9	6 35 P
3 30 9	4 30 9	5 32 10	6 36 11
3 31 10	4 31 <i>NE</i>	5 33 10	6 37 Y
3 32 9	4 32 9	5 34	6 38 11
3 33 9	4 33 10	5 35 NE	7 7 4
3 34 10	4 34 10	5 36 11	7 8 6
3 35 11	4 35 11	5 37 P	7 9 NE
3 36 11	4 36 10,11	5 38 Y	7 10 5
3 37 NE	4 37 P	5 39 11	7 11 7
3 38 11	4 38 11	6 6 3	7 12 7
3 39 11	4 39 NE	6 7 5	7 13 5
3 40 NE	4 40 11	6 8 5	7 14 7

Table 1 (cont): The existence of $OD(44; s_1, s_2)$.

Table 1(Cont): The existence of $OD(44; s_1, s_2)$.

10	91	13	NE	50	ΙΙ		I' <i>d</i>	32	6	8	22	8
	12	13	6	61	II	3	NE	31	6	6	7.7	8
6	ÞΙ	13	6	8I	Π		50	30	6	<u>L</u>	50	8
	13	13	L 2	ΔI	II		d	53	6	6	61	8
II	32	12	NE	91	Π	3	NE	82	6		81	8
, X	31	12	1 4	12	11		6	72	6	4	LI	8
P, 13	30	12	4	ÞΙ	II		6	56	6	2	91	8
NE	53	12	NE	13	п		6	22	6		12	8
10	82	12	<u>L</u>	12	11		6	24	6	NE	ÞΙ	8
50	72	12	9	Π	π	2	NE	53	6		13	8
ď	56	12	II	₽£	10		6	77	6	3	12	8
ď	25	12	X	33	10		6	7.1	6	2	11	8
6	5₫	12	11	32	10		6	50	6	2	10	8
NE	23	12	d	18	10		7	6I	6	5	6	8
6	55	12	10	30	OI		2	8I	6	2	8	8
NE	21	12	d	53	10		L	17	6	II	32	L
NE	50	12	10	82	οτ		7	91	6	NE	36	2
6	6 I	12	d	72	10	3	NE	12	6	ď	35	2
8	81	12	6	97	10		7	ÞΙ	6	ď	34	7
6	21	12	6	52	10	İ	9	13	6	NE	33	7
<u></u>	91	12	NE	5₫	10		2	12	6		32	L
NE	12	12	6	23	10		ç	11	6	10	31	2
7	ÞΙ	12	NE	22	10		ç	10	6	d	30	7
NE	13	12	6	21	10		2	6	6	6	50	7
7	12	12	8	50	10		II	36	8	NE	82	7
ď	23	Π	d	61	10	1	X	32	8	6	22	2
ď	32	11		81	10		Π	34	8	6	56	7
ď	31	Π	NE	17	10		ď	33	8	NE	52	4
ļ	30	11		91	10		10	32	8	6	5₫	2
NE	53	Π		12	10			31	8	6	23	2
ď	82	Π	1	ÞΙ	10	3	NE	30	8	6	55	7
ď	22	П	2	13	10		ď	53	8		51	L
ď	97	11		12	10		6	28	8	6	50	L
6	52	11	4	11	10		ď	27	8	8	61	7
6	₽4	11	g	10	10		6	56	8		81	7
6	23	11	ď	35	6		6	52	8	NE	71	L
6	55	11	ď	34	6		6	24	8	NE	91	L
NE	21	11	50_	33	6_		6	23	8	<u></u>	91	<u></u>
u	z_S	Is	u	83	lg	1	u	r_{S}	Ιg	u	s_{s}	lg

Table 1(Cont): The existence of OD(44; s_1, s_2).

