Optimisation Heuristics for the
Automated Cryptanalysis of Classical
Ciphers

Andrew Clark and Ed Dawson
Information Security Research Centre
Queensland University of Technology

GPO Box 2434, Brisbane 4000, Queensland, Australia
tt aclark,dawson@isrc.qut.edu.au

Dedicated to Anne Penfold Street.

Abstract

This paper presents a comparison of the performance of three
optimisation heuristics in automated attacks on a simple classical
cipher. The three optimisation heuristics considered are simulated
annealing, the genetic algorithm and the tabu search. Although sim-
ilar attacks have been proposed previously, a comparison of a number
of the techniques has not been performed. Performance criteria such
as efficiency and speed are investigated. The use of the tabu search
in the field of automated cryptanalysis is a largely unexplored area
of research. A new attack on the simple substitution cipher which
utilises the tabu search is also presented in this paper.

1 Introduction

Classical ciphers were first used hundreds of years ago. So far as security
is concerned, they are no match for today’s ciphers, however, this does not
mean that they are any less important to the field of cryptology. Their
importance stems from the fact that most of the ciphers in common use
today utilise the operations of the classical ciphers as their building blocks.
For example, the Data Encryption Standard (DES) [21}, an encryption al-
gorithm used widely in the finance community throughout the world, uses
only three very simple operators, namely substitution, permutation (trans-
position) and bit-wise exclusive-or (admittedly, in a complicated fashion).

JCMCC 28 (1998), pp. 63-86

Given their simplicity, and the fact that they are used to construct other
ciphers, the classical ciphers are usually the first ones considered when re-
searching new attack techniques such as the ones discussed here.

Many flavours of classical ciphers exist, although most fall into one of
two broad categories: substitution ciphers and transposition (permutation)
ciphers. In this paper a number of combinatorial optimisation algorithms
are used in attacks on the simple substitution cipher which is described
in Section 3. Optimisation algorithms such as simulated annealing, the ge-
netic algorithm have shown promise in the area of automated cryptanalysis.
Forsyth and Safavi-Naini (in [6]) have published an attack on the simple
substitution cipher using simulated annealingand Spillman et al (in [20])
presented an attack (again, on the simple substitution cipher) using a ge-
netic algorithm. Also, an attack on the transposition cipher was proposed
by Matthews (in [14]) using a genetic algorithm.The attacks on the sim-
ple substitution cipher have been re-implemented in the research presented
in this paper in order to obtain a comparison of the techniques and also
to evaluate a third technique, namely the tabu search. This paper intro-
duces a new attack on the simple substitution cipher which utilises the
tabu search. The previously published attacks were enhanced and modi-
fied in order that an accurate comparison of the three techniques could be
obtained. Descriptions of the three techniques: simulated annealing, the
genetic algorithm and the tabu search are given in Section 2. Attacks on
the simple substitution cipher are described in detail in Section 3.

Each of the three techniques was compared based on three criteria: the
amount of known ciphertext available to the attack; the number of keys
considered before the correct solution was found; and the time required
by the attack to determine the correct solution. The results are presented
graphically in order to achieve a clear comparison. The results for the
attack on the simple substitution cipher are given in Section 4.

Note that all experiments presented in this paper were performed on
text using a 27 character alphabet, i.e., A — Z and the space character. All
punctuation and structure (sentences/paragraphs) has been removed from
the text before encryption. Any two words are separated by a single space
character.

2 Combinatorial Optimisation Heuristics

The aim of combinatorial optimisation is to provide efficient techniques
for solving mathematical and engineering related problems. Often it is
impractical to use exact algorithms (ones which guarantee to find the op-
timal solution) because of their prohibitive complexity (time or memory
requirements). In such cases approximate algorithms are employed in an

attempt to find an adequate solution to the problem. Examples of approxi-
mate heuristics are simulated annealing, the genetic algorithm and the tabu
search. Each of these techniques is now described in some detail.

