Kirkman Packing and Covering
Designs

N.C.K. Phillips and W.D. Wallis
Southern Illinois University at Carbondale

R.S. Rees
Memorial University of Newfoundland

Dedicated to Anne Penfold Street.

Abstract

Cerny, Hordk, and Wallis introduced a generalization of Kirk-
man’s Schoolgirl Problem to the case where the number of school-
girls is not a multiple of three; they require all blocks to be of size
three, except that each resolution class should contain either one
block of size two (when v = 2 mod 3) or one block of size four (when
v = 1 mod.3). We consider the problem of determining the maximum
(resp. minimum) possible number of resolution classes so that any
pair of elements (schoolgirls) is covered at most (resp. at least) once.

1 Introduction

Let X be a set of v elements. A packing (resp. covering) of X is a collection
of subsets of X (called blocks) such that any pair of distinct elements from
X occur together in at most (resp. at least) one block in the collection. A
packing or covering is called resolvable if its block set admits a partition
into parallel classes, each parallel class being a partition of the element set
X.

Suppose now that v = 3 mod 6. A Kirkman Triple System KTS (v)
is a collection T of 3-subsets of X (triples) such that any pair of distinct
elements from X occur together in exactly one triple, and such that T
admits a partition into parallel classes. Thus, a KTS (v) is both a resolvable
packing and a resolvable covering of a v-set by triples. It is well known that
a KTS (v) exists if and only if v = 3 mod 6.
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Kotzig and Rosa [7] posed the problem of determining how ‘close’ one
could come to a Kirkman Triple System when the number v of elements
satisfies v = 0 mod 6; that is, what is the maximum possible number of
parallel classes in a resolvable packing of a v-set by triples? It is easy to
see that this number cannot exceed § — 1, and a packing that achieves this
bound is called a Nearly Kirkman Triple System NKTS (v).

Theorem 1.1 [7, 3, 2, 10] There ezists an NKTS (v) if and only if v =
0 mod 6 and v > 18.

More recently, Assaf, Mendelsohn, and Stinson [1] posed the problem of
determining the minimum possible number of parallel classes in a resolvable
covering of a v-set by triples, when v = 0 mod 6. This number cannot be
less than 3.

Theorem 1.2 [1, 8] There ezists a resolvable covering of a v-set by § par-
allel classes of triples if and only if v=0 mod 6 and v > 18.

Cerny, Hordk, and Wallis [4] introduced a particular generalization of
Kirkman Triple Systems to the case where v is not a multiple of 3. They
require all blocks to be of size 3, except that each resolution class should
contain either one block of size 2 (when v = 2 mod 3) or one block of size
four (when v = 1 mod 3). Thus, we define a Kirkman Packing Design KPD
(v) (resp. Kirkman Covering Design KCD (v)) to be a resolvable packing
(resp. covering) of a v-set by the maximum (resp. minimum) possible
number of resolution classes of this type. It is not difficult to determine
upper (resp. lower) bounds on these numbers. Thus, if v = 2 mod 3 a
resolution class covers v — 1 pairs, whence a KPD (v) will contain at most
| 2] classes, while a KCD (v) will contain at least [§| classes. On the other
hand, when v = 1 mod 3 and v > 7, a resolution class covers v + 2 pairs,

and so a KPD (v) will contain at most [—'2'{:—:_21,” = | 2%53] classes, while a
KCD (v) will contain at least | 252| + 1 classes.

Following [4] we can dispense with the case v = 2 mod 3 relatively
quickly.

Theorem 1.3 For each v = 2 mod 6, there is a KPD (v) and a KCD (v)
each of which contains § resolution classes.

Proof. Delete one element from a Kirkman Triple System KTS (v + 1).
O

Theorem 1.4 For eachv =5 mod 6,v > 17, there is a KPD (v)containing

=1 resolution classes and a KCD (v)containing 5 resolution classes.
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Proof. Delete one element from a Nearly Kirkman Triple System NKTS
(v+1) to get the KPD (v). To get the KCD (v), delete one element from a
minimum resolvable covering of a (v + 1)-set by triples, from Theorem 1.2.

O

Remark. The leave (resp. excess) of each of the KPDs (resp. KCDs) in
Theorem 1.4 is a near-one-factor.

The remainder of this paper is devoted to the case v = 1 mod 3.

Suppose that we have a Kirkman Packing Design KPD (v)with | 252
resolution classes. If v = 1 mod 6, then the leave will contain v(v —1)/2 —
(v+2)(v—3)/2 = 3 edges, while if v = 4 mod 6, then the leave will contain
v(v—1)/2 = (v+2)(v—4)/2 = § + 4 edges. Following [4], we will define a
canonical Kirkman Packing Design CKPD (v)to be a KPD (v)with | %52|
resolution classes such that

(i) if v =1 mod 6, then the leave is a triangle (K3);

(it) if v =4 mod 6, then the leave consists of the vertex-disjoint union of
a K4 and 232 edges (Kas).

Thus, in a canonical KPD, the leave is a disjoint union of cliques (see
Proposition 2.1).

Lemma 1.5 [4] There exists CKPD (22 + 54k) and CKPD (25 + 66k) for
any k > 0.

Suppose now that we have a Kirkman Covering Design (KCD) (v)with
[”—;—3J + 1 resolution classes. If v = 1 mod 6, then the excess will contain
(v+1)(v—-1)/2 —v(v—1)/2 = v — 1 edges, while if v = 4 mod 6, the
excess will contain (v + 2)(v — 2)/2 — v(v — 1)/2 = 254 edges. We will
define a canonical Kirkman Covering Design CKCD (v)to be a KCD (v)with
I_”—;—aj + 1 resolution classes such that

1. if v = 1 mod 6, then the excess consists of a vertex-disjoint union of
221 triangles (K3s);

2. if v = 4 mod 6, then the excess consists of a vertex-disjoint union of
v—4

222 edges (K3s).
Thus, in a canonical KCD, the excess is a disjoint union of cliques.

Example 1.6 The following is ¢ CKCD (22).

Point Set: (Zg x {1,2}) U ({a} x 23) U {0}

Resolution Classes: develop the class 01,0242 51522 2;4:32 008,62
317100 6182a; 5272a2 mod 9 (the subscripts on a are evaluated mod 3);

301



the tenth resolution class is agajagoo 013161 114171 235181 023262 12427
22528;.

Note that the pairs at mixed difference 8 between orbits 1 and 2 are
covered twice; hence, the excess of the cover consists of 9 disjoint edges,
as required. We note for future reference that the elements ao, a3, a2, 00 of
degree zero in the excess from a block in the covering.

Example 1.7 The following is a CKCD (19).

Point Set: (29 x {1,2}) U {o0}

Resolution Classes: develop the class 0;2;0232 001,52 3:6182 5;2242
4,7:8; 126272 mod 9.

Note that the pairs at pure difference +3 in each of orbits 1 and 2 are
covered twice; hence, the excess of the cover consists of 6 disjoint triangles,
as required.

