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Abstract

Secret sharing schemes are one of the most important primitives
in distributed systems. In perfect secret sharing schemes, collabo-
ration between unauthorised participants cannot reduce their uncer-
tainty about the secret.

This paper presents a perfect secret sharing scheme arising from
critical sets of Room squares.

1 Introduction

A secret sharing scheme is a method of sharing a secret S among a finite
set of participants P = {P1,..., P,} in such a way that if the participants
in A C P are qualified to know the secret, then by pooling together their
partial information, they can reconstruct the secret S; but any set B C P,
which is not qualified to know S, cannot reconstruct the secret. The key
S is chosen by a special participant D, called the dealer, and it is usually
assumed that D ¢ P. The dealer gives partial information, called the share,
to each participant to share the secret S.
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An access structure I' is the family of all the subsets of participants that
are able to reconstruct the secret. The sets of P belonging to the access
structure I are called authorised sets and those not belonging to the access
structure are termed as unauthorised sets.

A secret sharing scheme is perfect if an unauthorised subset of partici-
pants B C P pool their shares, then they can determine nothing more than
any outsider about the value of the secret S.

An authorised set A is minimal if A’ C A and A’ € T implies that
A’ = A. We only consider monotone access structures in which A € T
and A C A’ implies A’ € T'. For such access structures, the collection of
minimal authorised sets uniquely determines the access structure. In the
rest of this paper we use I" to denote the representation of access structure
in terms of minimal authorised sets.

Secret sharing schemes were first introduced by Blakley [1], Shamir [8]
and Chaum [2] in 1979, and subsequently have been studied by numerous
other authors (see, for example, [9]). A number of mathematical structures
have been used to model shared secret schemes. Some of these are polyno-
mials, geometric configurations, block designs, Reed-Solomon codes, vector
spaces, matroids, near-right fields, complete multipartite graphs, orthogo-
nal arrays, Latin squares and Room squares. Cooper, Donovan and Seberry
[5] proposed a secret sharing scheme arising from Latin squares. Chaudhry
and Seberry [4] developed secret sharing schemes based on critical sets of
Room squares. Both of these schemes are not perfect. In this paper, we
propose a perfect secret sharing scheme arising from critical sets of Room
squares. Though we propose secret sharing scheme based on Room squares,
however, the method can easily be generalised over Latin squares as well.

2 Room Squares

A Room square R of order r is an r x r array each of whose cells may either
be empty or contain an unordered pair of objects 0,1, 2, ..., 7, subject to the
following conditions:

(i) each of the objects 0,1,2, ..., occurs precisely once in each row of R
and precisely once in each column of R,

(ii) every possible unordered pair of objects occurs precisely once in the
whole array.

Mullin and Wallis (7] proved that, there exists a Room square of every
odd integer side r , r > 7.

A critical set @ = {Ch,Q2,...,Qc}, in a Room square R of order r, is a
set of quadruples Q; = (z,y; k, £), 1 < i < ¢, such that if any Q; is removed
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Table 1: A Room square of order 7 and one of its critical sets

from the set, the Room square can no longer be uniquely completed. In
each Q;, the pair (z,y) denotes the position (i.e., row z and column y) of
the pair (k, ) in the Room square. That is, Q provides minimal information
from which R can be reconstructed uniquely.

Table 1 illustrates a Room square of order 7 and one of its critical
sets of size 10, where “*+” denotes the unknown entries and “-” denotes
the empty positions in the square. The critical set in this table consists
of following quadruples: {(2,7;4,6), (3,4;1,2), (4,2;3,7), (5,2;1,4), (5,3;2,7),
(6,4;3,5), (6,6;0,6), (7,5;3,4), (7,6:2,5), (7,7;0,7)}.

It should be noted that there is not much known about critical sets of
Room squares. The number of critical sets in a Room square of order r are
still unknown, but they grow exponentially for higher order Room squares
(see Chaudhry and Seberry [3]).

3 Related Work

Chaudhry and Seberry [4] proposed a secret sharing scheme based on critical
sets of Room squares. In their scheme, the shares of participants are the
quadruples of a critical set taken from the Room square. When a group
of participants, whose shares constitute a critical set, pool their shares
together, they can reconstruct the Room square which is the key. But,
every unauthorised set does not constitute the critical set, and thus, cannot
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reconstruct the secret. For example, in order to distribute the shares (the
quadruples of the critical set given in Table 1) among an authorised set A; =
{P:,, Pi;, P;;}, the dealer may assign three quadruples (2,7;4,6), (3,4;1,2)
and (4,2;3,7) to F;,, three quadruples (5,2;1,4), (5,3;2,7) and (6,4;3,5) to P,
and remaining four quadruples (6,6;0,6), (7,5;3,4), (7,6;2,5) and (7,7;0,7) to
P;; (or any other possible combinations to distribute ten shares among
three participants). A similar scheme was also proposed by Cooper et al [5]
arising from Latin squares. The drawbacks of the above construction are:

1. The schemes are not perfect. Since each share is a component of a
critical set, it determines the exact information of a component from
the Room square and therefore, the uncertainty of a participant about
the secret is not equal to the uncertainty of an outsider.