II	22	55	6	8I	18	8	91	91	6	55	νī
ď	23	51	ď	72	LI	d	53	12	6	ΣI	νī
\boldsymbol{X}	55	51	d	97	LI	X	82	12	6	50	ÞΙ
II	21	ΣI	ď	22	LI	b , 20	22	12	6	61	ÞΙ
II	54	50	<i>d</i>	₽7	41	}	56	12	NE	8I	ÞΙ
X	23	50	NE	23	LI	NE	25	12	d	LI	₽Ţ
ΙΙ	55	50	d	55	LI	ď	54	12	8	91	ÞΙ
ď	ΣI	50	ď	7.1	4 I	ď	23	12	ď	91	ÞΙ
10	50	50	II	50	4 I	d	77	12		ÞΙ	ÞΙ
ď	52	61	6	61	4 T	6	51	31	d	31	13
X	54	6I	6	8I	71	NE	50	31	A	30	13
d	53	6I	6	LI	41	6	6I	31		50	13
ď	55	61	NE	82	91	6	8I	31	d	28	13
ИE	21	61	X	72	91	NE	LI	12	NE	22	13
ИE	50	6T	11	56	91	ME	91	12	ď	56	13
ď	6I	6I.	ď	52	91	6	12	12	ď	52	13
ď	56	8I	10	5₫	91	ď	30	ÞΙ	ď	5₫	13
ď	52	8I	NE	23	91	X	58	ÞΙ	6	23	13
11	δ4	8I	10	55	91	P, 12	82	ÞΙ	ď	22	13
ď	53	8I	II	71	91	ď	72	ÞΙ	6	71	13
10	55	8I	6	50	91	10	56	ÞΙ	6	50	13
ď	21	8I	NE	6 T	91	ď	22	ÞΙ	NE	61	13
10	50	8I	6	8I	91	ď	54	ÞΙ	6	81	13
d	61	<u>81</u>	6	<u> </u>	91_	d	23	VI	6	LI	13
u	ટક	Ig	l u	$s_{\mathbf{S}}$	lg	u	ટ્ટ	lg	u	25	Ig

Appendix A: Order 40 (Sequences with zero non-periodic autocorrelation function)

Design					A_1 ,	A_2									A_3 ,	A_4				
(2, 2, 18, 18)	$\frac{d}{d}$	c c	a	-c -c	d d	c -c	-с с	c -c	-c	-c	c c	-d -d	b b	d d	-c -c	d -d	-d d	d -d	d -d	-d
(2, 2, 34)	c c	c	c c	-c -c	-c -c	c c	-c -c	-c c	a -a	с -с	c c	c c	c c	0	c c	-c -c	c c	-c c	ь -ь	c -c
(2, 4, 16, 18)	d	c	a	-c -c	-d	ь	-c c	-d	-u c	d	d	c	d	-c	d	-с b	-c	d	-с	-c -d
(0.10.10.10)	d	с	а	-c	-d	-b	-c	d	-c	-d	d	<i>c</i>	d	-c	d	-b	с	-d	с	d
(2, 10, 10, 18)	d d	-c -c	a a	c c	-d $-d$	-b	d -d	-c c	−d d	-c c	b b	-d -d	b b	d d	c c	d $-d$	ь -ь	d -d	-b b	-d
(2, 12, 22)	ь ь	c c	c c	0 0	c c	-c c	ь -ь	а -а	-b b	c -c	ь ь	c c	-c -c	0 0	-c -c	-с с	ь -ь	c -c	ь -ь	-c c
(4, 4, 16, 16)	a a	d d	c c	d d	-c -c	a -a	-d d	-c c	-d d	с -с	<i>b</i> <i>b</i>	c c	-d -d	c c	d d	ь -ь	-c c	d -d	-c c	-d d
(4, 6, 12, 18)	ь ь	а а	-d -d	c c	d d	d -d	a -a	-b b	-c c	-d d	d d	c c	-d -d	c c	-ь -ь	d -d	-c c	d -d	с -с	d -d
(4, 8, 8, 16)	d d	c c	a a	-c -c	d d	d -d	ь -ь	-a a	-b b	$egin{array}{c} oldsymbol{d} \ -oldsymbol{d} \end{array}$	d d	ь ь	0	ь ь	-d -d	d -d	с -с	0	с -с	-d d
(4, 10, 10, 16)	b b	c c	a a	-c -c	ь ь	ь -ь	d -d	-a a	-d d	ь -ь	b b	c c	d d	c c	-ь -ь	ь -ь	d d	-с с	d -d	-b b
(8, 8, 10, 10)	a a	c c	0	-c -c	a a	a -a	с -с	d -d	с -с	-a a	b b	d d	0 0	-d -d	b b	ь -ь	d -d	-c c	d -d	-b b
(10, 10, 10, 10)	a a	b b	b b	d d	-d -d	-b b	a -a	a -a	с -с	-c c	d d	c c	c c	-a -a	a a	-c c	d -d	d -d	-b b	ь -ь