We refer the interested reader to [4] for a brief history of, and motivation
for, these designs. We are herein concerned with their construction. To this
end, we will make essential use of a type of design called a Kirkman frame,
which we define in Section 2. In Section 3, we construct packings and
coverings for v = 4 mod 6, obtaining the following main result.

Theorem 1.8 There exists a CKPD (v)and a CKCD (v)for every v =
4 mod 6 with v > 22.

Then in Section 4, we consider packings and coverings for v = 1 mod 6.
This appears to be the most challenging fibre of all; we are able to obtain
the following result.

Theorem 1.9 (i) There ezists a CKPD (v)for every v =7 mod 18 with
v> 179, and for all v =1 mod 6 with v > 3709;

(1) There ezists e CKCD (v)for every v =1 mod 6 with v > 19, except
possibly for v = 67.

We conclude this section with a simple construction for a class of non-
canonical covers.

Theorem 1.10 There is a Kirkman Covering Design KCD (v), with "T‘2
resolution classes, for every v =4 mod 6.

Proof. Take a Kirkman Triple System KTS (v — 1), and fix a point z.
Now adjoin a new point z' to the system, replacing each triple {z,a,b}
containing z by the quadruple {z’,z,a,b}. O

Note that the excess of a cover produced by Theorem 1.10 consists of
the edge zz' replicated "—'2'1 times. In the next section, we will give an
analogous result for covers with v =1 mod 6 (see Theorem 2.3).
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2 Preliminaries

A group-divisible design (GDD) is a triple (X, G, B) where X is a set of
points, G is a partition of X into groups, and B is a collection of subsets of
X (blocks) so that any pair of distinct points occur together in either one
group or exactly one block, but not both. A K-GDD of type gi'gf... gim
has t; groups of size g;,i = 1,2,...,m, and | B;| € K for every block B; € B.
A transversal design TD (k,n) is a {k}-GDD of type n*; it is well known
that a TD (k,n) is equivalent to k — 2 mutually orthogonal latin squares
of order n. A GDD (X, G, B) is called resolvable if its block set B admits
a partition into parallel classes, each parallel class being a partition of the
point set X.

Proposition 2.1 A CKPD (v)is equivalent to a resolvable {3,4}-GDD of
type 2(v=1/241 (when v = 4 mod 6), or of type 1*~33! (when v =1 mod 6),
in which each parallel class contains ezactly one block of size 4.

Proof. The leave of a CKPD is a disjoint union of cliques, which we
take as the groups of a GDD, and vice-versa. Note that in a GDD with
the given parameters the number r of parallel classes is determined by
ro(v+2)=v(v-1)/2- (3 +4) = r = %% when v = 4 mod 6, and by
T- (v+2)—'u(v—1)/2 3=>r——whenv:1mod6 O

A GDD (X,G, B) is called frame resolvable if its block set B admits a
partition into holey parallel classes, each holey parallel class being a parti-
tion of X — G; for some G; € G. A Kirkman Frame is a frame resolvable
GDD in which all the blocks have size three. It is a simple consequence of
the definition that to each group Gj; in a Kirkman frame (X, G, B) there
corresponds exactly 2|G,| holey pa.rallel classes of triples that partition
X — Gj. The groups in a Kirkman frame are often referred to as holes.
Kirkman frames were formally introduced by Stinson [11], who established
their spectrum in the case where all the holes have the same size.

Theorem 2.2 [Stinson] A Kirkman frame of type g* exists if and only if
u 2> 4,9 is even and g(u — 1) = 0 mod 3.

We now illustrate the main technique that we will be using through-
out the remainder of the paper (which is a variant of Stinson’s ‘Filling in
Holes’ construction, see [11]) by producing a class of non-canonical covers
to complement those of Theorem 1.10.

Theorem 2.3 There is a Kirkman Covering Design KCD (v), with ¥3%
resolution classes, for every v =1 mod 6.
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Proof. For v = 7, take the point set {c0,1,2,3,4,5,6}, with resolution
classes {0014, 2356}, {0025, 3164} and {0036, 1245}. Note that the excess
consists of three disjoint digons (i.e. two copies each of 14, 25, and 36.)

Now let v > 25. By Theorem 2.2, we can construct a Kirkman Frame of
type 6(*=1)/€ on the point set X = {1,2,3,4,5,6} x{j:1<j < (v—1)/6},
having holes G; = {1,2,3,4,5,6} x {j} for j = 1,2,...,(v - 1)/6. To each
hole Gj, there corresponds 3 holey parallel classes Pj1, Pj2, Pj3 of triples
that partition X —G;. Now adjoint a new point co to the frame, and for each
hole G; construct a copy of the foregoing KCD (7) on G; U {oo}; then for
eachj=1,2,...,(v-1)/6, {001j4j, 2j3j5j6j}Ule, {002j5j,3j1j6j4j}UPj2
and {003;6;,1;2;4;5;} U P;3 yield three resolution classes on X U{co}, each
of which contains exactly one quadruple, so that we get in all a covering of
X U{oo} with 3- (v —1)/6 = (v — 1)/2 such classes, as desired. Note that
the excess consists of (v — 1)/2 vertex-disjoint digons (i.e. two copies each
of 1j4j,2j5j and 3j6j, for ] =1,2,..., ('U - 1)/6)

For v = 19, take the point set (Zg x {1,2}) U {0} and develop the class
006162 512141 118242 710235 011225 813,7252 mod 9. Note that pairs at
mixed difference 2 are covered three times, whence the excess consists of
nine disjoint digons.

Finally, for v = 13, there is an edge-decomposition of the complete
graph K3 into 6 factors, each of which consists of three triangles and a
four-cycle (see [6]). We simply replace each four-cycle by a K4 on the same
set of vertices; the following KCD (13) with 6 resolution classes resuits:
{168,45T,7ED, 0239}, {14E, 358, 06D, 297T}, {159, 26 E, 8T D, 0347},
{01T, 25D, 469,378E}, {13D, 567,9T E, 0428}, {127,36T,05E,489D} 0O

Remark. We note that, with the exception of v = 13, each of the covers
constructed in Theorem 2.3 has as its excess a vertex-disjoint union of
digons (2K3s).

Theorems 1.10 and 2.3 together determine the minimum possible num-
ber of resolution classes in a KCD (v)when v =1 mod 3.

Theorem 2.4 For each v =1 mod 3, there is a KCD (v)containing | 431 |
resolution classes.

In applying the ‘Filling in Holes’ construction illustrated in the proof
of Theorem 2.3, we will require Kirkman frames in which the holes are
not necessarily all of the same size. To get these, we use the following
‘Weighting’ construction (see, e.g. Stinson [11]).

Construction 2.5 Suppose that there is a K-GDD of type gig% ...gtm

and that for each k € K there is a Kirkman frame of type h*. Then there
is a Kirkman frame of type (hg:)® (hg2)® ... (hgm)t™.
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Finally, as the ‘Filling in Holes’ construction will generally involve ad-
joining more than one infinite point to a Kirkman frame, we will require
the notion of an incomplete canonical packing (covering). Letv=w =1
or 4 mod 6. A CKPD (v)-CKPD (w) is a triple (X, Y, B) where X is a set
of v elements, Y is a subset of X of size w (Y is called the hole) and B is
a collection of subsets of X (blocks), each of size 3 or 4, such that

(i) |Y N B;| <1 for all B; € B;

(ii) any pair of distinct elements in X occur together either in Y or in at
most one block;

(iii) B admits a partition into 4(v—w) parallel classes on X, each of which
contains one block of size 4, and a further |1(w — 3)| holey parallel
classes of triples on X\Y’;

(iv) each element of X\Y is contained in exactly two blocks of size 4.

