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1 Introduction

In 1945, modern combinatorics was in its infancy. Design theory had
achieved a start with the pioneering work of Fisher and Yates, followed
by Bose. In graph theory, there was the book of Konig, and Tutte had
begun his fundamental work, but the book by Berge was still a decade in
the future. And it was in 1944-1945 that Donald Coxeter gave a graduate
course [3], at the University of Toronto, on “Configurations”.

Coxeter’s first illustration of a configuration was the Desargues Configu-
ration (see Figure 1) of two triangles (2,3,4) and (5,6,7) in perspective from
the point 1.

The lines in the figure can be listed as 126, 145, 137, 240, 349, 056, 579,
238, 089, 678, and the figure can be called a (10,10,3,3) configuration, that
is, a figure with 10 points, 10 lines, 3 lines through each point, 3 points
on each line. In general, we use the notation (v, b, , k), where v = number
of points, b = number of lines (or blocks), r = replication number of each
point, k = number of points in a block.

A configuration can also be represented as a regular graph (points in
the graph are joined if they lie on a line in the configuration). Thus the
Desargues Configuration gives a 6-regular graph on 10 points (see Figure 2).

The idea of a configuration leads to the definition of a One-Design as a
system comprising v points (or varieties), b blocks (or lines), = being the
replication number for points, &k being the number of points in a block. By
counting the number of elements in the design array in two ways, we get
the fundamental result bk = rv.
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Figure 1. The Desargues Configuration

Figure 2. Complement of the Desargues Graph
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The lines of the one-design need not be achievable in the Euclidean plane.
Thus, the design (8,8,3,3) was used as an illustration in Coxeter’s course.
It can be written down as (124), (235), (346), (457), (568), (671), (782),
(813), but can not be represented by lines in the Euclidean plane (figure 3
shows a Euclidean representation with 7 ordinary Euclidean lines together
with one curved “line”). Of course this configuration is easily representable
in the projective plane with 13 points by deleting one point and a line not
through this point to leave 8 triples and 4 pairs; the 8 triples form the
design (8,8,3,3).

3

Figure 3. The One-Design (8,8,3,3)

The graph of the (8,8,3,3) configuration is the complement of the graph
in Figure 4.
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Figure 4. Complement of the graph of (8,8,3,3)

The complete quadrilateral (4,6,3,2) is the simplest one-design in which
the numbers of points and blocks differ (see Figure 5).

339



j
2
2 .
, +
{
> 3

Figure 5. The complete quadrilateral and its graph

Another favourite configuration that appeared frequently in Coxeter’s
course was the Pappus configuration (9,9,3,3) shown in Figure 6.
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Figure 6. The Pappus Configuration
The Pappus Configuration can be listed as (123), (456), (789), (159),

(267), (348), (168), (249), (357). The complement of its graph is shown in
Figure 7. It comprises three disjoint triangles.
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Figure 7. Complement of the Pappus Graph

2 Construction of One-Designs

A well known modern combinatorics text states “One-Designs are very easy
to construct, and therefore have little interest.” [1]

Certainly, the construction of any one-design is simple. Suppose we start
from the design with parameters (v, b, r, k) where, of course, bk = rv. The
result bk = rv is a sufficient condition for the existence of the design. For
let v = dV, k = dK, where d is the g.c.d. of v and k, and where K and V
are relatively prime. Then bK = 7V, and it follows that b = mV, r = mK.
We now give a numerical example of the construction of a one-design (the
generalization is obvious).

Problem. To construct (16,24,9,6).

Step 1. V=8, K=3 (d=2).
First, construct the symmetric one-design (8,8,3,3). This is easily
done by a difference method; start from any initial triple and cycle,
modulo 8. Say we use (125) and get the other blocks as (236), (347),
(458), (561), (672), (783), (814).

Step 2. Write down these 8 blocks twice more to-give a total of 24 blocks
in a one-design with parameters (8,24,9,3).