Design						A_1 ,	A_2									Аз,	A_4					
(1, 4, 16, 16)	c c	d d	0	d d	-c -c	а 0	-c	−d d	0	−d d	-с с	c c	-d -d	b b	d d	c c	0	-c	d -d	-b b	−d d	-c
(1,9,34)	b a	-b -a	-ь -а	ь -а	ь ь	c b	- b - b	-b b	ь ь	ь -а	-b -b	b a	ь -а	b b	ь -ь	b - a	ь -ь	ь -ь	- b - b	b	-b a	-b -b
(1, 11, 32)	b a	-b a	ь -ь	b a	ь ь	с -b	-b b	-b b	-b -b	ь -ь	- b b	a a	b a	ь -а	-b -a	- b	<i>b</i> <i>b</i>	-b -a	b a	ь -а	ь ь	b b
(1, 17, 26)	а а	a a	a b	-a a	a b	с -b	-a -b	а а	-a -b	-a b	-a -b	ь ь	ь ь	ь ь	b a	ь ь	-b -b	ь -ь	ь ь	-b b	а -b	-b -a
(1, 18, 25)	a a	a a	а -b	-a a	а -b	с -b	-a b	a b	-a -b	-a b	-a b	a a	a -a	ь -ь	-b -b	ь -ь	a b	-b -b	-b b	-b -b	ь -ь	ь ь
(1,30)	ь ь	<i>b</i> 0	0 0	a b	0 <i>b</i>	-b b	- <i>b</i> 0	0 <i>b</i>	0	0 0	0 0	b b	-b b	-ь -ь	0 -b	-b b	ь -ь	-b b	ь -ь	ь -ь	-b -b	b b
(1,34)	ь ь	-b b	b b	<i>b</i> 0	<i>b</i> 0	a 0	-b -b	-b b	- b 0	<i>b</i> О	-b b	ь ь	ь -ь	0 <i>b</i>	ь ь	0 <i>b</i>	0 -b	ь -ь	b b	-b b	0 -b	-b b
(1, 35)	ь ь	- <i>b</i> 0	b b	<i>b</i> 0	<i>b</i> О	a 0	- <i>b</i> 0	- <i>b</i> 0	-b b	b b	-b b	ь ь	ь -ь	b b	ь -ь	- b - b	ь -ь	0 <i>b</i>	-b b	ь -ь	0 -b	-b b
(1, 37)	ь ь	-ь ь	<i>ь</i> 0	ь -ь	ь ь	a b	- <i>b</i> 0	-b b	-b b	ь ь	- <i>b</i> 0	b	ь -ь	0 <i>b</i>	-b b	<i>b</i> 0	ь -ь	-ь -ь	ь -ь	-ь ь	-b -b	0 <i>b</i>
(1,38)	b	b b	ь ь	<i>ь</i> 0	ь ь	а 0	-b b	- <i>b</i> 0	- b - b	b b	-b b	ь ь	- b b	ь -ь	0 -b	- b	-b b	-b -b	0 <i>b</i>	ь -ь	-b -b	ь -ь
(1,40)	b b	-b b	b b	b b	b b	a 0	-b -b	-b b	-ь -ь	b b	-b b	b b	ь -ь	0	ь -ь	ь -ь	-b b	-b b	ь ь	b b	-b -b	-b b