2.1 Simulated Annealing

Simulated annealing is based on the concept of annealing. In physics, the
term annealing describes the process of slowly cooling a heated metal in
order to attain a “minimum energy state”. A heated metal is said to be in
a state of “high energy”.The molecules in a metal at a sufficiently high tem-
perature move freely with respect to each other, however, when the metal
is cooled, the molecules lose their thermal mobility. If the metal is cooled
slowly, a “minimum energy state” will be achieved. If, however, the metal
is not cooled slowly, the metal will remain in an intermediate energy state
and will contain imperfections. For example, “quenching” is the process of
cooling a hot metal very rapidly. Metal that has been quenched commonly
has the property that it is brittle because of the unordered structure of its
molecules. In order to apply the analogy of annealing in physics to the
field of combinatorial optimisation it is useful to think of the slowly cooled
metal as having reached a crystalline structure in which the molecules are
ordered and the energy is low. This is analogous to the optimal solution
to a problem which is “ordered” and represents the lowest “cost” to solve
the problem being optimised (assuming, of course, that the minimum cost
is sought).

In 1953, Metropolis et al [15), showed that the distribution of energy
in molecules at the “minimum energy state” is governed by the Boltzinann
probability distribution. This discovery was applied to determine the prob-
ability of molecules moving between different energy levels, which depends
upon the temperature of the metal and the difference in the energy levels.
The molecule undergoes a transition from energy level E, to energy level
E; (AE = E; - E,); the temperature of the metal is T; and Boltzmann'’s
constant is k. If AE < 0 the transition always occurs, otherwise it occurs
with the probability indicated by Equation 1.

Pr(E, = E;) = (7 (1)

The idea of mimicking the annealing process to solve combinatorial op-
timisation problems is attributed to Kirkpatrick et al [13], who, in 1983,
used such an idea to find solutions to circuit wiring and component place-
ment problems (from an electronic engineering perspective) and also to the
travelling salesman problem (a classic combinatorial optimisation problem).
The algorithm is (usually) initialised with a random solution to the problem
being solved and a starting temperature. The choice of the initial tempera-
ture, Tp, is discussed below. At each temperature a number of attempts are

65

made to perturb the current solution. Each proposed perturbation must be
accepted by determining the change in the evaluation of the objective func-
tion (i.e., the change in the cost) and then consulting Metropolis’ equation
(Equation 1) which makes a decision based on this cost difference and the
current temperature. If the proposed change is accepted then the current
solution is updated. The technique used to perturb a solution is dependent
on the problem being solved and the representation of the solution. For
example, if the solution is represented as a binary string of fixed length,
then a suitable mechanism for suggesting possible new solutions may be to
complement one (or more) randomly chosen values in the bit string. Gen-
erally, the temperature is reduced when either there a predefined limit in
the number of updates to the current solution has been reached or after a
fixed number of attempts have been made to update the current solution.
Methods for reducing the temperature are discussed below. The algorithm
finishes either when no new solutions were accepted for a given temperature,
or when the temperature has dropped below some predefined limit.

The variable parameters of the algorithin make up what is known as the
cooling schedule which defines: the initial temperature, To; the number of
iterations at each temperature, J; the temperature reduction scheme; and
the stopping criteria. Each of these is now investigated in some detail.

¢ The Initial Temperature. Usually T is chosen so that all can-
didate solutions proposed will be accepted. Such a choice of T is
dependent upon the magnitude of typical cost values for the prob-
lem being solved, or, more specifically, the magnitude of the largest
expected cost difference between two solutions to the problem being
solved. To ensure that the probability that the transition occurs is
close to one, Ty must be significantly greater than the largest expected
cost difference (as shown by the following equations).

PrE, = E) =1 & eFF%) o1

& 9_1;3_)0
T
& AFEKT

¢ Iterations For Each T. The number of iterations at each tempera-
ture is equivalent to the number of candidate solutions considered for
each temperature. This value should be large but not so large that
the performance of the algorithm is hindered. One value suggested
in the literature is 100N, where N is the number of variables in the
problem being solved.

e Temperature Reduction. In theory, the rate at which temperature
dissipates from a metal is governed by complicated differential equa-

tions. Ior the purposes of simulated annealing, two simple models are
most commonly used. The first, and most simplistic, is a linear cool-
ing model. In the linear model both an initial temperature (Tp) and
a final temperature (To,) must be defined. The difference between
these two (Tp — To) is then divided by J to determine how much the
temperature is reduced by. The temperature at iteration k is defined
by Equations 2 and 3.

