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ABSTRACT. The two color Ramsey number R(k,l) is the small-
est integer p such that for any graph G on p vertices either G
contains a K or G contains a Ki, where G denotes the com-
plement of G. A new upper bound formula is given for two
color Ramsey numbers. For example, we get R(7,9) < 1713,
R(8,10) < 6090 etc.

The problem of determining the Ramsey numbers is known to be very
difficult and so we are often satisfied with partial results, e. g. upper or
lower bounds.

An (m, n; p)-graph is a graph with order p which has no K, and no K,
as a subgraph. If p is unspecified, the graph will be called an (m, n)-graph.
The Ramsey number R(m,n) is the smallest integer p such that for any
graph with order p, either G contains a K. or G contains a K,. It is easy
to see that R(m,n) = p iff the largest (m,n)-graph has p —1 vertices. In
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this paper, we will use N(K;) (N(K;) resp.) to denote the number of K;
(K resp.) in G.

Theorem 1. For any (m,n)-graph G, the following inequalities must hold:
(s+1)N(Ks41) < N(Kg)[R(m —8,n)—1] 0<s<m-1, (1.1)

(t+1)N(Ki41) S N(K)[R(m,n—t)—1] 0<t<n-1. (1.2)
In particular for any (n,n)-graph, then

N(Kn-1)+ N(Kn_l) < N(Kn-2)+ N(?n_g). (1.3)

Proof: By the definition of Ramsey number, for any K, there are at most
R(m — s,n) — 1 vertices in G which form a K, in combination with the
K,. Otherwise there exists either a K,, or a K,, as a subgraph of G, a
contradiction. On the other hand, for any K, it contains exactly s+ 1
K,. Hence (1.1) is true.

Similarly, we can prove that (1.2) is true.

Using (1.1), (1.2) and R(2,n) = R(n,2) = n, it is easy to prove that (1.3)
is true. o

Note that (1.3) and the following facts:

{N(Kz) + N(K2)=3p(p—1)>2p= N(K1) + N(K1) ifp> R(3,3)—1=5,
N(K2)+ N(K2) < N(K1) + N(K1) if p< R(3,3)—1=5;

2 gp(p - 1)(p - 2) - gp(p — 1) > N(Ka) + N(K2) ifp> R(4,4) —1=17,

N(K3)+N(K3)= iplp~ 1)(p~2) - 3 3 ;dilp— 1 — i)
N(K3) + N(K3) £ N(K2) + N(K2) ifp< R(4,4) - 1=1T.

where {dy, dy,...,dp} is a degree sequence of G.
So, we raise a conjecture as follows:

Conjecture 2: Let n and p be natural numbers, p > R(n,n) — 1. Then
N(Kn-1)+ N(Kpn-1) > N(Kn_2) + N(Kn_2).
Now, let s =t =1{ and p = R(m,n) — 1, by Theorem 1, then

2N(K2) < N(K1)[R(m —1,n) —1], (2.1)
2N(K2) < N(K1)[R(m,n—1) —1]. (2.2)

Thus we have p(p — 1) = 2(N(K2) + N(K2)) < p[R(m — 1,n) + R(m,n —
1) - 2]. i.e. R(m,n) < R(m —1,n)+ R(m,n —1).
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Note that when R(m — 1,n), R(m,n — 1) are even, then R(m,n) <
R(m — 1,n) + R(m,n — 1) — 1. In fact, if R(m,n) is odd, clearly it is
true. If R(m,n) is even, i.e. N(K;) = N(K1) is odd, thus, by Theorem
1, 2N(K>) < N(K1)[R(m — 1,n) —1] — 1 and 2N(K?) < N(K1)[R(m,n —
1) — 1] — 1. Therefore we have p(p — 1) = 2[N(K2) + N(K2)] < p[R(m —
1,n) + R(m,n — 1) — 2] — 2, i.e. it is also true.

For the case s =t = 2, we can obtain a deeper result.

Theorem 3. Let a+ 1, b+1 and c+ 1 be upper bounds on R(m —2,n),
R(m,n —2) and R(m — 1,n) respectively. If p= R(m,n) —122c+1+
3(b—a) and m < n, then

R(m,n) < %(b + 3¢+ 5)

+%\/(b+3c+3)2 —8—4a—-4(1+c)(3¢c+b—a).

Proof: Let s =t = 2, p = R(m,n) — 1 and G be an (m,n;p)-graph
by Theorem 1, we have that 3N(K3) + 3N(K3) < aN(K32) + bN (K2).
Note that N(K3)+ N(K3) = iplp - 1)(p-2) - $ 3, di(p — 1 —d;) and
N(K2) + N(K2) = ip(p — 1), thus we have

pp-1)(p-2-2)<D (p—1-d:)(3dk+b—0a) ()

Let f(d) = (p — 1 — d)(3d + b — a). There is an unique maximum value
of f(d) at do = 1(83p — 3 — b+ a). Since G is (m,n;p)-graph and p >
2c+1+ 3(b—a), di < c < dp. Thus f(d;) < f(c). We substitute f(c) for
f(d;) in (x). Hence p(p— 1)(p—2—a) < p(p — 1 —c)(3c+b —c), and then
P—3(0+3c+3)2< (b+3c+3)2-2—a—(1+c)(8c+b—a).

This completes the proof. u]

Corollary.([1], Theorem 2.4) R(n,n) < 4R(n —2,n) +2.

Proof: Let G be an (m, n; p)-graph, where p = R(n,n) — 1. Since f(d;) <
f(do) = (3p—3+b—0)?, a=band (x), p(p—1)(p—2-a) < 15(3p—3)%p.
jie. p < 5+4a Let a = R(n —2,n) —1. Thus we have R(n,n) <
4R(n —2,n)+ 2. 0
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134|566 7] 8 9 10
m

3 (6] 9|14 18|23 28 | 36 | 43
4 18|25 41 | 61 | 84 | 115 | 149
5 29 216 | 316 | 442
6 165 495 | 780 | 1171
7 540 2826
) 1870

9 6625

Table 1.

Known nontrivial values and some upper bounds for R(m,n)

Using Theorem 3 and Table 1 in [2], we can obtain Table 2 as follows:

T"lslel 7] 8 9 10
m
5 87 | 143
3 208
7 1031 | 1713
8 3583 | 6090
) 12715°

* Using R(m,n) < R(m —1,n)+ R(m,n —1).

Table 2. Some new upper bounds for R(m,n)
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