Design						A_1 ,	A_2									A_3 ,	A_4					
(1,41)	<i>b</i>	-b b	<i>b</i> 0	-b	b b	а -b	-b b	-b b	-b b	b b	-b b	b b	-b b	b b	b	-b -b	-b b	b	ь -ь	0 <i>b</i>	-b -b	-b
(2, 2, 4, 36)	ь ь	a a	a a	а а	-a -a	a a	a -a	- a a	-d	a -a	-a a	ь ь	-a -a	-a -a	-a -a	а а	-a -a	-a a	-a a	-c c	a - a	a -a
(2, 2, 8, 32)	a a	d -d	с -с	-d d	d -d	-d d	d - d	-d d	-d d	с -с	d -d	b b	d -d	с -с	-d d	d -d	d -d	d -d	d -d	d -d	-c c	-d d
(2, 2, 20, 20)	-a -a	a a	a a	а а	ь ь	а а	ь ь	-b -b	-b -b	ь ь	с -с	b b	-b -b	-b -b	-b -b	a a	-b -b	а а	-a -a	-a -a	a a	d -d
(2, 6, 12, 16)	d d	0 0	ь ь	0 0	d d	-c -c	d -d	с -с	a -a	-c c	-d d	d d	0 0	-d -d	0 0	ь ь	-c -c	ь -ь	с -с	-d d	c -c	d -d
(2, 8, 16, 16)	b	d d	c c	-c -c	-d -d	ь ь	d -d	-c c	0 0	-c c	d -d	ь ь	-d -d	-c -c	-c -c	-d -d	-b -b	-d d	с -с	а -а	-c c	d - d
(2, 37)	ь ь	ь -ь	b b	0 -b	a b	0 <i>b</i>	-b -a	- b - b	ь -ь	-b b	ь ь	ь ь	ь ь	ь ь	0 <i>b</i>	ь -ь	0 0	- b	ь -ь	ь -ь	ь ь	− b − b
(2, 39)	ь ь	b b	-b b	-b -b	0 0	- b b	a -a	ь -ь	-b -b	ь ь	ь -ь	ь ь	ь ь	ь ь	ь -ь	ь -ь	0 <i>b</i>	ь ь	- b - b	ь ь	-b -b	b - b
(3, 35)	<i>b</i> <i>b</i>	0 0	b b	ь -ь	0 0	a a	-b b	ь -ь	ь -ь	-b b	0 0	ь ь	ь ь	b b	ь ь	ь -ь	-a -b	-b b	-b b	ь -ь	-b b	ь -ь
(3, 36)	b b	b b	-b b	b b	0	-a a	ь -ь	ь ь	ь -ь	-b b	0 0	b b	-b -b	- b - b	- b	-b b	0 a	ь ь	- b - b	-b b	ь ь	ь -ь