T, = To-k-(%) @)
I (@) 3)

The second method of temperature reduction is exponential decay.
This is a more accurate model of the true thermal dynamics in a
heated metal than the linear model. At each iteration the temperature
is reduced by multiplying with a factor, A < 1. Equations 4 and 5
describe the temperature at iteration k.

T, = ATy (4)
= /\'Tk—l (5)

Because of its closer approximation to the expected temperature
reduction in a practical sense, the exponential method is used in all
work reported here.

¢ Stopping Criteria. The stopping criteria define when the algorithin
should terminate. Possibilities are: a minimum temperature (eg, Two)
has been reached; a certain number of temperature reductions have
occurred; or the current solution has not changed for a number of iter-
ations. The latter is often the best option as any candidate solutions
will not be accepted (unless they are better than the current one)
when the temperature is very low. This is because the probability of
acceptance (as defined by Equation 1) is negligible.

2.2 The Genetic Algorithm

As may be evident from the simulated annealing algorithin, mathematicians
often look to other areas in search of inspiration for new techniques which
can be modelled for the purpose of optimisation. While simnulated annealing
is derived from the field of chermical physics, the genetic algorithm is based
upon another “scientific” notion, namely Darwinian evolution theory. The
genetic algorithin is modelled on a relatively simple interpretation of the

67

Reproduction Mutation

eci N :
Selection | parents |1 Children] uiaven }{iﬂm

Solution Pool

Selection

o

* Current Generation New Gencrationi
. 1

Figure 1: The Evolutionary Process.

evolutionary process, however, it has proven to be a reliable and powerful
optimisation technique in a wide variety of applications.

It was Holland [11] in his 1975 paper, who first proposed the use of ge-
netic algorithms for problem solving. Goldberg [9] and DeJong (5] were also
pioneers in the area of applying genetic processes to optimisation. Over the
past twenty years numerous applications and adaptations have appeared in
the literature. Three papers containing applications to the field of crypt-
analysis are worthy of mention here. The first, by Matthews [14] and the
second, by Spillman et al [19], are used in attacks on the transposition
cipher and the substitution cipher, respectively. The third paper, by Spill-
man [19], attempts an ill-fated attack on the knapsack cipher (see also [3D)-

Consider a pool of genes which have the ability to reproduce, are able
to adapt to environmental changes and, depending on their individual
strengths, have varying life-spans. In such an environment only the fittest
will survive and reproduce giving, over time, genes that are stronger and
more resilient to conditional changes. After a certain amount of time the
surviving genes could be considered “optimal” in some sense. This is the
model used by the genetic algorithm, where the gene is the representa-
tion of a solution to the problem being optimised. Traditionally, genetic
algorithms have solutions represented by binary strings. However, not all
problemns have solutions which are easily represented in binary (especially if
the structure of the binary string is to be “meaningful”). To avoid this lim-
iting property a more general area known as evolulionary programming has
been developed. An evolutionary programn may make use of arbitrary data
structures in order to represent the solution. For simplicity all algorithins
described in this thesis which use the evolutionary heuristics presented in
this section are referred to as “genetic algorithms”, although, from a purist’s
perspective, this may not be strictly accurate.

As with any optimisation technique there must be a method of assessing
each solution. In keeping with the evolutionary theme, the assessment
technique used by a genetic algorithm is usually referred to as the “fitness

68

function”. As was pointed out above, the aim is always to maximise the
fitness of the solutions in the solution pool.

Figure 1 gives an indication of the evolutionary processes used by the
genetic algorithm, During each iteration of the algorithm the processes of
selection, reproduction and mutation each take place in order to produce
the next generation of solutions. The actual method used to perform each
of these operations is very much dependent upon the problem being solved
and the representation of the solution. For the purposes of illustration,
examples of each of these operations are now given using the traditional
binary solution structure.