Step 3. Replace each symbol by d symbols (here, d = 2) to give blocks of
length 6 and a design (16,24,9,6). The blocks are now (14, 12, 21, 22, 51,
52), (21,22, 31,32,61,62), (31,32,41,42,71,72), (41,42,51,52,81,82),
et cetera.
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As a second illustration, let us construct the one-design (24,16,10,15).
Hered=3,V =8, K=5. Alsom =2,

So we start from (8,8,5,5); it can be constructed by cycling the block
(12345), modulo 8. Then repeat these 8 blocks (m = 2) to give (8,16,10,5).
Finally, expand each block [the initial block becomes] 111213 212523 313233
414243 515253 to end up with (24,16,10,15).

Finally, look at the example (20,15,34). Here d = 4, V = 5, K =
1, m = 3. The initial one-design is merely (5,5,1,1) and it comprises 5
singletons (1), (2), (3), (4), (56). Repeat these 3 times to give 15 singletons
forming the design (5,15,3,1). Expand each singleton 4 times to end up
with (4y,42,13,44), where 7 = 1,2, 3,4,5, and each block appears 3 times;
this produces (20,15,3,4).

Norman Biggs, in his book on Discrete Mathematics [2], gives a proof due
to David Billington, in the journal Discrete Mathematics, that it is possible
to obtain a design without repeated blocks, in the special case that you
impose a restriction on the total number of blocks. This type of restriction
is possibly mathematically pleasing, but it is unrealistic in many practical
applications (as in the statistical design of experiments).

3 The Neumann-Praeger Designs

Although general one-designs may lack interest, as claimed in the quotation
at the beginning of Section 2, Cheryl Praeger and Peter Neumann have
recently [4] obtained interesting results on special one-designs. We shall
call one-designs in which all blocks meet in one or more points by the name
Neumann-Praeger designs. The results of Neumann and Praeger indicate
that it is certainly worthwhile to consider one-designs that satisfy additional
conditions.

First, we note that we always consider incomplete blocks in one-designs,
that is, k < v. Since bk = rv, it follows that r < . We first prove a simple
numerical lemma about Neumann-Praeger designs.

Look at any specific block of an NP design. The elements of this block
occur a total of k(r — 1) times in other blocks. If this specific block meets
all of the other b — 1 blocks, then

b—1<k(r—1),

and equality only occurs if the specific block has exactly one element in
common with each of the other blocks. It follows that

E> b—-1_ b-1 _ (b—-1) =_l:.
“r-1"7r-1 r(r-1) r
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Since k > -f-,, and % = %, we have

k>,
whence k% > v, that is, v < k2.
The Neumann-Praeger Theorem strengthens this result. We state the
theorem as follows.
Theorem. (Neumann-Praeger) If one has a one-design (v, b,, k) in which
each pair of blocks intersect in one or more varieties, then

v<k’-k+1.
In the next section, we give the simple and instructive proof of this result.

4 Proof of the Neumann-Praeger Theorem

Take a specific element a in the design. It occurs in r blocks of the design
and is absent from b — r blocks of the design.

Now let A,z be the number of blocks in the design that contain a and
z, where z is another element (this is just the number of pairs az that

appear). Clearly

> Aaz =r(k - 1),

z#a
since there are k — 1 choices for z in each of the r blocks containing a.

Now it is a piece of folklore that most combinatorial results come from

counting some objects in two different ways. We next count the number of
block pairs that contain z, subject to the restriction that one block of the
pair comes from the A,z blocks containing a, the other block of the pair
comes from the r — Mgz blocks that do not contain a. The total number of
such pairs is Y, ., Aaz(r — Aaz) and this number must be greater that or
equal to r(b—r7), since each of the r blocks must be represented for some z,
and similarly each of the b —r blocks must be represented, for some z. [For
future reference, we note that equality only occurs if each block containing
a meets each of the blocks not containing a in precisely one point; in short,
unless two blocks are identical, we can choose a in one block and not in the
other, and thus have the block intersection equal to unity.]

