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ABSTRACT. Let M be a finite dimensional commutative nilpo-
tent algebra over a field K of prime characteristic p. It has
been conjectured that dimM > p dimM®) where M is the
subalgebra of M generated by z*, z € M, [2]. This was proved
(by Eggert) in the case dimM‘) < 2 in 1971. This result was
extended to the noncommutative case in 1994 [8]. Not only is
this conjecture important in its own right but it was shown (by
Eggert) that a proof of the above conjecture would result in a
complete classification of the group of units of finite commuta-
tive ring of characteristic p, with an identity. In this short paper
we obtain a proof of Eggert’s conjecture in case dimM® = 3.

Introduction

An algebra M is said to be nilpotent if M™ = 0 for some integer n > 1.
(Recall that if j > 1 is an integer, then M7 is the subalgebra of M generated
by all monomials of degree j in the elements of M.) If n is the least integer
such that M™ = 0, then it is called the nilpotency index of M. Since M
is a K-algebra it is of course a K-vector space, and the additive quotients
M?3 /M1 inherit a vector space structure from M. We use the notation
d; to stand for dimy(M7/M7*1). We note that, since M is nilpotent, if
M7 $ 0, then, M7+1 is a proper subalgebra of M7 and so d; # 0. Moreover
dimM = Y771 dj.

Suppose X is an algebra generating set for M. We denote by N;(X)
the set of monomials of degree j in the elements of X and let M;(X) =
N;(X)\ M7+!, Where there is no possibility of confusion, we will write M;
for M;(X) and unless explicitly stated we work with the same generating
set X.
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It will be convenient to consider the following relation on the elements
of M;. We will say that o1, 02 € M are similar if

Ko, + Mt = Koo + Mit1,

It is easy to see that this defines an equivalence relation on M; and we will
use use the notation o, ~ o3 to denote that o, and o2 are similar in this
context.

Suppose N C M. By < N > we mean the linear span (over K) of N in
M. If N is a singleton, N = {z}, say, we write Kz instead of < N >.

Finally, we recall that a field, K, of characteristic p is called perfect if
the map z — zP is an automorphism of K. This says that every element
of K has a pth root in K.

Results

Our theorem will follow from a series of lemmas on the structure of nilpotent
algebras. As none of these results appear in the literature, we will give
complete proofs. To avoid repetition, throughout Lemmas 1-7 we will
assume that M is a finite dimensional commutative nilpotent algebra over
a field K, of prime characteristic, p, and that X is an algebra generating
set for M.

Lemma 1. Suppose di = dim(M*/M*+1) =1 for some k > 1. If M*+1 3£

O then there exists an z € X such that M* =< g¥ zkt1 zkt2 . > In
particular, d; <1 for every j > k.

Proof;: Since d;, =1,
M* = Kz}, ...zl + M5+
for some z,z} in X, 2 < i < k. If we write m' = zo23. .. zx, then

M= MM Com'M + M*2CaM* + M*2C Kz?m/+ M*+2, (1)

Choose i maximal, 1 < i < k such that M* is of the form M k= Kzim+
M*+1 and m = z1z5...%,_; a product of k — i elements of X. If i # k,
equation (1) yields

MM = Kritlm 4 M*+2,

By hypothesis M*t! £ 0, so zt*'m = z**1zy25...2k_i € M1 and be-
cause m is not an empty product ritlzizy.. . zk—i—1 € Mi. But di =1,
so M* = Kotz 2o . .. zk—i—1 + M**!, contradicting the maximality of i.
It follows that i = k and M* = Kz 4 M*+1,

Now using equation (1) we see by induction that M*+ = Kzk+i 4
M*+3+1 for all § > 0 and hence M*+J =< g*+J gk+i+1 > Inparticular,
Mk =< z* zF+1, ... > and d; <1 for all I > k. This proves the lemma. D
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Lemma 2. If di = dim(M*/M*+!) =2 for some k > 2, then dy,; < 2.

Proof: By hypothesis, there exist elements zm; = zzy...z, ymy =
YYy2 ... Yk € Mj such that

M* = Kzm, + Kymg + M*H! 2
Hence

Mk+1 =M'°M(;zm1M+ym2M+Mk+2 gxM"+yMk+Mk+2
C Kz?’m, + Kzym; + Kzyma + Ky?*mg + M52, (3)

If £ = y we see from (3) that
M**1 C Kz?my + Ky?my + M*+2, (4)

Thus di4+1 < 2.