A CKCD (v)-CKCD (w) is defined similarly, changing ‘at most’ to ‘at
least’ in Condition (ii), and requiring | 3(w — 1) holey parallel classes of
triples on X\Y in Condition (iii), with the further requirement that when
v = w = 1 mod 6 the excess on X\Y consists of }(v — w) vertex-disjoint
triangles (Condition (iv) implies only that this excess be 2-regular).

Example 2.6 The following is a CKPD (34)-CKPD (10).

X
Y

(212 x {1,2}) U ({a} x Z4) U {001,003, ...006}
({a} X 24) U {001,002, e ,006}

Parallel Classes: develop the class 0120232 0013182 00251112 00361102
0047122 0058142 0069162 11410.0 1111201 52720.2 101920.3 mod 12 (the
subscripts on a are evaluated mod 4);

Holey Parallel Classes: three classes on X\Y are obtained by developing
the triples 0;1;5; and 021252 mod 12.

Note that the pairs (on X\Y) at pure difference +6 in each of orbits
1 and 2 are not covered; hence, the leave on X\Y forms a one-factor, as
desired.

Example 2.6A The following is a CKCD (34)-CKCD (10). Take X and
Y as in Example 2.6.

Parallel Classes: develop the class 01610232 0014122 0025142 0037192
0048112 00591 102 00510162 211110.0 11820.1 31720.2 5211203 mod 12
(the subscripts on a are evaluated mod 4);

Holey Parallel Classes: The pure differences used among the parallel
classes are +3 and +6 on orbits 1 and 2. Thus, we get four holey parallel
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classes of triples on X\Y by constructing on each of Z;, x {1} and Z,, x {2}
the blocks of a resolvable TD (3, 4) whose groups are aligned on differences
+3 and +6.

Since the pairs at pure difference £6 on each of orbits 1 and 2 are
covered twice, the excess on X\Y forms a one-factor, as desired.

Example 2.6B The following is a CKPD (43)-CKPD (13).

X (Zys x {1,2}) U ({a} x Zs) U {001,002, .. .,008}
Y = ({a}XZ5)U{0011°°2)'”’°°8}

Parallel Classes: develop the class 01310262 0019132 0037152 00310;22
0042142 00551102 0058112 00711172 003141132 61 12100 418201 11 11202
13;142a3 92122a4 mod 15 (the subscripts on a are evaluated mod 5);

Holey Parallel Classes: The parallel classes between them cover all pairs
at pure differences +3 and £6 on cach of orbits 1 and 2. Thus, we get five
holey parallel classes of triples on X\Y by constructing on each of Z,s x {1}
and Z,5 x {2} the blocks of a resolvable TD (3, 5) whose groups are aligned
on differences +3 and +6.

As is usual with incomplete designs, the ‘missing’ subdesign in an in-
complete packing (covering) need not exist (e.g. with reference to Example
2.6, the reader will be easily convinced that no CKPD (10) exists). We now
illustrate the more general ‘Filling in Holes’ construction with the following,.

Lemma 2.7 There ezists a CKPD (106) and a CKCD (106).

Proof. We begin with the packing design. Start with a Kirkman Frame of
type 244, which exists by Theorem 2.2. Adjoin ten (new) infinite points to
the frame; call this set of infinite points I. On each of the first three holes
of the frame together with I, construct a copy of a CKPD (34)-CKPD (10)
(Example 2.6), aligning the hole of the incomplete packing on the points
of I. On the fourth hole of the frame, together with I, construct a CKPD
(34) (see Appendix). We pair each parallel class in the CKPD (34)-CKPD
(10)s, and each of twelve of the parallel classes in the CKPD (34), with a
holey parallel class (of triples) in the frame; this yields 48 parallel classes
in our packing. The remaining 3 parallel classes are obtained, in turn, by
taking the union of a holey parallel class in each CKPD (34)-CKPD (10)
with one of the remaining three parallel classes in the CKPD (34). Finally,
the leave of this packing consists of the union of the leave of the CKPD
(34) with the leaves of cach of the incomplete packings, giving us a K4 and
51K,s spanning the 106 points, as desired. Thus, we have a CKPD (106).

For the covering design, we proceed in like fashion, adjoining ten infinite
points to a Kirkman Frame of type 24%, but filling in holes with (three
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copies of) a CKCD (34)-CKCD (10) (Example 2.6A) and a CKCD (34)
(see Appendix). Again, we get 48 parallel classes in our covering by pairing
each parallel class in the CKCD (34)-CKCD (10)s, and each of twelve of
the parallel classes in the CKCD (34), with a holey parallel class of triples
in the frame. We get 4 more parallel classes by taking, in turn, the union
of a holey parallel class in each CKCD (34)-CKCD (10) with one of the
remaining four parallel classes in the CKCD (34). Note that the excess of
this covering consists of the union of the excess of the CKCD (34) with
the excesses of each of the incomplete coverings, yielding 51 vertex-disjoint
K3s, as desired. Thus, we have a CKCD (106). O

As we have stated, the missing subdesign in an incomplete packing
(covering) need not exist. If it does, however, then one can ‘fill the hole’ in
the incomplete packing (covering) with a copy of that design, viz:

Proposition 2.8 If there is a CKPD (v)-CKPD (w) (resp. CKCD (v)-
CKCD (w)) and a CKPD (w) (resp. CKCD (w)) then there is a CKPD
(v)(resp. CKCD (v)).

We conclude the section by illustrating some applications of Proposition
2.8.

Lemma 2.9 There exists a CKPD (70) and a CKCD (70).

Proof.
We will start by constructing the following (incomplete) CKPD (70)-CKPD
(22):

X = (Z24 X {1,2})U({a} X Z3)U{°°1)°°2a"'s°°19};

Y = ({a} X Za) U {001,002, cen ,0019}.

Parallel Classes: Develop the following class mod 24 (subscripts on a
are evaluated mod 3):

71231102142 00201122 007171132 ©01212:72
16120100 0034122 00361232 0013141 182

12 172a1 004211 112 00991222 00148182
111 19202 005101 162 0010221212 001518132
001 13152 °°6191202 001151152 00152142

001715192 00181162 00193102

Holey Parallel Classes: The only pure differences on orbits 1 and 2 that
are used among the parallel classes are 4 and +8. Thus, we get 9 holey
parallel classes of triples on X\Y by constructing on each of Za4 x {1} and
Zs4 x {2} the blocks of a resolvable 3-GDD of type 6% (see [10]) whose
groups are aligned on differences +4, 8, and +12.
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(Since the pairs at pure difference 12 on each of orbits 1 and 2 are not
covered, the leave on X\Y is a one-factor, as desired.)

