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1 Introduction

An m-cycle system of order n is a pair (S, C), where C is a collection of
edge disjoint m-cycles which partition the edge set of K, (the complete
undirected graph on n vertices) with vertex set S. In what follows we
will consider even-cycle systems only; i.e., m = 2k. The obvious necessary
conditions for the existence of a 2k-cycle system of order n are:

(1) nis odd, and
(2) n(n — 1)/4k is an integer.
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Example 1.1 (A 4-cycle system of order 9.)

As far as the authors are aware, whether or not these necessary condi-
tions are also sufficient remains an open problem. However, the focus of this
paper is not concerned with the spectrum problem for 2k-cycle systems, so
this is of little concern here.

Now if (S, C) is a 2k-cycle system of order n, since n is odd, C cannot
contain a parallel class of cycles (i.e., a collection of vertex disjoint 2k-cycles
whose vertices partition S). The way to get around this, of course, is with
maximum packings.

A packing of K3, with 2k-cycles is a triple (S,C, L), where C'is a collec-
tion of edge disjoint 2k-cycles which partitions E(K2n)\L, where S is the
vertex set of Ko, and L is the collection of edges not belonging to any of
the cycles in C. The number 2n is called the order of the packing (S,C, L)
and the collection of unused edges L is called the leave. If | L| is as small as
possible, that is, if |C| is as large as possible, (S,C, L) is called a mazimum
packing. A bit of reflection shows that the leave of any packing (maximum
or otherwise) of K3z, with 2k-cycles must contain at least n/2 edges, and
so the smallest possible leave is a 1-factor. In everything that follows, by a
maximum packing of Kz, with 2k-cycles we will always mean a maximum
packing (S, C, F) where F is a 1-factor.

If (S,C, F) is a maximum packing of order 2n and k divides n, then
it is possible for C to contain a parallel class of 2k-cycles. If C can be
partitioned into n — 1 parallel classes (each containing n/k 2k-cycles) then
(S,C, F) is said to be resolvable.
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Example 1.2 (A resolvable maximum packing (S, C, F) of K,
with 4-cycles.)
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The obvious necessary condition for the existence of a resolvable maxi-
mum packing of K, with 2k-cycles is: n/k is an integer. If k is even, this
necessary condition is sufficient. However, in the case where k is odd, the
spectrum problem remains unsettled. As with the existence problem for
2k-cycle systems, since we are not concerned with the spectrum problem,
not knowing the entire spectrum of resolvable 2k-cycle systems presents no
difficulty in what follows.

A partial 2k-cycle system of order n is a pair (X, P), where P is a
collection of edge disjoint 2k-cycles of the edge set of K, with vertex set X.
The difference between a partial 2k-cycle system and a (complete) 2k-cycle
system is that in a partial system the cycles do not necessarily include all
of the edges of K,,.
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Example 1.3 (A partial 4-cycle system (X, P) of order 8.)

1 3 5 2
4 2 4 7
1 5

2 6
8 4 7
P E(Kg)\E(P)

Now clearly the graph E(Kg)\E(P) CANNOT be decomposed into 4-
cycles. Therefore we can ask whether or not it is possible to embed (X, P)
in a 4-cycle system. That is, does there exist a 4-cycle system (S,C) such
that X C S and P C C? Inspection shows that the partial 4-cycle system
of order 8 in Example 1.3 is embedded in the 4-cycle system of order 9 in
Example 1.1. In general, the partial 2k-cycle system (X, P) is embedded in
the 2k-cycle system (S, C) provided X C Sand PCC.

Now Example 1.3 illustrates the easily believable fact that, in general,
a partial 2k-cycle system cannot necessarily be completed to a 2k-cycle
system. That is to say, if (X, P) is a partial 2k-cycle system of order
n, E(Kn)\E(P) cannot necessarily be decomposed into edge disjoint 2k-
cycles. Hence the problem arises of finding an algorithm which will embed
a partial 2k-cycle system in a 2k-cycle system. Additionally, we would like
the containing 2k-cycle system to be as small as possible. The best general
results to date on embedding partial 2k-cycle systems are that for fixed k
and large n, a partial 2k-cycle system of order n can be embedded in a 2k-
cycle system of order approximately kn [5]. For a history of the embedding
of partial cycle systems the interested reader is referred to [4].