Design						A_1 ,	A_2									A_3 ,	A_4					
(3, 38)	b b	-b	-b -b	-b -b	-a	a b	0 b	b b	ь -ь	ь -ь	-b b	b b	-b b	-b b	-b -b	-b b	0 -b	<i>a</i> 0	-b -b	-b -b	-b	-b b
(3, 39)	b b	-b b	ь -ь	b a	ь ь	a b	- b - b	- <i>b</i> 0	-b -b	ь ь	ь -ь	ь ь	−b −b	-b b	0 <i>b</i>	-b -b	-b b	-b b	a b	ь ь	-b b	ь -ь
(3,41)	b b	ь -ь	ь -ь	ь ь	ь -ь	а -b	-b -b	-ь -ь	ь -ь	-b a	ь ь	b b	a b	-b b	ь -ь	-b -b	ь ь	-b b	-b b	ь -ь	ь ь	-b -b
(4, 35)	b b	0 0	а а	- <i>b</i> 0	a -a	ь -ь	-b b	ь ь	ь ь	-b b	-b b	b b	− <i>b</i> − <i>b</i>	ь -ь	ь -ь	ь ь	0 <i>b</i>	ь -ь	0 <i>b</i>	ь -ь	-b b	-b b
(4, 36)	b b	0 0	a a	ь -ь	-ь -ь	-b -b	-b b	ь -ь	-b b	-b -b	-b -b	b b	ь ь	b a	0 -b	-a b	-ь -ь	b b	-b b	ь -ь	ь b	ь -ь
(4, 38)	b b	b b	ь ь	-b -b	ь ь	ь ь	-b a	0 -b	а -b	-b b	ь -ь	b b	-b -b	b a	b	а -b	-b b	-b -b	ь -ь	ь -ь	-b b	ь -ь
(5, 36)	b b	-b -b	-b b	ь -ь	a a	0 -a	a -a	ь ь	ь ь	b b	-b b	b b	-b b	ь ь	b	ь -ь	а -b	-a b	<i>b</i> <i>b</i>	ь -ь	ь ь	-b -b
(5, 39)	b b	ь -ь	b b	a b	а -b	-b b	- b	-b -a	ь -ь	-b -b	ь ь	a a	-b -b	-b -b	-b -b	b b	− b − b	-b b	ь -ь	-b b	-b b	ь -ь
(6, 36)	a a	b b	ь ь	ь ь	-b -b	b b	ь -ь	ь -ь	a -a	-b b	-b b	a a	-b -b	-b -b	-b -b	b b	-b -b	-b b	ь -ь	`0 0	-b b	ь -ь
(6, 38)	a a	b b	ь ь	ь ь	-b -b	b b	ь -ь	ь -ь	a -a	-b b	-b b	a a	-b -b	-ь -ь	-b -b	-b -b	-a -a	ь -ь	-b b	0	-b b	ь -ь

Design						A_1	A_2											A_3	A_4			
(2,41)	a	-b b	-b b	- b	-b -b	ь b	-b	b	-b	ь -ь	-b	b b	ь -ь	ь -ь	-b b	ь -ь	b b	ь -ь	-b b	b b	-b -b	- <i>b</i>
(4, 37)	a a	а -а	− b − b	-b -b	ь -ь	-b -b	ь -ь	- b - b	ь -ь	ь ь	0 0	ь ь	ь ь	ь -ь	-b b	ь -ь	-b -b	-b b	ь ь	-b -b	-b -b	- <i>b</i> 0
(5, 37)	a b	-b b	-b b	-b b	ь -ь	ь -ь	-ь -ь	ь -а	b a	а а	0 -b	b	-b b	ь -ь	ь ь	ь -ь	ь ь	ь -ь	-b b	ь ь	ь -ь	0 -b
(6, 29)	ь ь	0 -b	0 <i>b</i>	ь -ь	ь -ь	0 -b	b b	-a b	0 0	0 0	0 a	b b	- <i>b</i> 0	ь ь	ь ь	ь ь	ь -ь	-b -b	- b b	ь -ь	а а	-a a
(6, 33)	<i>b</i> <i>b</i>	ь ь	-b а	ь -ь	ь -ь	ь ь	-a -b	-b b	-b b	0 0	0 0	b b	-b -b	ь ь	ь ь	<i>b</i> О	ь -ь	ь -ь	-b b	ь -ь	-a -a	a -a
(6, 35)	а а	а b	b b	ь ь	-b b	ь -ь	-b b	- b	-b b	-b b	- <i>b</i> 0	a b	-b -b	-b b	ь -ь	ь -а	-b а	ь ь	b b	- b - b	ь -ь	0 0
(7, 30)	ь ь	ь ь	b b	ь -а	0 -b	0 - <i>b</i>	-b b	ь -ь	ь -ь	-a 0	0 0	b b	ь ь	-b -b	<i>b</i> 0	а -b	0 <i>b</i>	-b b	ь -ь	-b b	а а	-a a
(7,34)	a b	a a	ь -а	b b	-b b	-b -b	ь ь	-b а	-b b	-b b	0 0	a a	-b -b	b - b	-b -b	b b	- b	-b b	b b	ь -ь	-b b	- <i>b</i> 0
(7, 35)	a a	a b	ь ь	ь -ь	- b	ь ь	-ь -ь	-b b	-b b	-b b	- <i>b</i> 0	a a	-b -а	-b -b	ь ь	b b	ь -ь	b a	- b - b	-b b	ь -ь	0 <i>b</i>
(7, 37)	ь ь	ь -ь	b b	b b	-a -a	-b a	-a a	-b b	-b b	ь -ь	-b b	b b	-b -b	-b b	-b b	a b	ь -ь	-b a	- b - b	-b -b	b b	-b b