Suppose there exists ¥ € Mg-; such that zyy € Mi,;. Sincek —1 >
1, there exists zyyp € M. But then by substituting Kzyyo + M*+1 for
Kzmy + M**1 or Kymg+ M**! in (2) we would again have z = y so that
diy1 £ 2.

It follows that we need only consider the case where for every v € Mk_1,
zyy € M**2, In this case (3) becomes

ME+1 c Kx2m1 + Ky2m2 +Mk+2

so that again di4; < 2, proving the lemma. (n}

Lemma 3. Suppose that | > j are positive integers, and that o, y € M;
satisfy a ~ . Let § € M,_j, then if either of, or 48 is in M; then aff ~ 8
(in M;.)

Proof: The proof is an immediate consequence of the definition of the
relation ~. O

Lemma 4. Let j and k be positive integers with k < j—1. Supposez € X
and all monomisls of the form z*a, a € M;_; form a single equivalence
class in M;. Then all elements of the form z*ay € Mjy1, 01 € Mjtp1-
also form a single equivalence class in M.

Proof: Suppose that z*a;, z¥6; € M;41 with o1, 81 € Mj,1_. Since
k < j—1, it follows that j+1—k > 2. Hence a; and f; have factorisations
a1 =rog, P1 = sPs such that zFay, z*6; € M;.

Since j — k > 1 we can further factorise a; and B, and obtain ay = tag
B2 = uf3 for some t, u € M. (If j — k = 1 we take az and B to be the
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empty word in X.) Now z*az ~ z*B, and so z*tas ~ zFuf3. By Lemma 3
since @), € Mj4, we have

zhay = zFtagr ~ z*ufar.

In particular we see that z*Bsr € M; and z*raz € M, and so it follows
again by Lemma 3, that

z*B) = z*sPsu ~ z*ragu ~ rrpau.

Then putting the above two relations together we get that z¥a; ~ z*8;
as required. |

Lemma 5. Suppose that dy = dxy1 = 2 for some k > 2, and there
exist elements zxy...Tk, TY2...Yx € My for which Mk = Kzzy .. .2k +
Kzys...yx + M*+1. Then there exists y € X \ {z} such that M7 =<
z3, gitl 23 t2 | I ly aiy 29ty .. > for every j > k.

Proof: In view of (2) and (4) it suffices to show that
MEIMA =< gF 4 MR gFly 4 MRS
If M* = Kza+ Kz + M**! then arguing as in (2) we see that
M = K220 4+ K228 + M*+2,

If k = 2 then d3 = 2 and so z2 ¢ M3 and therefore is in M; and we can
replace za + M3 or =8+ M3 with z? + M® and have a basis for M?/M3
of the required type.

We may assume therefore that k > 3.Then a and g are elements of Mk,
and k — 1 > 2. We now show that

MEIM*H =< gF 1y 4 MR gl MR > (5)

To this end, as in Lemma 1, select a basis zy; + M*+!, 29y + M**+! for
MP¥/M¥+1 with j as large as possible. Then because diy1 = 2, 271y +
MF+2 23+2, 4 M*+2 form a basis for M¥+1/M*+2,1f j < k—1, Lemma 4
implies there exist linearly independent elements z7+!y+M*+! and z7+1 4+
M*t1 in M*/M**! contradicting the maximality of j. It follows that
j =k —1 and we have established (5).

Since di41 = 2, it follows that z*y+ M*+2 and z*u + M*+2 are linearly
independent elements of M**1/M**2 and so zF ¢ M**1. Tt follows that
z* € M, and so we can replace one of the basis elements of M*/M*+1
above with z* + M**! to produce a basis of the required form. This proves
the lemma. (]
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In Lemma 5 we looked at the case where di = di41 = 2 and where two
distinct equivalence classes of ~ in M contained elements with a common
factor - namely . We now analyse the case where this does not occur. We
will restrict our attention only to those cases required for the proof of our
main theorem.

Lemma 6. Suppose that M is a nilpotent algebra and that X = {z,y, 2}
is an algebra generating set for M. Suppose that for k > 2 that dy =
di+1 = 2. Suppose further that no class of M contains elements of the
form z'y™z*—™~! with at least two of I, m, k —m — positive. Then one
of the elements of X, z say, will satisfy the conditions z* € M**! and
zMFk C Mk+2,

Proof: Under the conditions of the lemma ( and since dj = 2 ) we may
assume without loss of generality that

M* = Ky* + K25 + M*+!