The partial 2k-cycle system (X, P) is said to be embedded in the resolv-
able maximum packing (S, C, F) provided X C S and P.C C. Inspection
shows that the partial 4-cycle system of order 8 in Example 1.3 is embedded
in the resolvable maximum packing of order 12 in Example 1.2.

To date there is no work on embedding partial 2k-cycle systems into
resolvable maximum packings. This is not quite accurate, since an easy
application of Richard Wilson’s Theorem [8] shows this can be done for
“sufficiently large” n. A more accurate statement is that there are no
“small” embedding results. The object of this paper is to give a “small”



embedding, with respect to “sufficiently large”, of partial 2k-cycle systems
into resolvable maximum packings. In particular, we will give a quadratic
embedding with respect to the size of the partial system.

Additionally, we will do this so that partial parallel classes are “pre-
served”. That is, if (X, P) is a partial 2k-cycle system and 7 = {m,m,...,
ms} is any partition of P into partial parallel classes, then the contain-
ing system (S, C, F) will have the property that there is a resolution 7 =
{71, 75,...,m}, t > s, of C into parallel classes so that m Cnl,i=
1,2,3,...,s.

Example 1.4 (preserving partial parallel classes.) In Example 1.3
take m = {(1,3,2,4)}, m» = {(1,5,3,7), (2,6,4,8)}, and 73 = {(5,2,7,4)}.
Then (X, P) is embedded in the resolvable maximum packing of order 12
in Example 1.2 and inspection shows that the partial parallel classes 7, 75,
and w3 are preserved.

2 Preliminaries

We will collect together in this section the principal ingredients necessary
for the constructions in Sections 3 and 4. In what follows we will denote
the cycle

)
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by any cyclic shift of (z1,22,23,...,%m) or (z1,2m, Tm-1,...,22). We

will begin with an embedding result for partial idempotent commutative
quasigroups due to Allan Cruse [2].

A partial idempotent (z? = z) quasigroup is a partial quasigroup (P, o)
with the additional requirement that z o z is defined for every ¢ € P and
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zoz = z. In other words, the word “partial” quantifies products of the form
z oy where z # y. A partial idempotent commutative (z? = z,zy = yz)
quasigroup is a partial idempotent quasigroup (P, o) with the additional
requirement that if z o y is defined, then sois yoz and furthermore zoy =
yoz. The partial quasigroup (P, 01) is embedded in the quasigroup (@, o2)
ifand only if PC Q and z o, y = z oz y for all z, y € P for which zoyyis
defined.

Theorem 2.1 (Allan Cruse [2]) A partial z? = z, zy = yz quasigroup
of order n can be embedded in a z? = z, zy = yz quasigroup of ordert for

every ODDt > 2n+1. a

Theorem 2.2 ([1, 3]) If k is ODD, there exists a resolvable mazimum
packing of Kaxm with 2k-cycles for every positive integer m. o

We will need one more result before proceeding to the constructions in
Sections 3 and 4. The following well-known theorem is due to Dominique
Sotteau [7].

Theorem 2.3 (D. Sotteau [7]) The complete bipartite graph K, can be
partitioned into 2k-cycles if and only if (i) z and y are even; (ii) z > &,
y > k; and (iii) 2k | zy. ]

Corollary 2.4 If2k =0 (mod 4), Kzk,2x can be resolvably partitioned into
2k-cycles.

Proof: Let X be a set of size k and let (%, j) be a partition of K with
parts X x {i} and X x {j} into 2k cycles (Sotteau’s Theorem). Since
|X| = k, each 2k-cycle is a parallel class of K. Then Ko,k with parts
X x{1,2} and X x {3,4} can be partitioned into parallel classes by piecing
together the cycles in (1, 3) and 7(2, 4) and the cycles in 7(1,4) and 7(2, 3).

o

For technical reasons (Corollary 2.4 is true for 2k = 0 (mod 4) only) we
will need different constructions for 2k = 0 (mod 4) and 2k = 2 (med 4).
We will handle the easiest case 2k = 0 (mod 4) in Section 3 followed by the
more difficult case 2k = 2 (mod 4) in Section 4.