Now construct a copy of a CKPD (22) (Lemma 1.5) on the points of Y,
pairing off the 9 parallel classes in the CKPD (22) with the 9 holey parallel
classes in the CKPD (70)-CKPD (22), yielding a CKPD (70).

For a CKCD (70), we proceed similarly, starting with the following
(incomplete) CKCD (70)-CKCD (22):

X = (Zaax{1,2})U({a} x Zg) U {o01,002,...,0014};
Y = ({a} xZg)U{001,009,...,0014}.

Parallel Classes: Develop the following class mod 24 (subscripts on a
are evaluated mod 8):

1151 02 122 1252(1.4 00341 142 O0g 191 192
01 1210.0 231 1720.5 00414142 001031 152
1017201 201 1620.6 00591182 001115182
71 102(12 221620,7 O0g 181 92 001281 212
61 2220.3 [e o)) 171232 007111 132 001321122
002163202 008131112 0014232

Holey Parallel Classes: The only pure differences on orbits 1 and 2 that
are used among the parallel classes are +4 and +12. Thus, we get 10 holey
parallel classes of triples on X\Y by constructing on each of Z4 x {1} and
Zy4 x {2} a resolvable 3-GDD of type 64 (as in the foregoing packing case)
and then constructing one further class of triples using the pairs at pure
difference +8 in each of the two orbits.

(Since the pairs at pure difference +12 in each of orbits 1 and 2 are
covered twice, the excess is a one-factor on X\Y, as desired.)

Now construct a copy of a CKCD (22) (Example 1.6) on the points of
Y, pairing off the 10 parallel classes in the CKCD (22) with the 10 holey
parallel classes in the CKCD (70)-CKCD (22), yielding a CKCD (70). 0O

Lemma 2.10 There ezists a CKPD (v)and a CKCD (v)for v = 82 and
88.

Proof.
Construct a copy of a CKPD (22) (Lemma 1.5) or a CKCD (22) (Example
1.6) on the hole of the appropriate incomplete design, which follows.

CKPD (82)-CKPD (22):

X = (Z3o X {1,2}) U {001,002,.. .,0022},Y = {001,002,.. .,0022}
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Parallel Classes: Develop the following class mod 30:

21221 102 162 002261292 009141 152 0016291252
25142242 003 191 82 0010 18102 0017281 112
41 101142 004211 192 00115172 001371132
151 241 271 00581282 001217122 0019 161272
92122212 00691262 0013231202 002011222
00112;172 00713;52 00143132 002120, 62
00g11;18; 00156115 009207234

Holey Parallel Classes: The pure differences that are used on orbits 1
and 2 are +3,+6,19,+10, and +12. We now get 9 holey parallel classes
of triples on X\Y by constructing on each of Z3¢ x {1} and Z3p x {2} the
blocks of a resolvable TD (3, 10) (equivalent to two orthogonal latin squares
of order 10), whose groups are aligned on differences +3, +6, +9,+12, and
£15, one of whose parallel classes (which we take to cover pairs at difference
+10) has been removed.

(Since the pairs at pure difference +15 on each of orbits 1 and 2 are not
covered, the leave on X\Y is a one-factor, as desired.)

CKCD (82)-CKCD (22):

X = (Zap x {1,2}) U {o01,003,...,0022},Y = {00;,009,...,0022}
Parallel Classes: Develop the following class mod 30:

251 16125212 002241212 00911152 °°1641 162
2313212, 00331102 0010221202 001719192
121 18152 004151 11, 001151292 0013201232
21 171 291 005101 262 001227122 0019281 272
4272192 006261 142 00136182 002011162
00171282 00791172 0014131242 00218102
003141 182 0015211222 002201 132

Holey Parallel Classes: The pure differences that are used on orbits 1
and 2 are £3, +£6, +£9, +12, and +15. Thus, we get 10 holey parallel classes
of triples on X\Y by constructing on each of Z3o % {1} and Zgo x {2} the
blocks of a resolvable TD (3, 10), whose groups are aligned on differences
+3,+6,+9,£12, and £15.

(Since the pairs at pure difference 15 on each of orbits 1 and 2 are
covered, the excess on X\Y is a one-factor, as desired.)

CKPD (88)-CKPD (22)

X = (Zasx{1,2})U({a} x Z3) U {o01,003,...,0019};
Y = ({a} xZ3) U {00y,002,...,0019}.
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Parallel Classes: Develop the following class mod 33 (subscripts on a
are evaluated mod 3):

3015162182 01 16192 00841 162 0015111192
131322 172 002101272 00971 232 001631 102
12172262 003 191222 0010271212 0017251 122
241 151 142 004281242 001161312 0018221 132
18121132 0050122 0012231292 001911112
291 14121 006261 152 0013201252 815200
2821242 007321302 001491202 3111710.1
02820.2

Holey Parallel Classes: We get 9 holey parallel classes of triples on
X\Y by developing each of the following pairs of triples mod 33:
011151,021252;0121131,0222132; and 0171171,0272172. (Since the pairs at
mixed difference 0 between orbits 1 and 2 are not covered, the leave on
X\Y is a one-factor, as desired.)

CKCD (88)-CKCD (22)

X (Z33 X {1,2})U{001,002,...,0022};
Y = {001,002,...,0022}.

Parallel Classes: Develop the following class mod 33:

41281242 132 001 19122 00323172 0015321272
251 262112 00224142 O0g 10132 0015261 282
151232292 003291 182 00102102 001716182
22101322 00431 142 00119162 0013201 122
311 11252 0055152 001271222 0019111 172
27161 121 00681 152 0013141 192 0020171212
1021231, 00713;160 0014181305 ©09130;,202
002221192

Holey Parallel Classes: The pure differences that are used on orbits
1 and 2 are +3,+6,+9,+11,+12 and +15. We now get 10 holey paral-
lel classes of triples on X\Y by constructing on each of Z33 x {1} and
Z33 x {2} the blocks of a resolvable TD (3,11) (equivalent to two orthog-
onal latin squares of order 11), whose groups are aligned on differences
+3,+6,+9,+12, and +15, one of whose parallel classes (which we take to
cover pairs at difference £11) has been removed.

(Since the pairs at mixed difference 25 between orbits 1 and 2 are covered
twice, the excess on X\Y is a one-factor, as desired.) [0
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3 Canonical Packings and Coverings for v =
4 mod 6

In this section, we prove Theorem 1.8.

Theorem 1.8 There exists a CKPD (v)and a CKCD (v)for every v =
4 mod 6 with v > 22.

Lemma 3.1 A CKPD (v)is equivalent to a CKPD (v)-CKPD (4); a CKCD
(v)-CKCD (4) is equiviaent to a CKCD (v)in which the elements of degree
zero in the excess form a block (of size 4) in the covering.

Proof.

In the first case, we identify the elements of the hole in the incomplete
packing as the elements that form the Ky in the leave of the packing; in the
second case, identify the elements of the hole in the incomplete covering as
the elements of degree zero in the excess of the covering. [

Lemma 3.2 There ezxists CKPD (v)and CKCD (v)for v = 22, 28, 34, 40,
46, 52, 58 and 64.