Consider a problem whose solutions are represented as binary strings of
length N = 7. In this instance, a pool of M solutions is being maintained.
The first phase of each iteration is the selection of a number of parents who
will reproduce to give children.

¢ Selection of parents. A subset of the current solution pool is chosen
to be the “breeding pool”. This could be a random subset of the
current solution pool, or in fact the entire current generation, or some
other grouping. Another technique is to make the choice pseudo-
randomly by giving the most fit solutions a higher likelihood of being
selected, thus making the “better” solutions more likely to be involved
in the creation of the new generation while at the same time not
prohibiting the less fit solution from being involved in the breeding
process.

Once the breeding pool has been created, parents are paired for the repro-
duction phase.

¢ Reproduction.A commonly used mating technique for solutions rep-
resented as a binary string is the “crossover” where a random integer
in the range [1,..., N —1] is generated and all bits in the binary string
after this position are swapped between the two parents. Consider the
two parents P, and P, with the random chosen position 3.

P 1011110
P, 0100101
The two children created by this operation are C) and Cs.

C

1010101
C; 0101110

As can be seen, each of the children has inherited characteristics from
each of its parents.

69

Finally, the newly generated children undergo mutation. Here, the solutions
are randomly adjusted in a further attempt to increase the diversity of the
new solution pool.

¢ Mutation.The most sinple mutation operation for binary strings is
complementation of some of the bits in the child. The probability
that a bit is complemented is given by the “mutation probability”,
pm. For example, if pm = 0.15 =~ %, for the case when N =7,
one would expect that, on the average, one bit of each child would
be complemented. If bit 3 of C) were complemented then C} would

become as follows.

¢, 1000101

2.3 The Tabu Search

The final method for optimisation which is discussed in this paper is the
tabu search. The use of the tabu search was pioneered by Glover who
from 1985 onwards has published many articles discussing its numerous
applications (for examples see [7, 8]). Others were quick to adopt the tech-
nique which has been used for such purposes as sequencing [17], scheduling
(1, 4, 16, 2], oil exploration [10] and routing [18, 2.

The properties of the tabu search can be used to enhance other pro-
cedures by preventing them from becoming stuck in the regions of local
minima. The tabu search, like the genetic algorithm, introduces memory
structures into its workings. In this case the purpose of the memory is
multi-faceted. The genetic algorithm utilises its solution pool as a mecha-
nismn for introducing diversity into the breeding process. The tabu search
utilises memory for an additional purpose, namely to prevent the search
from returning to a previously explored region of the solution space too
quickly. This is achieved by retaining a list of possible solutions that have
been previously encountered. These solutions are considered tabu - hence
the name of the technique. The size of the tabu list is one of the parameters
of the tabu search.

The tabu search also contains mechanisms for controlling the search.
The tabu list ensures that some solutions will be unacceptable, however,
the restriction provided by the tabu list may become too limiting in some
cases causing the algorithin to become trapped at a locally optimum solu-
tion. The tabu search introduces the notion of aspiration criteria in order
to overcome this problem. The aspiration criteria over-ride the tabu re-
strictions making it possible to broaden the search for the global optimum.

Much of the implementation of the tabu search is problem specific -
i.e., the mechanisms used depend heavily upon the type of problem being

70

solved. An initial solution is generated (usually randomly). The tabu list
is initialised with the initial solution. A number of iterations are performed
which attempt to update the current solution with a better one, subject
to the restrictions of the tabu list. In each iteration a list of candidate
solutions is proposed. These solutions are obtained in a similar fashion to
the perturbation technique used in simulated annealing and the mutation
operation used in the genetic algorithm. The most admissible solution is
selected from the candidate list. The current solution is updated with the
most admissible one and the new current solution is added to the tabu list.
The algorithm stops after a fixed number of iterations or when a better
solution has been found for a number of iterations.