Design						A_1	A_2											A_3	A_4			
(8, 27)	ь ь	b b	-b -b	0 <i>b</i>	-b	-b b	-b -b	-a	0 -a	0 -a	0 a	b b	b b	-b -b	-b b	-b b	-b b	b b	-a 0	0 a	-a	-a 0
(8, 29)	ь ь	- b b	<i>b</i> 0	ь -а	0 -b	-b -a	-b b	ь -ь	- b - b	-a 0	-a 0	b b	- b b	<i>b</i> 0	ь -а	ь -ь	b a	ь -ь	-ь ь	ь ь	-a 0	а 0
(8, 33)	a b	а -b	-b -b	-b a	ь ь	b a	b b	ь -ь	ь -ь	ь -ь	0 0	b b	-a b	ь ь	a b	-a b	ь -ь	-b b	ь -ь	ь ь	а b	0 - <i>b</i>
(9, 32)	а а	а -b	-b b	ь -ь	ь -ь	-b -b	ь -ь	ь - b	b a	ь ь	0 0	a b	ь ь	-b b	-a -b	а -b	ь -ь	-a b	−b b	-a b	ь -ь	- <i>b</i> 0
(10, 31)	a a	a b	ь -ь	-b b	ь -ь	b a	-b -b	-b b	-b b	b b	0 - <i>b</i>	b a	-b a	ь ь	a -a	b a	ь -а	ь ь	b b	ь -ь	- b - b	0 0
(11, 27)	b b	b b	ь ь	-b -b	ь -ь	ь -ь	-b b	ь -ь	0 -b	-a 0	0 -a	a b	a b	-a b	а -b	b a	ь -а	-b -a	<i>ь</i> 0	-b b	0 0	a a
(11, 28)	b	ь ь	ь ь	0 -a	0 a	-b -b	ь ь	ь -ь	-a a	-a a	а а	b b	-b -b	ь -ь	-b b	а 0	ь -ь	-b b	-b b	-b b	-a 0	а 0
(11,31)	b	-b -b	ь -ь	-a a	0 -a	-b -b	-b b	ь ь	b b	a -a	а а	b b	-b -b	ь -ь	-b -b	а -b	ь -ь	-b b	-b -b	− <i>b</i> − <i>b</i>	а 0	a -a
(12, 25)	b a	<i>ь</i> 0	-b a	b a	ь ь	-b b	-b b	-a b	0 <i>b</i>	0 <i>b</i>	a -a	b b	ь ь	ь -ь	- <i>b</i> 0	ь -ь	- b	-a b	a -a	0 0	-a 0	-a -a
(12, 26)	b b	b b	ь ь	-ь -ь	ь -ь	ь -ь	-b b	-a -a	-a -a	-a a	a -a	b b	-b -b	ь ь	ь ь	ь -ь	0 0	ь ь	a a	0 0	0 0	a -a