Proof.
For v = 22, see Lemma 1.5 and Example 1.6. Packings and coverings for
v = 28, 34,40, 46, 52, 58, and 64 are given in the Appendix. [

Remark. Each of the canonical coverings constructed in Lemma 3.2 has
the property that the elements of degree zero in the excess form a block (of
size 4) in the covering, and so by Lemma 3.1 can be considered as a CKCD
(v)-CKCD (4).

Lemma 3.3 If there is a GDD on s points with block sizes from the set
{k € Z : k > 4} and group sizes from the set {3,4,5,6,7,8,9,10}, then
there is a CKPD (6s+ 4) end a CKCD (65 + 4).

Proof.
Let the given GDD have type gi‘ g;’ ...gtm. Apply Construction 2.5 to this.
GDD, using ‘weight’ k = 6, to yield a Kirkman frame of type (6g1)* (6g2)*
..(6gm)'™. Adjoin four infinite points to the frame and apply ‘Filling in
Holes’ (see e.g., Lemma 2.7), constructing on each hole of size 6g; together
with the four infinite points a CKPD (6g; + 4)—CKPD (4) (resp. CKCD
(6g; + 4)—CKCD (4)) aligning the hole in the incomplete packing (resp.
covering) on the four infinite points; on the last hole of size 69, together
with the four infinite points construct a CKPD (6g,, + 4) (resp. CKCD
(6gm + 4)). All the required input designs exist by Lemma 3.1, Lemma
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3.2, and the remark following Lemma 3.2. We get a CKPD (6s + 4) (resp.
CKCD (6s + 4)), as desired. [0

Theorem 3.4 There exists CKPD (v)and CKCD (v)for every v = 4 mod 6
with v > 70.

Proof.

If v = 70,82,88 or 106, see Lemmas 2.7, 2.9 and 2.10. For v = 136 or
160, proceed as follows. Apply Construction 2.5, using ‘weight’ h = 4, to
a 4-GDD of type 69! (or of type 6°9!, see[10)) to yield a Kirkman frame
of type 24%36! (or of type 24°36'). Adjoin four infinite points to the frame
and apply ‘Filling in Holes,’ constructing on each hole of size 24 together
with the four infinite points a CKPD (28)—CKPD (4) (resp. CKCD (28)-
CKCD (4)) and on the hole of size 36 together with the four infinite points
a CKPD (40) (resp. CKCD (40)). For v = 112 or 130, proceed similarly,
starting with a Kirkman frame of type 18% or 187 (both of which exist by
Theorem 2.2) and adjoining four infinite points, filling in the relevant 22
point designs.

Now let v = 76 or v > 94,v # 106,112,130,136 or 160. Write v =
6s+4. Then s = 12 or s > 15,s ¢ {17,18,21,22,26}. Apply Lemma
3.3 to the relevant GDD on s points, which we construct as follows. If
s € {36,37,38,39,46,47} delete the appropriate number of points from a
group in either a TD (5,8) or TD (6, 8). If s > 32 and s # 36, 37, 38, 39, 46
or 47, we can write s = 4n+m wheren > 7 is odd and 4 < m < n (e.g.
let m = s mod 8 + 4 and n = (s — m)/4). Take a TD (5,n) with a parallel
class of blocks and truncate a group to m points. By viewing the resulting
parallel class of blocks on the truncated TD as groups, we have produced a
{4,5,m,n}-GDD of type 4"~™5™ on 4(n —m) + 5m = s points, as desired.
Finally, if s < 31 construct the appropriate GDD according to the following
table.

8 GDD Source

12 4 — GDD of type 3% TD (4,3)

15 4 — GDD of type 3° TD (4,4)

16 4 — GDD of type 44 TD (4,4)

19,20 | {4,5} — GDD of type 431,45 TD (5,4)
23,24,25 | {4,5} — GDD of type 5'3!,5%4!,5% | TD (5,5)
27,28,29, | {4,5} — GDD of type 3%r!, resolvable 4-GDD
30,31 r=3,4,5,6,7 of type 38[9)

This completes the proof. O

Theorem 1.8 now follows from Lemma 3.2 and Theorem 3.4.

We conclude this section by considering packings and coverings for v <
22. It is easy to see that no CKPD (10) can exist, and with some case
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analysis, it can be shown that no CKPD (16) exists. There is, however,
a (non-canonical) Kirkman Packing Design KPD (16) with 6 resolution
classes, as follows (its leave consists of the disjoint union of a 4-cycle and
an 8-cycle, on the elements 5,6,. .., 16):

1256 13910 141314 231516 241112 3478
31113 2713 289 1811 1715 11216
4915 4516 3612 4610 3514 21014
71012 61114 51015 51213 6916 5911
81416 81215 71116 7914 81013 61315

A Maximum KPD (16)

With respect to coverings, a CKCD (10) does not exist; at time of
writing we do not know whether or not there is a CKCD (16). That there
are non-canonical coverings of every order v = 4 mod 6 with the minimum
possible number (v — 2)/2 of resolution classes follows from Theorem 1.10.

Theorem 1.8 and the foregoing KPD (16) together give us the follow-
ing analogue to Theorem 2.4 concerning the maximum possible number of
resolution classes in a KPD (v)when v = 4 mod 6.

Theorem 3.5 There is a KPD (v)containing -‘%‘- resolution classes for

every v = 4 mod 6 with v > 16.

4 Canonical Packings and Coverings for v =
1 mod 6

In this section, we prove Theorem 1.9.

Theorem 1.9

(i) There exists a CKPD (v)for every v =7 mod 18 with v > 79, and for
all v =1 mod 6 with v > 3709.

(i) There exists a CKCD (v)for every v = 1 mod 6 with v > 19, except
possibly for v = 67.

We make essential use of the following incomplete canonical packing.
Lemma 4.1 There is a« CKPD (25)-CKPD (7).

Proof.
Let

X = ((Zs xZ3) x {1,2}) U({e} x {(0,0), (0, 1), (0,2)}) U{o01, 002, 003, 004},

313



and
Y = ({a} x {(0,0),(0,1),(0,2)}) U {001, 002, 003,004}

Parallel Classes: Develop the following class mod (3, 3):

001(2,1)1(1,1)2  (0,2)1(2,0):1(0,2)2(1,2)2
002(0,1)1(0,0)2  (1,1)1(1,0)1a(0,0)
003(0,0)1(0,1)2  (2,2)2(2,1)2a0,1)
004(1’ 2)1(2:0)2 (2) 2)1(1a 0)20'(0,2)

The subscripts on a are evaluated modulo the subgroup of Z3 x Z3 generated
by (1,1).

Holey Parallel Classes: There remain two pure differences on each of
orbits 1 and 2, which between them generate 2 holey parallel classes of
tripleson X\Y. 0O

Proposition 4.2 Ifthere is a CKPD (v)-CKPD (w), then there is a CKCD
(v)-CKCD (w).

Proof.