3 Attacks on the Simple Substitution Cipher

The general strategy with a substitution cipher is to substitute symbols
from the plaintext alphabet with different symbols from the ciphertext al-
phabet. The weakness with this strategy is that character frequency distri-
butions are not significantly altered by the encryption process. Thus, most
attacks on substitution ciphers attempt to match the character frequency
statistics of the encrypted message with those of some known language (for
example, English). Character frequency statistics (or n-grams) indicate
the frequency distribution of all possible instances of n adjacent characters
(for example, THE is a very common 3-gram (or trigram) in the English
language).

The attack on the simple substitution cipher is particularly simple since
the frequency of any n-gram in the plaintext (or unencrypted) message will
correspond ezactly to the frequency of the corresponding encrypted version
in the ciphertext. The search for the corresponding n-gram frequencies can
be automated using combinatorial optimisation algorithms. Here, a number
of methods are utilised in attacks on the simple substitution cipher. As
previously indicated, a method of assessing intermediate solutions (in the
search for the optimum) is required.

A major factor influencing the success of an attack on the simple substi-
tution cipher (or any cipher where the attack is based on n-gram statistics
of the language) is the length of the intercepted ciphertext message which
is being cryptanalysed. The amount of ciphertext required in order to re-
cover the entire key (with a high degree of certainty) varies depending on
the type of cipher. From Figure 2 it will be seen that for a message of 1000
characters it is possible to recover 26 out of the 27 key elements on the
average. Note that in practice it is impossible to find a simple substitution
cipher key which differs in exactly one place from the correct key. However
it is not necessary to recover every element of the key in order to obtain a

71

Frequency (%) Frequency (%)
Order Letter Relative Cumulative || Order Letter Relative Cumulative
1 - 18.4820 18.4820 15 M 1.9853 89.0537
2 E 10.3320 28.8140 16 F 1.9242 90.9778
3 T 7.8395 36.6535 17 v 1.9183 92.8961
4 A 6.6284 43.2819 18 P 1.5438 94.4399
5 0 6.0091 49.2909 19 [1.4424 95.8823
6 I 5.7941 55,0850 20 Y 1.2656 97.1479
7 N 5.7526 60.8376 21 B 1.2026 98.3505
8 S 5.3997 66.2373 22 v 0.7474 99.0979
9 H 4.8210 71.0583 23 K 0.5482 99.6461
10 R 4.5744 75.6327 24 X 0.1466 99.7928
11 D 3.4530 79.0857 25 Q 0.0851 99.8779
12 L 3.2366 82.3223 26 J 0.0667 99.9445
13 v 2.4719 84.7941 27 A 0.0555 100.0000
14 C 2.2742 87.0683

Table 1: English language characteristics.

message that is readable. Table 1 shows the relative frequency of each of
the characters in a sample of English taken from the book “20000 Leagues
Under the Sea” by Jules Verne. A fact evident in almost all attacks on sub-
stitution ciphers is that the most frequent characters are decrypted first.
Table 1 also shows the amount of message that will have been rccovered
after each of the characters is discovered (making the somewhat unrealistic
assumption that the characters are discovered in order from most frequent
to least frequent). It can be seen that approximately fifty percent of the
message can be recovered by correctly determining the key element for the
five most frequent characters in the intercepted message. Also, the eleven
most infrequent characters account for only ten percent of the message (on
the average).

3.1 Suitability Assessment

Naturally, the technique used to compare candidate keys to the simple
substitution cipher is to compare n-gram statistics of the decrypted message
with those of the language (which are assumed known). Equation 6 is a
general formula used to determine the suitability of a proposed key (k)
to a simple substitution cipher. Here, A denotes the language alphabet
(i.e., for English, {4, ..., 2, _}, where _ represents the space symbol), K
and D denote known language statistics and decrypted message statistics,
respectively, and the indices u, b and ¢ denote the unigram, bigram and
trigram statistics, respectively. The values of a, 8 and < allow assigning of
different weights to each of the three n-gram types.