Design						A_1	A_2											A_3	A_4			
(12, 27)	ь ь	b b	-b -b	0 6	ь -ь	-b b	-b -b	-a -a	0 -a	0 -a	-a a	 b b	b b	-b -b	b b	b b	b b	b b	a	0	0 0	-a -a
(12, 30)	ь ь	ь -ь	ь ь	b a	-b a	-b b	ь -ь	0 <i>b</i>	- b b	-a -a	-a a	ь ь	ь ь	-b b	a b	-a b	ь -ь	-b -b	<i>b</i> 0	-b b	-a -a	-a a
(13, 22)	a a	- <i>b</i> 0	-b b	b a	0 <i>b</i>	-b b	- <i>b</i> 0	-a b	- b - b	0 -b	а 0	a a	0 -a	-b -b	а 0	-b -b	ь ь	-a -a	-b b	a -a	ь -ь	0 0
(13, 24)	a b	0 <i>b</i>	0 <i>b</i>	ь -ь	-b a	ь -а	-a	0 a	-a -a	-a 0	-a -a	ь ь	ь ь	ь ь	-b -b	ь -ь	ь -ь	-b b	ь -ь	a -a	а 0	0 0
(13, 25)	ь ь	0 <i>b</i>	-a -b	-a -b	ь -ь	-a 0	-b b	-ь -ь	-а b	0 a	a -a	b b	a b	ь -ь	ь ь	-a -b	ь -ь	0 -a	b b	-a -b	0 0	а -а
(13, 26)	b b	ь ь	ь ь	- b - b	ь -ь	ь -ь	-b b	-a -a	0 a	-a -a	0 -a	ь ь	-b -b	ь ь	ь ь	ь -ь	0 0	ь b	а 0	a -a	a -a	-a a
(13, 28)	a a	а -b	- b - b	-b -b	ь ь	b - b	b a	-b b	ь -ь	b b	0 0	b a	-a a	-b -a	-a a	ь -а	ь -а	ь -ь	-b -b	ь -ь	-b $-a$	0 -b
(13, 31)	a a	a b	a b	ь ь	-b -b	b a	ь -ь	-b b	-b b	− <i>b</i> − <i>b</i>	-b b	b a	b a	ь -а	-b a	ь -а	ь -а	ь -ь	-b a	ь -а	-b -b	-b -b
(14, 15)	a a	а b	a b	ь ь	-b b	0 a	0 0	0 0	0 <i>b</i>	-b -b	0 0	а а	-b a	0 -a	0 a	ь -а	0 -a	0 -b	0 a	-b -а	0 -b	0 -b
(14, 17)	a a	а 0	а 0	-b b	-b b	0 a	0 <i>b</i>	0 -b	0 0	0 <i>b</i>	0 0	b b	a -a	-b -a	-b a	ь -а	-b a	0 a	-b b	ь -а	b a	0

Design_						A_1	A_2												A_3	A_4			
(14, 23)	a a	a -a	0 0	-a	b b	b b	- <i>b</i> 0	-b b	ь -ь	−b b	- <i>b</i> 0	_	a a	a a	-a -a	-a	0 <i>b</i>	-b b	ь -ь	0 0	-b	b b	b b
(14,24)	b b	0 0	b b	-a a	-b -b	-a 0	ь -ь	ь -ь	-b b	a a	-а а		ь ь	-a -a	ь ь	а а	ь ь	а 0	-b b	-b b	ь -ь	0 0	-a a
(14, 25)	b a	-а b	<i>b</i> О	<i>b</i> 0	0 -b	a b	ь -ь	-b b	-b b	-а а	a a		ь ь	ь ь	-b a	- b b	-b -a	ь ь	<i>b</i> 0	- <i>b</i> 0	ь -а	-a a	-a -a
(14, 27)	b b	-b -b	ь -ь	ь -ь	ь -ь	-b b	-b b	ь -ь	-b b	-a -a	0 a		ь ь	a a	0 <i>b</i>	а -а	a b	a b	ь ь	ь -ь	-a 0	a -a	-a -a
(14, 28)	ь ь	-ь -ь	ь -ь	-b b	-b -b	- b - b	ь -ь	а а	0 0	a a	a -a		ь ь	-b -b	-b -b	ь -ь	ь -ь	ь ь	ь -ь	-a -a	a a	a a	a -a
(14, 30)	a a	а -b	a b	ь -ь	b b	-b a	-b -b	ь -ь	-b b	-b b	$-b \atop b$		a a	-b a	ь -а	b a	ь -а	ь -а	ь -ь	-b a	ь -а	-b -b	ь -ь
(15, 22)	ь ь	ь -ь	-b b	-a a	-b b	-a	-a -a	0 -a	0 -a	a a	-a -a		b b	- b	- b b	ь -ь	ь ь	b b	ь -ь	-a 0	a a	а 0	0 0
(15, 23)	a a	-a a	a -a	a -a	0 <i>b</i>	-b b	ь -ь	0 a	ь -ь	b b	ь ь		a a	0 a	а 0	-a a	-b -b	-b -b	<i>b</i> О	ь -ь	-b b	ь -ь	<i>b</i> О
(15, 24)	ь ь	b b	ь ь	- b - b	ь -ь	ь -ь	-b b	ь -ь	a a	0 -a	$a \\ -a$		a b	a b	a b	-a -b	- <i>b</i> 0	-b -a	<i>ь</i> 0	-b $-a$	0 a	а а	0 -a
(15, 27)	b a	ь -а	ь -а	$-b \\ 0$	-a b	a b	-a -b	-a b	ь ь	0 a	-a a		b b	ь ь	ь ь	- b - b	ь -ь	ь -ь	-b b	ь -ь	-b a	a -a	а а