If (X,Y,B) is a CKPD (v)-CKPD (w), then, since v = w = 1 mod 6, it
follows from the definition that any pair of distinct elements in X, not
both of which are in Y, occur in exactly one block in B. Thus, we can
label the elements of X\Y (in any way) as 1,2,...,v — w and let P =
{{1,2,3},{4,5,6},...,{v —w — 2, — w — 1,v — w}} be a holey parallel
class of triples on X\Y , whereupon (X,Y, B U P) is a CKCD (v)-CKCD
w). 0O

Corollary 4.3 There is a CKCD (25)-CKCD (7).

Proof.
Lemma 4.1 and Proposition 4.2 yield the result. O

Lemma 4.4 There ezists e CKPD (v) for every v = 7 mod 18 withv > 79,
and there ezists a CKCD (v) for every v =7 mod 18 with v > 25.

Proof.
CKCD (25) and CKCD (43) are given in the Appendix. For v = 61, apply
Proposition 2.8, constructing a CKCD (19) (Example 1.7) on the hole in
the following CKCD (61)-CKCD (19):

Point Set: (Z2; x {1,2}) U ({a} x Z3) U {00y, 003, ...,0016}.

Parallel Classes: Develop the following class mod 21 (subscripts on a
are evaluated mod 3):
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101 1715262 002181192 007121 172 001219122
012010.0 0034172 o0g 161 82 001371 132
61320.2 004 141 1, 00921 142 001491202
921620.1 00511142 0010131112 001581 102
00131 182 0051102 001151 122 0016151 152

Holey Parallel Classcs: The pure differences (on orbits 1 and 2) used
among the parallel classes are +1 and £7. We get 9 holey parallel classes of
triples on Zg; x {1,2} by taking {(34);(7+3:);(17+31);: j =1,2;0 < i < 6}
and {(37);(10 + 3:);(5 + 34); : j = 1,2;0 < i < 6} together with the seven
classes obtained by settingi = 0,1,...,6 in the following: {(32);(3+3%);(9+
3i);, (6 + 31);(1 + 34); (4 + 3i);, (12 + 34) (14 + 33) (2 + 3¢) 5, (15 + 31) ;(19 +
34);(7+31);, (18+34);(11 4 32);(5+ 34) 5, (13 + 34); (17 + 31); (20 + 3¢) 5, (16 +
31);(10 + 31);(8 + 3i); : j = 1,2}. Between them these nine classes use up
all pairs within each of orbits 1 and 2 except those pairs at difference +1.

Since the pairs at pure difference £7 are covered twice on each of orbits
1 and 2 the excess Z3; X {1,2} is a triangle-factor, as desired.

Now let v > 79. Write v = 18t+7,t > 4, and adjoin seven infinite points
to a Kirkman frame of type 18® (which exists by Theorem 2.2). Apply
‘Filling in Holes’ (see e.g., Lemma 2.7), constructing on each of ¢ — 1 of the
holes, together with the seven infinite points, either a CKPD (25)-CKPD
(7) (Lemma 4.1) or a CKCD (25)-CKCD (7) (Corollary 4.3), aligning the
hole in the incomplete design on the seven infininte points; on the last
hole of the frame together with the seven infinite points construct either a
CKPD (25) (Lemma 1.5) or a CKCD (25) (see Appendix). A CKPD (v)
or CKCD (v) results. [J

Lemma 4.5 There exists a CKCD (v) for every v =1 or 13 mod 18 with
v > 19, except possibly when v = 67.

Proof.

We begin with v = 1 mod 18. A CKCD (19) is given by Example 1.7 and
CKCD (37) and CKCD (55) are given in the Appendix. For v > 73, write
v = 18t + 1,t > 4, and adjoin one infinite point to a Kirkman frame of
type 18, constructing on each hole together with the infinite point a copy
of a CKCD (19), identifying the element of degree zero in the excess of the
cover with the infinite point; a CKCD (v) results.

Now suppose » = 13 mod 18. CKCD (31) and CKCD (49) are given
in the Appendix. For v = 85, construct a CKCD (19) on the hole in the
following CKCD (85)-CKCD (19):

Point Set: (Zaa X {1,2}) U ({a} x Z3) U {001,002, ...,0016}

315



Parallel Classes: Develop the following class mod 33 (subscripts on a
are evaluated mod 3):

].1 151212242 6131271 00312182 0010141282
91 19202 16242222 00471 142 0011 11162
291 232322 01 18200 005321 252 o012 131 102
181312202 9217201 0052172 0013301302
171251 292 101 2110,2 007311 152 001451 132
161221 52 o 281 262 00324122 00154132
81261272 002201 122 009231112 0015191 12

Holey Parallel Classes: We get 9 holey parallel classes of triples on
Z33 x {1,2} by developing each of the following pairs of triples mod 33:
011151,021252;0121131,0222132 and 0171231,0272232.

Since the pairs at pure difference +11 are covered twice on each of orbits
1 and 2 the excess on Z33 x {1,2} is a triangle-factor, as desired.

For v = 103, delete all but one point from a block in a 5-GDD of
type 4° to yield a 4,5-GDD of type 3%4'. Apply Construction 2.5, using
‘weight’ h = 6, to yield a Kirkman frame of type 18424!. Adjoin seven
infinite points and apply ‘Filling in Holes,’ constructing on each hole of size
18 together with the infinite points a CKCD (25)-CKCD (7) (Corollary
4.3), aligning the hole in the incomplete covering on the infinite points, and
constructing on the hole of size 24 together with the infinite points a CKCD
(31). For v = 157, apply Construction 2.5, with h = 4, to a 4-GDD of type
6591, (see[10]) to yield a Kirkman frame of type 24336!; adjoin one infinite
point and fill in CKCD (25)s and a CKCD (37), identifying in each case
the element of degree zero in the excess of the cover with the infinite point.

Now let v = 13 mod 18 and v > 67,v # 85, 103,157. Write v = 65 + 1;
then s = 2 mod 3 and s > 20,s # 26. From (the proof of) Theorem 3.4,
there is a GDD on s points with block sizes from the set {k € Z : k > 4}
and group sizes from the set {3,4,5,6,7,8,9,10}. Apply Construction 2.5,
using ‘weight’ h = 6, and adjoin one infinite point, filling in the appropriate
CKCDs (Example 1.7, Lemma 4.4 and Appendix). A CKCD (v) results.

O

Theorem 1.9 (ii) now follows from Lemmas 4.4 and 4.5.

We now work towards establishing a bound for the existence of the
packing designs CKPD (v).

Lemma 4.6 There ezists « CKPD (6m + 7) for every m = 3 mod 11.

Proof.
This is part of Lemma 1.5 (i.e. write m=11k+3). O

Suppose now that v = 1 mod 6,v > 3709. Let s = (v — 7), and select
(the unique) m € {11k +3: 0 < & < 11} such that m = s mod 12. Let
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n = (s —m)/4; then n =0 mod 3 and n > 126 > m. Take a TD (5,n) and
truncate one of its groups to m points. On each of the remaining groups
construct a {4,7}-GDD of type 3"/3. The result is a {4,5, 7}-GDD of type
34/3m;m1, Apply Construction 2.5 to this GDD, using ‘weight’ h = 6, to
yield a Kirkman Frame of type 18%*/3(6m). Adjoin seven infinite points
to the frame and apply ‘Filling in Holes,” constructing on each hole of
size 18 together with the seven infinite points a CKPD (25)-CKPD (7)
(Lemma 4.1) and constructing on the hole of size 6m together with the
seven infinite points a CKPD (6m+7) (Lemma 4.6). The result is a CKPD
on 6(4n+m)+7 = 6s+ 7 = v elements; we have thus shown the following.