Ce = o |KE - D
i€EA

72

+ B3 IKf'i.j)‘D?i.j)l (6)
i,jEA

o Y |Kf.-,,-,k)-Df.-,,-,k)|
i,j,k€EA

Forsyth and Safavi-Naini, in their simulated annealing attack on the
substitution cipher [6Jand Jakobsen in his attack [12] use a very similar
evaluation, namely the one in Equation 7. This formula is based purely
upon bigraimn statistics which is often sufficient for attacks on the simple
substitution cipher.

Ce = D, IK(bi.a')‘Dfi,j)l ™
i,jEA

Spillman et al [20], use a different formula again (see Equation 8). This
equation is based on unigrain and bigram statistics.

Ck o ZlK("i)"DE's)|+ > |K("e'.a')‘D?i.j)| (8)
i€A i,jEA

The only difference between these assessment functions is the inclusion
of different statistics (Equation 7 is equal to Equation 6 when a = 4 =
0). In general, the larger the n-gramns, the more accurate the assessment
is likely to be. It is usually an expensive task to calculate the trigramn
statistics - this is, perhaps, why they are omitted in Equations 7 and 8. The
complexity of determining the fitness is O(N3) (where N is the alphabet
size) when trigram statistics are being determined, compared with O(N?)
when bigrams are the largest statistics being used. Following the attack
description given below there are details describing a method which can
be used under some circumstances for reducing the complexity of the cost
calculation by a factor of N. Thus a cost based on trigram statistics can
be calculated with complexity proportional to O(N?).

Figure 2 indicates the effectiveness of using different n-grams in the
evaluation of a simple substitution cipher key. The three curves in the
plot represent the percentage of key recovered by an attack on a simple
substitution cipher using simulated annealing (see below) versus the amount
of known ciphertext used in the attack. Each curve resulted from using the
cost function in Equation 6 with different values of the weights a, 8 and
7. For example, the “Unigrams only” curve was obtained with & = 1 and
B = =0. Each data point on each curve was determined by running the
attack on 200 different messages and three times for each message. Of the
three runs for each message only the best result was used. The value on
the curve represents the average number of key elements correctly placed

73

27 T ¥ L) T T 1 ¥ L] T

-------------------------- {,
........... A Sttt
_______ B e
24} o ol]
B -
------ s
R //

ar » -~ Unigrams only —o— 4

» Bigrams only =+-

L Trigrams only 8-~

Number of Key Elements Comect (Max: 27)

1 Il I 1 1 1 Il 1 L

0
50 100 150 200 250 375 500 625 750 875 1000
Amount of Known Ciphertext

Figure 2: Results for cost functions using only unigrams, bigrams and tri-
grams, respectively.

(over the 200 messages). For the alphabet being used the maximum value
attainable is 27.

For small amounts of known ciphertext it is interesting to note that
an attack using a cost function based on bigrams alone is more effective
than one which utilises only trigrams (see Figure 2). The crossover point
of the “Bigrams only” and “Trigrams Only” curves in Figure 2 represents
an approximate threshold value where a cost function based purely upon
trigram frequencies out-performs one based only on bigram frequencies.
The reason for this phenomenon can, in part, be gleaned by observing the
cost function in Equation 6. When the length of the intercepted messages
is short there are far fewer distinct bigrams or trigrams represented in the
ciphertext than the total number of possible bigramns or trigrams. When
N = 27 there are N3 = 19683 possible trigramns (theoretically - of course
not all trigramns are represented in the English language). The maximum
number of distinct trigrams in a message of length say, 100, is 98. Thus
the proportion of trigrams represented in the message is very small (the
upper bound is 98/19683 ~~ 0.005). This means that are large number of
unrepresented trigrams are effecting the evaluation of the cost function.

74

For bigrams the proportion is much larger (99/729 =~ 0.136) and hence the
cost function is more reliable and accurate. This effect ceases when the
amount of known ciphertext is greater than approximately 150 characters
(see Figure 2).

While Figure 2 gives an interesting comparison of the effectiveness of
each of the statistic types (i.e., unigrams, bigrams and trigrams), it is also
interesting to experiment with different values of a, 8 and v in order to
determine how the statistics interact and in which proportions they work
best. Figure 3 presents a comparison of different values of a, 8 and 7.