3 2k=0 (mod 4)

We will first give a construction for resolvable maximum packings of Kap,
with 2k-cycles, followed by an embedding algorithm.

The 0 (mod 4) resolvable maximum packing construction. Let
(X,C1, F1) be a resolvable maximum packing of Kax with 2k-cycles and
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(@,°) a commutative quasigroup of order 2n such that z o z = e for all
z € Q (unipotent). (This is equivalent to a 1-factorization of K, with
vertex set Q.) Set S = Q x X and define a collection C of 2k-cycles of
K4pn, with vertex set S as follows:

(1) For each @ € Q, let ({a} x X,{a} x C1,{a} x F}) be a copy of
(X, C1, F1) and place the cycles of {a} x C} in C; and

(2) for each pair a £ b € @, let m(a,b) be a resolvable partition of the
complete bipartite graph Ko sk, with parts {a} x X and {b} x X into
2k-cycles (Corollary 2.4). Place the cycles of 7(a,b) in C.

Then (S,C, F), where F = {{i} x f | f € F1,i € Q}, is a maximum
packing of Ky, with 2k-cycles. The following is a resolution of C into
parallel classes of 2k-cycles:

(a) The 2k-cycles in (1) can be pieced together to form k — 1 parallel
classes of K4ip,.

(b) For each a € @, a # e, the parallel classes in the m(x, y)s such that
Toy=yoz =a can be pieced together to form k parallel classes of
Kskn. Denote any such resolution by 7(a).

Combining the parallel classes in (a) and (b) gives a total of 2kn — 1
parallel classes of K4, (which is exactly the correct number). 0

Before plunging into an algorithm for embedding partial 2k-cycle sys~
tems in resolvable maximum packings we point out that we will NOT keep
track of the SIZE of the containing system. We will postpone this until
Section 5. There is a good reason for doing this! The algorithm is tedious
enough without worrying about bounds as we go along.

The 0 (mod 4) embedding algorithm. Let (Y, P) be a partial 2k-
cycle system (2k = 0 (mod 4)). For each cycle ¢ = (z1,22,23,..., 2261, T2k)
€ P let ¢(c) be a set of size 2 such that ¢(¢)NY = ¢ and such that the sets
t(c), all ¢ € P, are pairwise disjoint. Let Y* =Y U {t(c) | ¢ € P}. Define a
(partial) binary operation “o” on Y* as follows: (i)zoz==z,allz Y™
and (ii) if ¢ € P and t(c) = {a, b}, partition c into 2 sets of alternate edges
A and B; ie., (2i,zi41) € A if and only if (%i41,%i42) € B. If (2, w) € A,
define zow=woz=a and if (2,w) € B, define zow =wo z =b.
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Then (Y*,0) is a partial idempotent commutative quasigroup and as such
can be embedded in a (complete) idempotent commutative quasigroup
(Q*,0) by Cruse’s Theorem 2.1. Extend (Q*,0) to a quasigroup (Q =
Q* U{e}, o) defined by (i) oy =yoz,allz #y €Q", and (i) zoz =e¢
and zoe=eoz =z, all z € Q. Then (Q,0) is a unipotent commutative
quasigroup and so is equivalent to a 1-factorization of Kjq| with vertex set

Q.
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Now use (@, o) in the 0 (mod 4) resolvable maximum packing construc-
tion to obtain a resolvable maximum packing (S, C, F). If ¢ = (21, 2,3, . . -,
z2x) € P and t(c) = {a, b}, the k parallel classes in 7(a) contain the edges
belonging to em(a) = {m(zi, zi+1) | (2i, Ti+1) € c and zi02i4) = Tig10%; =
a}. A similar statement is true for m(b). It follows that each of w(a)\cm(a)
and m(b)\cm(b) partitions S\({z1, =2, ..., 22} x X) into k parallel classes.