Theorem 4.7 There exists a CKPD (v)for every v = 1 mod 6 with v >
3709.

Theorem 1.9 (i) now follows from Lemma 4.4 and Theorem 4.7. The-
orem 1.9 (i) gives us the following analogue to Theorem 3.5 concerning
the maximum possible number of resolution classes in a KPD (v)when
v =1 mod 6.

Theorem 4.8 There is ¢ KPD (v)containing 3§-§ resolution classes for

every v = 7 mod 18 with v > 79 and every v =1 mod 6 with v > 3709.

Thus, those values of v = 1 mod 3 for which the existence of a CKPD
(v) remain open are v = 55,61,67,73,85, and 109, while those values of
v = 1 mod 3 for which the existence of a CKCD (v) remain open are v =
13,16 and 67.

5 Conclusion

We have learned that Colbourn and Ling [5] have considered the problem of
determining the maximum possible number of resolution classes in a KPD
(v), obtaining Theorem 3.5 as well as the following significant improvement
on Theorem 4.8:

Theorem (Colbourn and Ling) There is a KPD (v) containing ¥52 res-
olution classes for every v = 1 mod 6 with v > 13 except possibly for
v € {19,55,61,67,73,79,85,97,103,109, 121,133, 145}.

Moreover, in all of their packings, the leave is a K3, whence the foregoing
is an existence theorem for CKPDs. Now from the first part of Lemma 4.4,
we can remove the values v = 79,97 and 133 from the above list of possible
exceptions. Moreover, v = 103 is taken care of by replacing the covering
(input) designs by the analogous packing designs in the construction for
the CKCD (103) (see Lemma 4.5), and v = 121 is taken care of similarly,
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starting with a 4, 5-GDD of type 3°4!. For v = 145, apply weight 6 to a
4, 5-GDD of type 52! and adjoin 13 infinite points, filling in CKPD (43)-
CKPD (13)s (Example 2.6B) and a CKPD (25). Since a CKPD (19) does
not exist (as noted in [4] and [5]), we have therefore the following result
concerning the existence of canonical Kirkman Packing Designs of orders
v =1 mod 6.

Theorem 5.1 There is @ CKPD (v) for every v =1 mod 6 with v > 25
ezcept possibly for v = 55,61,67,73,85, and 109.
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Appendix A: v =4 mod 6

We construct the packings and coverings of orders v =4 mod 6, 28 < v <
64, referred to in Lemma 3.2. In each case, we construct the design with an
automorphism of order (v—4)/2, on the point set (Z g4 X {1,2}UI, where I
is a set of 4 extra points. For the packings, all differences are covered ezcept
pure difference (v — 4)/4 on each of orbits 1 and 2 (when v = 4 mod 12),
or any mixed difference between orbits 1 and 2 (when v = 10 mod 12);
the leave therefore consists of a K, (on the points of I) together with
(v — 4)/2 disjoint Kps, as required. For the coverings, all differences are
covered (including pure difference (v —4)/4 on each of orbits 1 and 2 when
v = 4 mod 12) and, when v = 10 mod 12, some mixed difference between
orbits 1 and 2 is covered a second time; the excess therefore consists of
(v — 4)/2 disjoint K3s, as required. Furthermore, in each covering, the
points of I form a block (of size 4) in the covering (see remark following
Lemma 3.2).

CKPD (28)
Point Set: (Z;2 x {1,2}) U {001, 002,003,004}
Parallel Classes: Develop the following class mod 12.

21611262 5;10182 ©0028;102
01133 45292 0039132
0222113 0017142 00411372

CKCD (28)
Point Set: (Z12 x {1,2}) U {001, 002,003,004}
Parallel Classes: Develop the following class mod 12.

21712252 5:11;42 0028;99
01 1131 4182102 00391112
02 1272 0016132 00410162

The 13th parallel class is 00002003004, together with (0+1);(4+1)1(8+4);
and (0+1%)2(4 +1)2(8 + )2 fori=0,1,2,3.

CKPD (34)
Point Set: (Z;5 x {1,2}) U ({a} x Z3) U {c0}.
Parallel Classes: Develop the following class mod 15.

21612272 51101122 411110.0

8162 142 71 131 102 1418202

9142 132 01 1131 52920,1
02153, 0012;11,
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(Subscripts on a are evaluated mod 3.)

CKCD (34)
Point Set: (Z5 x {1,2}) U {001, 002,003,004 }.
Parallel Classes: Develop the following class mod 15.

21612282 71 141112 00141 122
8162132 011131 00291 102
51111142 02123, 00312:4,

101 5292 004 131 72

The 16th parallel class is 00; 002003004, together with (0+1);(5+1)1(10+4),
and (0 + ¢)2(5 + 2)2(10 + 2); for i = 0,1,2,3,4.

CKPD (40)
Point Set: (Z1s x {1,2}) U ({a} x Z3) U {oo}.
Parallel Classes: Develop the following class mod 18.

211714262  3:14,15; 5,7:16;
01 131 132 02 1282 61 10100
111329, 81255, 1291120,
4172122 1191152 102142(12
00161 172

(Subscripts on a are evaluated mod 3.)

CKCD (40)
Point Set: (Z1s x {1,2}) U ({e} x Z3) U {oo}.
Parallel Classes: Develop the following class mod 18.

91171102125 4113115 0292145
12:324, 0:1;152 246749
16162162 71141132 12830,
15122172 5181101 317202
00111 52

(Subscripts on a are evaluated mod 3.) The 19th parallel class is ocoapaas,
together with (0 + 2)1(6 + 1)1(12 + i)l and (0 + ?.)2(6 + i)2(12 + )g for
1=0,1,2,3,4,5.

CKPD (46)
Point Set: (Z3; x {1,2}) U {001, 002, 003,004}
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Parallel Classes: Develop the following class mod 21.

0116192172 5113:202  18;3,8,
00119119,  2;8;18; 13,10,
0026152 71 171 152 111 141 151
0039102 121142162 22112122
00420142 41 1272 62102132

CKCD (46)
Point Set: (Z2; x {1,2}) U ({a} x Z3) U {oo}.
Parallel Classes: Develop the following class mod 21.

2014120202 19;16,5; 12;14,10,
0011 152 181 71 122 171 7222
11132ao 3151 112 131 17242
82620, 0:15,18; 10,1929,
819102 2161 141 12132162

(Subscripts on a are evaluated mod 3.) The 22nd parallel class is
00apayay, together with (0+412)1(7+14)1(14+1); and (0+1)2(7+1)2(14+14),
fori=0,1,2,3,4,5,6.

CKPD (52)
Point Set: (Z24 x {1,2}) U {001, 002, 003,004}
Parallel Classes: Develop the following class mod 24.