2. The scheme does not work if the number of participants in an au-
thorised set is greater than the order of the critical set (since each
participant must be assigned at least one quadruple).

Now we propose a perfect secret sharing scheme that is applicable over
arbitrary access structures (no matter what is the size of its authorised
sets). Though we propose secret sharing scheme based on Room squares,
however, it can easily be generalised over Latin squares as well.

4 The Scheme

Let P = {Py,...,P,} be the set of all participants in the system and let
I'={A,,..., A} be an access structure with ¢ authorised sets over P. Let
the critical set @ = {@1,...,Q.} of a Room square R of order r be the
secret!. For every authorised set Aj, 1 £ j < t, of size nj, the dealer uses
the Karnin-Greene-Hellman [6] algorithm to distribute the shares to the
participants.

Set-up Phase:

1. For every participant Pj,, 1 < u < n; — 1, the dealer, D, selects
(independently at random) ¢ quadruples (v, Yjv; kjv, €iv), 1 < v < ¢,
from all possible values over (Zy 41,241, Zivs1,Lrs1).

2. The dealer computes the share for the last participant Pj,;, corre-
sponding to each Q; = (z:,yi; ki, %), 1 < i < ¢, using

ni—1
(xjni’ yjni;kjni’ejni) = (mi’yi; k,',f.') - (Z (mjmij; kjm ejv)) (1)

v=1

In fact, the secret is the Room square R. However, from information point of view,
the information contents of a Room square is the same as the information contents of
its critical set.
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where computation is done over Z,.,.
3. D distributes, in private, the shares to the corresponding participants.

Clearly, if participants of an authorised set pool their shares (by adding
their corresponding shares over Z,.,) they can construct the critical set.
Thus, the reconstruction phase could be as follows.

Secret Reconstruction Phase:

1. Participants of every authorised set A; can pool their shares, that is,
summation of all shares over Z,4; gives a critical set which is the
secret.

Example: Take a Room square of order 7 given in Table 1. Let the
critical set @ = {(2,7:4,6), (3,4;1,2), (4,2;3,7), (5,2;1,4), (5,3;2,7), (6,4;3,5),
(6,6;0,6), (7,5;3,4), (7,6;2,5), (7,7;0,7)} be the secret, S.

Suppose there are three participants Py;, P12 and Pi3 in the authorised
set A;. Let the participants P11 and Pz be given the shares s1y and s12
(selected randomly) such that:
s1 = {(4,5;2,3), (3,4;5,5), (1,6:0,3), (2,3;1,5), (7,1;4,7), (4,4;,0,7), (2,4;1,2),

(6,7;2,6), (0,0;3,5), (6,1;4,7) },
s12 = {(3,3;2,3), (4,7;1,0), (1,4;2,5), (5,7:6,7), (5,7;2,4), (3,7;3,4), (2,6;5,6),
(7,3:4,6), (7,5;0,4), (4,4,0,1) },
The share s;3 associated with participant Py3 can be computed as follows
(using equation (1) for every quadruple respectively),
s13 =S — (s11 + s12)
= {(3,7;0,0), (4,1;3,5), (2,0;1,7), (6,0;2,0), (1,3;4,4), (7,1;0,2), (2,4;0,6),
(2,3;5,0), (0,1;7,4), (5,24,7) }.

In secret reconstruction phase, when these three participants collabo-
rate, (i.e., add their shares modulo 8) they can compute the critical set Q,
which is the secret.

4.1 Security of the Scheme

In this section we prove that the proposed secret sharing scheme is perfect.
That is, the uncertainty of a set of unauthorised collaborating participants
(about the secret) is equal to the uncertainty of an outsider who knows
nothing about the secret.

Let P = {P,,...,P.} and let T' = {A;,..., At} be an access structure
over P. Let the critical set @ = {Q1,...,Qc} of a Room square R of order
r be the secret. Further, let a secret sharing scheme as mentioned earlier
realises this access structure.

Observe that the n; participants of every authorised set A; can recover
the secret using equation (1). Now we have to show that any set B C A;
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containing n; — 1 participants cannot recover the secret. Clearly, the first
n; — 1 participants cannot do so, since they receive independent random
tuples as their shares. Consider the n; — 1 participants in the set B possess
the shares sj,,...,85,_,,85015-++) $jn; and the missing participant’s share
is 55, such that,

nj
$;;, =8- Z"'J'w (mod 7 + 1).
u=1

ugti

By summing their shares, they can compute S — s;,. However, they do not
know the random tuples of the share s;; and hence they have no information
as to the real value of S. That is, the scheme is perfect.
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