Now define a collection ¢X of 4k? 2k-cycles with vertex set {z1,z2,...,
ok} x X as follows. For each i,j € X (i and j not necessarily distinct) place
the CyCle ((zlv i): (32, j)) (33: i)) (334, j)l (:65, i)$ (zﬁvj)v Tt (sz—l’ i)! (x2k; ]))
in ¢X. Then the edge set of cX is the same as the edge set of cm(a) U cm(b).
Further, cX contains 2k copies of the cycle c; namely ((z1,1), (2,1), (z3,7),
..., (22k,9)), all i € X. Additionally c¢X can be partitioned into 2k paral-
lel classes as follows: Let (X,e) be an idempotent quasigroup (any idem-
potent quasigroup will do) and place the cycles ((1,7),(22,7),...) and
((z1,v), (z2,5),...) in the same parallel class if and only if i e j = v es.
Denote this resolution by m(cX). Partition 7(cX) into two sets of k par-
allel classes m,(cX) and my(cX). Then each of (w(a)\cm(a)) U ma(cX) and
(m(b)\em(b)) Ums(cX) consists of k parallel classes of K4kn, each collection
containing k disjoint copies of the cycle c. Finally, if ¢; # c2 € P, the
edge sets of m(c1 X) and m(coX) are disjoint and so the above substitutions
can be done for every t(c) = {a,b}. The result is a resolvable maximum
packing (S, C*, F) with 2k-cycles containing 2k disjoint copies of the par-
tial 2k-cycle system (Y, P). o

Lemma 3.1 Let 2k =0 (mod 4). A partial 2k-cycle system can be embed-
ded in a resolvable mazimum packing with 2k-cycles which preserves partial
parallel classes.

Proof: Let (X, P) be a partial 2k-cycle system and {n,73,...,mg} a par-
tition of P into partial parallel classes. Let {a1, b1}, {az,b2},...,{aq, b} be
q disjoint 2-element sets, each disjoint from X. Modify the construction of
the partial quasigroup (Y*, o) by taking t(c) = {a;, b;} if and only if c € m;.
Since the 2k-cycles in each partial parallel class are disjoint, (Y*, o) is still
a quasigroup and the 0 (mod 4) embedding algorithm places the cycles in
m; in the same parallel class of K4kn. 0

4 2k=2 (mod 4)

The format of this section is exactly the same as Section 3. However, the
construction and embedding algorithm are slightly different, due to the fact
that Corollary 2.4 handles only the case where 2k = 0 (mod 4).

The 2 (mod 4) resolvable maximum packing construction. Let
(X, Ci, F1) be a resolvable maximum packing of K2 with 2k-cycles and
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(Q, ©) a commutative quasigroup of order 2n > 6 with holes H = {h1,hs,..
hn} of size 2. (See [6].) Let S=@Q x K, K = {1,2,3,...,k}, and define a
collection C of 2k-cycles of Kak,, with vertex set S as follows

(1) Foreach hole h € H, let (hx K, Cy(h), F1(h)) be a copy of (X, C, )
and place the cycles of C1(k) in C (there are k — 1 such 2k-cycles).

(2) Let (K, C;) be a decomposition of K into (k—1)/2 k-cycles (remem-
ber that k is odd). We can assume the cycle (1,2,3,...,k) € C;. For
each pair a, b € Q, a and b in different holes of H, place the 2k-cycle
((a 1), (b, 1), (g, 2) (8,3), (@,9), ..., (a,k = 1), (b, k), (a, k),
(b,k~1),(a,k—2),...(5,2)) in C.

@ &Q%/ib - @ | onpy
( (a,2) (6,2) )
o0 oo< >oo o0 | 0x{2
f (a,3) (6,3) )
00 o<> o0 JQx{?»}

(a,k—=1) (bk—1) *

r 3

o0 o<> o0
f X i

o0 .A 00 | Qx{k)
| (a k) (b.k) )

(3) For each cycle (z),z2,23,...,2k) # (1,2,3,...,k), and each pair
a,b € Q, a and b in different holes of H, place the 2k-cycle ((a, z,),
(b 232),(a,23), (b,24),.. ., (a,z4), (b, 21), (a, 23), (b, z3),
.y (a,zk-1), (b, zx)) in C'