7121;12,15; 1;23;32 4,4511, 12,16,17,
001221192 11118102 141 172232 21 101 131
00261 222 31 9122 191 92202 132 142 182
00320182 01 151 102 51 12 162 5272212
0048162

CKCD (52)
Point Set: (Zg4 x {1, 2}) U {00y, 002, 003, 004}.
Parallel Classes: Develop the following class mod 24.

22,4719,145 19,97 23,8217 0,713,
001 121112 131111 152 5162132 141 15121
00218,0; 1718122 10132212 1624518,
0036192 11 201 202 161 122232 122252
004211 102

The 25th parallel class is 00) 002003004, together with (0+1)1(8+1)1(16+1),
and (0 + 4)2(8 + 4)2(16 + i) for i = 0,1,...,7.
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CKPD (58)

Point Set: (Z27 x {1,2}) U ({a} x Z3) U {oo}.
Parallel Classes: Develop the following class mod 27.

1719:32182 1913122,
00231162 221251202
514100 6121122
10162a1 181241262
2329202 01201242

151520, 21,16, 7,
12175115 26,111,
1415215 7215225,
13,2242 102132145
818219,

(Subscripts on a are evaluated mod 3.)

CKCD (58)

Point Set: (Za7 x {1,2}) U {c01, 002,003,004}
Parallel Classes: Develop the following class mod 27.

18,21;159, 8;16,242

00110182 23131262

00261232 14,25,19,
0031192 111127259
0047172 9,224,

13115212, 26,24, 20,

2121522,  5;15;0;
19,2023, 13218211,
17,0214 2217262
4,162102

The 28th parallel class is 001002003004, together with (0+44)1(9+14)1(18+
i) and (0 + 4)2(9 + )2(18 + 9)a for i =0,1,...,8.

CKPD (64)

Point Set: (Z3o x {1,2}) U ({a} x Z3) U {o0}.
Parallel Classes: Develop the following class mod 30.

5:24;25202 712,11,
00231212 25117122
0126100 9115192
82242a1 1414112
6195202 29,27,18,

20,13,62
18110223,
10,13220,
11,19222,
16,4212

31162152
12,26,142
22,8,21,
191,28,
3227229,
17228575

(Subscripts on a are evaluated mod 3.)

CKCD (64)

Point Set: (Zso x {1,2}) U ({a} x Z3) U {0}
Parallel Classes: Develop the following class mod 30.

8124,8:23; 1126118,
00121202 19121152
14110100 0111142
11525204 71131169
17,7202 22,23,24,
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20,28;92
5126232

27121929
1511527,
4,22214,

3:28202
29,5269
9:21,6,
16,18,25,
192102139
125295172



(Subscripts on ¢ are evaluated mod 3.)
The 31th parallel class is coaga; a2, together with (0+1); (10+4); (20+13),
and (0 + 2)2(10 + £)2(20 + %) for i = 0,1,.

Appendix B: v=1 mod 6

We construct the coverings of orders v = 1 mod 6, 25 < v < 55, referred to
by Lemmas 4.4 and 4.5. Covers of order v = 7 mod 12 are constructed with
an automorphism of order (v —1)/2 on the point set (Z v=1 X {1,2}) U {oo};
in each case pairs at pure difference £(v — 1)/6 in each of orbits 1 and 2
are covered twice, creating the desired excess of (v — 1)/3 vertex-disjoint
triangles. On the other hand, covers of order v = 1 mod 12 are constructed
with an automorphism of order (v—1)/3 on the point set (Zs;2 x{1,2,3})U
{oo}, the excess in each case is created by repeating some mlxed difference
d(i,7) between orbits 7 and j, for (4,5) = (1,2),(2,3), and (1,3), where
d(1,2) +d(2,3) =d(1,3) mod (v - 1)/3.

CKCD (25)

Point Set: (Zg x {1,2,3}) U {oo}.

Parallel Classes: Develop each of the following two classes mod 8 (the
first base class generates a short orbit of four parallel classes).

02420343 000141 21410263 006223
112232 516272 and 015232 227313
122333 526373 715303 316133
132131 536171 517242 1;1243

(Note that pairs at mixed differences 2 (between orbits 1 and 2), 4 (between
orbits 2 and 3), and 6 (between orbits 1 and 3) are covered twice; hence,
the excess consists of 8 disjoint triangles, as desired.)

CKCD (31)
Point Set: (Z,s x {1,2}) U {oo}.
Parallel Classes: Develop the following class mod 15.

311319232 1418212 10181112

004122 1116242 7112161

0112272 115202 512191
102132142

(Note that pairs at pure difference £5 in each of orbits 1 and 2 are covered
twice; hence, the excess consists of 10 disjoint triangles, as desired.)

CKCD (37)
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Point Set: (Z12 x {1,2,3}) U {co}.
Parallel Classes: Develop each of the following two classes mod 12 (the
first base class generates a short orbit of six parallel classes).

026420363
112933
4,3,23
213:5;
124259
134353

000,6,
718293
10,9283
8,911,
72102112
73103113

3:10:3263
9711562
712303
211028,
5233103
014113

and

0022113
810283
11,9243
611253
517293
114273

(Note that pairs at mixed differences 2 (between orbits 1 and 2), 3 (between
orbits 2 and 3), and 5 (between orbits 1 and 3) are covered twice; hence,
the excess consists of 12 disjoint triangles, as desired.)

CKCD (43)

Point Set: (Z2; X {1, 2}) U {00}
Parallel Classes: Develop the following class mod 21.

20,5;12;19, 825292 9,6217,
00191132 131 161142 31171202
18,14,2, 01422, 1;12;7;
7115181 11;16902 6941152
1821153, 10,1021,

(Note that pairs at pure difference £7 are covered twice on each of orbits
1 and 2; hence, the excess consists of 14 disjoint triangles, as desired.)

CKCD (49)

Point Set: (Z16 x {1,2,3}) U {o0}.

Parallel Classes: Develop each of the following two classes mod 16 (the
first base class generates a short orbit of eight parallel classes).

02820383 00,8, 9;12:45133 0015273
1,233 9,10,113 5110215 11153113
4,6272 12,142,152 2112292 6162123
426373 122143153 and 4182132 13111283
436,72 12314,15, 3215313 0114233
315110, 11,13;2, 2214393 1515243
32529, 11213214 10,14,65 817223
235393 10313313 711,03 3102103

(Note that pairs at mixed differences 14 (between orbits 1 and 2), 12 (be-
tween orbits 2 and 3), and 10 (between orbits 1 and 3) are covered twice;
hence, the excess consists of 16 disjoint triangles, as desired.)
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CKCD (55)
Point Set: (Za7 x {1,2}) U {o0}.
Parallel Classes: Develop the following class mod 27.

9:20,12192 8;14;17;  21,10,16,
00231212 71 191241 22172122
2,16,25, 02112202  13,6,62
15:22924; 52829, 011,32
11,2717, 41152252  3;5:18;
2614523, 12,132,262, 10,18,14,

(Note that the pairs at pure difference +9 are covered twice on each of
orbits 1 and 2; hence, the excess consists of 18 disjoint triangles.)
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