Again it is easy to see from (2), (3), (4), and the hypothesis of the lemma
that
MEFY = Ky* 1 KRt g Mk,

Also zM* C M**2, Note that the argument here depends crucially on the
fact that k > 2. Now since z*¥ € M* it follows that

F=Mf+vF+m
for some A and vy € K and some m € M*+1, Multiplying by y gives
zky = AyF T 4+ 7z"y +my

But since k£ > 2 all the above elements apart from y**! are contained in
M*+2_ 1t follows that A = 0. A similar argument using multiplication by 2
gives that oy = 0. But then z*¥ € M**! and the lemma is proved. u]

There remains one further case to consider. This is the case where M
is generated by the set X = {z,y,2}, k > 2, di = dr41 = 2 and My is
partitioned into two equivalence classes by ~, one consisting of exactly one
monomial say y*, the second containing an element of the form z*z*—* with
i 21 and k — ¢ > 1. We now prove our final lemma.

Lemma 7. Suppose that M satisfies the conditions above, then for every
l > k such that d; = 2, z*2'~% ~ 292'~7 forevery i, j 0 < i,j <l In
particular z! and 2* will always lie in the same equivalence class of M;
Proof: If z'+125~% and z'2*—*! are both in M*+2 then we would not have
di+1 = 2. Without loss of generality we may assume that z+125~% € Myy;.
Then clearly z*t1z¥—i-1 € M, and so

gitl h—i=1 i k—i
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But then from Lemma 3 we see that

FiHL k=t | g k—itl

and so £~ 1zF—i+1 € M. Hence '~ 125~*~! ~ z'2*~* and again by Lemma
3 we have that ' ~12%~% ~ ztzF~i+1, We have therefore that

i lk—i+1 | pi k=i pitl k—i=1
and that ) ] ] )
ztzk—:+1 ~ zt-l-lzk—t ~ zt—lzk—£+2
The lemma. follow by induction. a

We now have all the necessary facts gathered to prove our main theorem.
The proof follows from the seven lemmas above and a number of basic facts
from linear algebra.

Let M be a nilpotent algebra over a field of prime characteristic and let
M) denote the subalgebra of M generated by zP, z € M. We now prove
the main result of this paper:

Theorem. Let M be a finite dimensional commutative nilpotent algebra
over a perfect field of prime characteristic p, If dimM (P) = 3, then dimM >
pdimM®) = 3p.

Proof: Let us assume the theorem is false and let M be a counterexample
of least dimension. Then clearly M3 = 0. Let zP,3P and 2P be a set
of linearly independent elements of M(®) and consider the subalgebra A
generated by z, ¥ and 2. Then since dimA®) = 3, it follows from the
minimality of our counterexample that A = M and X = {z,y,2} is an
algebra generating set for M.

Now M3P = 0. We consider separately the cases M?P # 0 and M?P = 0.

Suppose first that M2P 0. We now show that this forces M?P+! = 0.
For if not, then it follows from Lemmas 1 and 2 that d,—; = 1. (If dp—1 > 2
then dimM > 2(p—1)+p+2 = 3p a contradiction.) But then since M? # 0
by Lemma 1 relabelling if necessary, MP~! =< z,i < i < n > where n is
an integer greater than 2p + 1. In particular z? # 0 and z2 € M®), The
nilpotency of M gives immediately that =P and z?P are linearly independent
in M®) and so since dimM(P) = 3 we may assume (relabelling if necessary)
that M(P) is generated as a subspace by zP,z??, and y*. Thus again using
minimality, we may assume that X = {z,y} generates M. Now yzP~2 €
MP-! henceyzP~2 = Y1 _, Aia*. Hence (y— X1, Niz* PH?)zP~2 =0.
Put yo =y — Y,y A& P12 then f = 3® — A7_2P — A2Pz?P. Again it
is clear that y%, zP,z?P generate M(P). Moreover yozP~2 = 0. Arguing as
above, z and yo will generate M. Let y = yo. But then y?» € M P-ly =0
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which is a contradiction. We have now established that if M2P % 0 then
M2+l =

Let this be the case. Then another easy counting argument using Lem-
mas 1 and 2 shows that d, = 1, and so MP =< 27,5 > p >. Asin
the previous paragraph we can choose y with yzP~! = 0. But then since
y*~lz € MP = MzP~! we have that y*z = 0. Then if y? = z;?:,, izt
on multiplying by z we obtain the relation 0 = 27 _\z¢+1, As the z*
are linearly independent,( since M is nilpotent), we have )\; = 0, for
p <4< 2p— 1. But then yP = A\p,z?? a contradiction. It follows therefore
that M? = 0.