We thus have the inequality
(b — 1) € Aaz(r — Aaz)
=7 Jdaz— Y N,
=ri(k—1)-) A2
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Now the variance inequality, for any variable ¢ whose mean value is £,
can be applied.

Y E-2=D 2% t+ni
t

2_ o2t (>¢)?
=2t —2th+n7

=Zt2-——(zt)2 >0

——2>0.

2
Thus Y t2 > Sz;.i, in general. So

r(b—r)5r2(k-—1)—(—zviil)2

_ r2(k —1)2

=72k —
=r°(k-1) o —1

Hence b—r < r(k —1) (1 — £=1), whence

(b—r)v-1)<r(k—-1)(v—k).

But 2 = 2 and so
b—r_v—k_
r k0 *
Thus ar(v — 1) < r(k — 1)ak, whence
v—1<k(k-1),
v<k—k+1.

This is the Neumann-Praeger Theorem.

The result is sharp, since clearly v is equal to k2 — k + 1 for a finite
projective geometry.

5 Whenisv=£k>-k+17

If we have equality, then the variance inequality employed must be an
equality and so each A, is equal to its mean value, that is, A, is a fixed
number T. Then

T_E'\az_’”(k—l)_z_f
T wv-1 kK2-k k v

We have thus established that we have a balanced incomplete block de-

sign, since Aqz is a constant T. The design has parameters v, b = T,
r=Tk k,A=T.
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We now revert to the fact, previously noted, that any two blocks that are
not identical intersect in a single element. Write down the usual intersection
equations for an arbitrarily selected base block (z; = number of blocks
intersecting the base block in 7 points). Then

Ty +zx=b—-1=Tv-1=Tk*-Tk+T -1

1+ kz=k(r—1)=k(Tk -1)
It follows that

(k—=Dzx=Tk-T+1—k= (T -1)(k-1).

Thus any base block is identical with T — 1 other blocks; in short, the
BIBD (v, T, Tk, k, T) is made up of v non-identical blocks, each repeated
T times.

Thus the design is a T-multiple of the design (v,v, k, k, 1), where v =
k% — k + 1; this design is just PG(2,k —1). We state this result as a
corollary to the Neumann-Praeger Theorem: If all blocks in a 1-design
intersect, and if v achieves its upper bound of k2 — k + 1, then the design
comprises T copies of PG(2,k — 1), and so is a 2-design (a BIBD) in which
every pair occurs exactly T times.

6 The Second Neumann-Praeger Theorem

Neumann and Praeger also considered the case where any two blocks of the
1-design intersect in at least s points (s > 1). In that case, Section 4 is
easily modified to give 3,44 Aaz = r(k—1), r(b—r)s < r?(k—1) =} AZ..
The algebra then proceeds as before to produce the result

s(b—r)(v —1) <k = 1)(w - k),

s(v—1) <k(k-1),

nv_ls_k(k__l),

8
k(k—1
L HE=D)
8

v<1

Again, if equality occurs, then v =1+ ﬂ?)-, and ), is a fixed number
T= 1(”5_'—112 == %. Also, either any two blocks are identical or else they
meet in exactly s points. So we again have a BIBD, and it has parameters
'v,b=~7-;3,r=¥, k,A=T.
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The intersection equations of Section 4 now become

T T
.’L‘1+x1¢=—s£—1=;(k2—k+1)—1,

Tk
T+ kzk = k(? - 1)

So (k—1)zi = IIc-—%+1—k = (k—1)(£ —1). Hence, any block appears

8
atotal of z, +1 = %' times. This give the Generalized Neumann-Praeger

Theorem. If a 1-design is such that each block meets all other blocks in s
points (s > 1), then v < 1+ ﬂ":—ll, and the quantity v achieves its upper
bound only when the design is a %‘-multiple of the BIBD with parameters
(v,v,k, k,s), wherev =1+ ﬂ%ﬂ

7 Conclusion

The Neumann-Praeger Theorems indicate that, although 1-designs may be
too general to posess many properties, restricted classes of 1-designs can
be extremely interesting.
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