(4) Let (Q,Cs,H) be a resolvable maximum packmg of Ko, with 2k-
cycles, where H is the collection of holes of the quasigroup (Q,0). (See
Theorem 2.2.) For each i € {1,2,3,...,k}\{1,k}, let (Q x {i},Cs x
{i}, H x {i}) be a copy of (@, C3, H) and place the cycles of C3 x {i}
in C.
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For each 2k-cycle (21,22, 3, ...,%2) € C3, place the TWO 2k-cycles
((31: 1)) (32: k)) (23, 1): (341 k)) (505, 1)) (36: k)) vy (3216—1) 1))) (32161 k))
and ((31, k)) (372» 1)) (223, k)r (143 1)) (£5: k)) (361 1)’ ey (z2k—l) k)!
(zzk, 1)) in C.

(z1.1) (z3,1) (z26-1,1)
I R - Ao 0n
RVANV VAL

(I do do %o - o ww ] 0xi

(z2,k) (z4, k) (z2k, k)

Then (S,C, F), where F = {h x {i} | h € H,i € K}, is a maximum
packing of Kok with 2k-cycles.

It is a bit trickier than the 0 (mod 4) case to see that (S,C,F) is
resolvable, but not much more. The following is a resolution of C into
parallel classes:

(a)

(b)

Let h = {a,b} € H and h(a) = {{z,y} | zoy=yoz =aand z
and y belong to different holes of H}; the same definition for h(b).
Each pair {z,y} € h(a) gives (k — 1)/2 parallel classes of K with
parts {z} x K and {y} x K. (These are type (2) and (3) 2k-cycles.)
Denote by h*(a) the collection of all such parallel classes. Now piece
together these parallel classes to form (k—1)/2 parallel classes wh*(a)
of S\(h x K). We can now piece together any (k—1)/2 parallel classes
of type (1) with the (k — 1)/2 parallel classes of wh*(a) to obtain
(k — 1)/2 parallel classes w(a) of K2xs. We can do this so that one
of the parallel classes of 7(a) contains all type (2) 2k-cycles. Using
the other (k — 1)/2 parallel classes of type (1) with wh*(b) gives an
additional (k — 1)/2 parallel classes 7(b) of Kakn. As with w(a), we
can do this so that one of the parallel classes of w(b) contains all of
the type (2) 2k-cycles. This gives a total of k — 1 parallel classes of
Kakn. This uses up all 2k-cycles of types (1), (2), and (3).

Each parallel class in (4) induces a parallel class in (5). Combin-
ing these two classes partitions the remaining 2k-cycles into parallel
classes.
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Combining the parallel classes in (a) and (b) partitions C into parallel
classes of Kok 1]

The 2 (mod 4) embedding algorithm. Let (Y, P) be a partial 2k-
cycle system (2k = 2 (mod 4)) of order n. Define a partial idempotent
commutative quasigroup (Y, o) as in the embedding for 2k = 0 (mod 4).
Now embed (Y*,0) in an idempotent commutative quasigroup (Q*,o) of
order km where m is odd (see Cruse’s Theorem 2.1 [2]) and take the direct
product of (@Q*, o) with a quasigroup of order 2 to obtain a commutative
quasigroup (@, o) of order 2km with holes H of size 2. Now use (Q, o) in the
resolvable maximum packing construction to obtain a resolvable maximum
packing (S,C, F). If ¢ = (z1,%3,%3,...,%2) € P and t(c) = {a, b}, we can
construct one of the parallel classes 7y of 7(a) to contain all of the type
(2) 2k-cycles defined by a, and we can construct one of the parallel classes
w3 of m(b) to contain all of the type (2) 2k-cycles defined by b. Denote
by A the type (2) 2k-cycles of m; defined by the edges (z,y) € c where
zoy=yoz = a, and by B the type (2) 2k-cycles of 7 defined by the edges
(z,w) € c where zow =woz =b. Since A and B are defined by alternate
edges of the 2k-cycle ¢ = (xy,z3,23,...,22) it follows that each of m;\A
and w2\ B partitions S\({e1,c¢2,...,c2x} x K) into a parallel class.