Assume now that M% = 0. Then in particular d; = 3 for otherwise
zP, yP and 2P would be linearly dependent mod M?2?, and therefore (since
M?P = 0) linearly dependent over K; impossible. Let k > 2 be the least
integer for which di < 3. (Note that 2 < k < p — 1 as otherwise counting
dimensions would give that dimM > 3+ 3(p —2) + 3 = 3p) If p = 2 then
dimM = dy + dimM? > 3 + 3 = 6 = 3p. It follows that p > 3.

By Lemma 2, since £ < p — 1 we have that dp < 2.If d, = 1, then
since MP*! 3 0 we have from Lemma 1 that MP =< zf,p < i < n >
with n < 2p. Now yzP~! € MP and so yzP~! = iep Niz*. Similarly
2zP~1 =P iz, Hence

n n
(y- Z)\g&;"”*l)z”‘l =(z - Zmzi"’+1)z"l =0.

If we put yo =y — 3°0 \iz*P*! and 29 = z - >p #iz* Pt then arguing
exactly as in the second paragraph zg, yo and 2z will generate M. Let
y =yo and z = zo. Then from the above we have that yz?~! = 2zP~1 = 0,

Now zP~!z € MzP~! and so 2Pz = 0. Similarly 4Pz = 0. Now 2P =
> iep Aiz* and so on multiplying this equation across by z and using the
fact that 2Pz = 0 we have that 0 = 3_7 M\;z*+1. But then 2P = \,z". A
similar argument shows that y? = p,z". But then y? and z? would be
linearly independent- a contradiction. It follows therefore that d, = 2.
Since k < p ~ 1 it follows from Lemma 2 that d,_; = 2.

Suppose now that
MP ! =< za+ MP,z8+ MP >

where o, 8 € Mp_3. Then by Lemma 5 we have that MP~! =< z7, 231y j >
p—1 >.Suppose 2" # 0,z"*! =0 and 2™y #£ 0, ™1y = 0. Now

n m
2zP2 = Z Azt — Z wiz'y.
i=p—-1 i=p—2
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Hence n m
(z— Y Azt Pt - Y miatPy)aP? =0
i=p—1 t=p—2

Put zo =z — (Cip_ M P4+ 30 o i~ P+2y). Then as above X =
{z,y, 20} generates M. Let z = 2. Then z?~! € MP~! and so 2 = 0 which
gives yet another contradiction.

It remains finally to consider the case where no two distinct equivalence
classes of M, contain elements with common factors. Suppose first that

no element of M} has two distinct factors. By Lemma 6 we have say that
z* € M*+1 and zM* C M*+2, But then

2 € TPRMRHL C MR,

Thus M*+1+2(P—k) = pf2p—k+1 £ 0, But then since d; >3, 1<i< k-1
andd; =2fork<i<pandd; >1forp+1<i<2p—k+1, we have that

dimM >3(k-1)+2(p—k+1)+2p—k+1-(p+1)+1=3p

a contradiction.

We finally need only consider the case where Mj consists of precisely
two distinct equivalence classes and where one of these classes consists of
a single element y* , and the other has an element of the form z*2*~* with
i>1and k—14>1. Thus

ME\ MF! =< % + MFHL gigh—i g g+l
Note that the condition on the equivalence classes here imply that
gyt e M itvj+i=k (6)

for 7 > 1 and at least one of 7 and j greater than one. By lemma 7 we must
have

it~ 1<, < (7
Now since dp, = 2 it follows from (6) and (7) that
MP\ MPT! =< P + MPHL) 2P 4 MPYT > (8)

It follows from (7) that zP ~ 2P, and s0 2P = yzP +m, m € MP*1. Let
20 = z — Az where AP = . (Note that ) exists since K is perfect.) Then
25 = 2P — yzP. Then as above X' = {z,y, 2%} generates M. Moreover
25 =m e MPtL,

We have just shown that if X satisfies the hypothesis of Lemma 7, then we
can change the generators to a new set X’ = {z, y, 20} still with the property
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that {z?,yP, 2§} is a basis for M(®), but also satisfying 2§ € MP*1, But now
X’ cannot satisfy the conditions of Lemma 7, for part of the conclusion of
that lemma is that P € M, for every t € X’ and so in partiular 2§ ¢ MP+1,

Hence the set X’ satisfies the hypothesis of either Lemma 5 or Lemma 6
and either way, as we have already seen, this gives a contradiction.

Since there are no other cases to be considered, the theorem is now
proved. (m}
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