Design						A_1	A_2												A_3	A_4			
(15, 29)	a	a	a	-ь	-b	-b	ь	-b	Ь	b	ь	-	ı –	a	b	-b	-b	-b	b	- b	-a	-b	-b
	а	а	b	b	-b	Ь	-b	-b	ь	-b	-b	Ć	ı –	a	a	-b	-a	а	b	-a	-a	-b	-b
(17, 21)	b	-a	-b	b	b	-a	-b	-a	0	-a	0	l)	b	ь	-b	b	-b	a	0	a	-a	-a
	a	- b	ь	- b	- b	-b	- b	-a	0	-a	0	· ·	-	a	-b	-a	-b	а	b	-a	а	а	0
(17, 22)	a	-a	b	-a	b	b	0	-b	b	b	-a	(-	0	b	-a	b	- b	-a	b	0	- b	a
	а	a	b	0	b	b	а	b	-b	-b	0	(ì	а	Ь	а	Ь	-b	-a	-b	а	b	- a
(17, 24)	a	0	a	-a	-b	-b	b	-b	а	a	-a	ŧ)	b	ь	-b	b	b	-b	b	a	0	-a
	ь	b	ь	-ь	a	-a	-a	a	0	a	a	· ·)	ь	b	-b	-b	b	b	-b	-a	-a	-a
(17, 25)	b	b	- b	ь	b	- b	- b	-a	-a	-a	a	- (b	ь	-b	b	-b	-a	-a	a	-a	-a
	a	ь	-b	ь	b	ь	ь	0	-a	a	а		þ	ь	- b	а	-b	b	b	-a	а	-a	0
(18, 19)	b	- b	- b	a	a	a	a	-a	0	0	0		b	b	b	-b	-b	b	-b	-a	-a	а	a
	ь	-ь	-b	-a	а	-a	-a	0	0	0	-a		þ	b	b	-а	ь	-ь	ь	а	-a	а	0
(18,21)	b	b	-a	-ь	-b	-a	-a	a	0	a	-a	(ь	b	b	-b	b	a	-a	0	-a	0
	b	-b	ь	ь	- b	-a	-a	а	0	-a	0	•	ì	a	a	a	-a	b	-b	ь	ь	b	-b
(19, 22)	ь	-a	b	- b	-b	Ь	b	-a	-a	-a	а	(-b	- b	- b	-a	- b	-a	-a	0	-a	a
	b	0	b	-b	- b	ь	-b	-a	-a	a	а) –	-Ь	- b	- b	а	-b	a	-a	а	0	-a
(19, 23)	ь	-b	-b	-a	b	- b	- b	-a	a	-a	-a		,	b	b	-a	-a	-b	ь	a	0	a	-a
	ь	b	b	b	-b	ь	-b	-a	-a	а	а		b	b	- b	a	-a	- b	ь	- a	0	-a	-a
(20, 21)	b	-a	$-\boldsymbol{b}$	b	b	-a	-b	-a	-a	а	-a	- (b	b	b	-b	b	− <i>b</i>	a	a	а	0	-a
	a	-ь	ь	-b	- b	-ь	-b	-a	0	-a	\boldsymbol{a}) –	·a	- b	0	-b	-a	ь	a	-a	a	a