We now partition the edge set of AU B into two parallel classes A* and
B* (each with vertex set {c1,¢2,...,c2x} X K) as follows:

(1) A* contains the cycle ((z1,1),(z2,1),(3,1),..., (z2, 1)) as well as
the cycles
((z1,9), (2,4 1), (z3,7), (24,8 + 1), ..., (z2x-1,3), (¥2x, 7+ 1)) and
((z1,841),(22,9), (x3,i+1), (z4,8),. .., (®2k-1,i+1), (z2k,7)) fori €
{2,4,6,...,k—1}; and

(2) B* contains the cycle ((21,k), (z2,k), (z3,k), ..., (z2x, k)) as well as
the cycles ((zlyj): (xZJj + 1)’(£3$j)""l($2k)j + 1)) and ((zl)j+
1), (22,5), (z3,5 +1),...,(z2%,j)) for j € {1,3,5,7,...,k—2}.

Since A and A* as well as B and B* are mutually balanced, that is,
they contain exactly the same edges, (m1\A) U A* is a parallel class of Kg
containing a copy of ¢ and (72\B)U B* is a parallel class of K|s| containing
a copy of c. If ¢; # ¢z € P, the edge sets of type (2) in the resolvable
maximum packing construction are disjoint and so the above substitutions
can be done for each cycle ¢ € P. The resulting collection C* of 2k-cycles
gives a resolvable maximum packing (S,C*, F) with 2k-cycles containing
TWO disjoint copies of the partial 2k-cycle system (Y, P). 1}

Lemma 4.1 Let k =2 (mod 4). A partial 2k-cycle system can be embedded

in a resolvable marimum packing with 2k-cycles which preserves partial
parallel classes.
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Proof: The proof is identical to the proof of Lemma 3.1. o

5 The size of the embedding

We give an upper bound on the size of the containing systems in Lemmas
3.1 and 4.1.

The 2k = 0 (mod 4) case. In the 0 (mod 4) embedding algorithm
let (Y, P) be a partial 2k-cycle system of order n. Then |P| < n(n —1)/4k
and so Y* =Y U{t(c) | c € P} has size |Y*| < n+n(n —1)/2k. The use of
Cruse’s Theorem gives an idempotent commutative quasigroup (Q*, o) of
order |Q*| < 2n+n(n—1)/k+1, and so |Q| < 2n+ n(n—1)/k +2. The
0 (mod 4) resolvable maximum packing construction gives a resolvable
maximum packing (S, C, F) followed by the resolvable maximum packing
(S,C*, F) of order |S| < 2k(2n+n(n—1)/k+2) = 2n%+2n(2k—1)+4k. O

The 2k = 2 (mod 4) case. This is identical to the 2k = 0 (mod
4) case up through the construction of the partial idempotent quasigroup
(Y*,o) of order n + n(n — 1)/2k. By Cruse’s Theorem we can embed
(Y*,o) in an idempotent commutative quasigroup of EVERY odd order
> 2(n+n(n —1)/2k) + 1. Let m be the smallest odd positive integer such
that km > 2n+n(n—1)/k+1. A simple calculation shows that 2n+n(n—
1)/k+k+1>km. Let (@*,0) be an idempotent commutative quasigroup
of order km containing (Y*, o). Then the quasigroup (Q, ) in the 2 (mod
4) embedding algorithm has order 2km and so the resolvable maximum
packing construction gives a resolvable maximum packing (S, C, F) followed
by the resolvable maximum packing (S, C*, F) of order 2n? + 2n(2k — 1) +
2k(k +1).

Theorem 5.1 A partial 2k-cycle system of order n can be embedded in a
resolvable mazimum packing with 2k-cycles of order (i) 2n?+2n(2k—1)+4k
if k = 0 (mod 4), and order (i) 2n? +2n(2k — 1)+ 2k(k+1) if k =2 (mod
4). Both embeddings preserve partial parallel classes. o

Final remarks. The authors are certain that the above bounds are
not best possible. It is not clear exactly what the best possible bounds
are. However, both bounds are quadratic which is certainly much better
than an “existence embedding” which shows only that a finite embedding
is possible.
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