In the experiments used to produce Figure 3, the following restrictions
were applied in order to keep the number of combinations of &, 8 and ¥y
workable.

a,8,v € {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}, and
a+pB+y = 10

There are 66 combinations of «, 8 and « which satisfy these conditions.
In order to obtain good statistical averages the same attack procedure was
used as for Figure 2 except that only 100 diflerent messages were used
(instead of 200). The three curves represent the average number of key
elements correctly placed for each of the eleven values of each of the three
weights. (NB. “Unigram Weight” refers to a, “Bigram Weight” refers to
B and “Trigram Weight” refers to 7.)

From Figures 2 and 3 it can be concluded that trigrams are generally
the most effective basis for a cost function used in attacks on the substi-
tution cipher. However, the benefit obtained from trigrams over bigramns
is minimal. In fact,because of the complexity associated with determining
trigram statistics - O(N3) - it is often more practical to base a fitness of
a mixture of unigrams and bigrams — which has a complexity proportional
to O(N?). For the remainder of the work relating to simple substitution
ciphers a fitness based purely on bigrams is used (i.e., Equation 7).

3.2 A Simulated Annealing Attack

The simulated annealing attack of the simple substitution cipher is rela-
tively straight-forward. Recall that the key is represented as a string of
the N characters in the alphabet. A very simple way of perturbing such a
key is to swap the key elements in two randomly chosen positions. This is
the method utilised in the following algorithm which describes a simulated
annealing attack on the simple substitution cipher.

1. The algorithm is given the intercepted ciphertext and the known language
statistics as input.

75

27 T T T T

Number of Key Elements Comrect (Max: 27)

1"r Unigram Weight -o— \4
Bigram Weight —+-—
Trigram Weight -8--

7 1 Il 1 L 1 1 L 1 L

1} 0.1 0.2 03 04 0.5 06 07 0.8 09 1
Weight Value

Figure 3: Results for cost functions with varying weights.

2. Generate the initial solution (randomly or otherwise), Kcums, and calcu-
late its cost using Equation 7 (Cayme). Set T = Tp = Ccm and the

temperature reduction factor Tescr. Set MAXCITER, the maximum num-
ber of iterations to perform.

3. Repeat MAX_ITER times (MAX_ITER temperature reductions):

(a) Set NSUCC =0.
(b) Repeat 100 - IV times:
i. Choose n;,n; € [1, N],n; # na.
ii. Swap element n; with element ny in Kcyps to produce Kyew.
iii. Calculate the cost of Kyew using Equation 7. Call this cost
Chew. Calculate the cost difference (AE = Cyew — Ceurs) and

consult the Metropolis criterion to determine whether the pro-
posed transition should be accepted.

iv. If the transition is accepted set Kcymr = Kyew and Ceyrr = Crew

and increment Noyce (Nsuece = Nauce + 1) If Nsyee > 10- N go
to Step 3d.

(C) lf Nsucc = 0 go to step 4,
(d) Reduce T (T = T X TFACT)'

4. Output the current solution. .

76

The choice of Ty = Ceyrr Was made based upon experimentation. It
was found that for this choice of Ty the necessary conditions are satisfied
almost all of the time. In fact, this technique of choosing Ty was found to
be better than using a constant value since many times, when the choice of
T is too high, the algorithm spends a lot of time in a seemingly random
search while the temperature decreases to a value which disallows some of
the proposed solutions.

The values 100 - N (Step 3b) and 10 - N (Step 3(b)iv) are parameters
of the algorithin which are arbitrary. They should, of course, be chosen so
that a large number of possible solutions are assessed at each temperature,
but not so large that time is wasted. By setting a limit to the number
of successful updates to the solution at each temperature, the algorithm
avoids assessing too many solutions when the temperature is high (since
almost all suggested transitions are accepted at high temperatures).

As indicated above, there are circumstances under which it is possible
to reduce the complexity of the cost calculation. One such case is when
comparing the cost associated with two keys when the keys only differ in
two elements (i.e., one key can be obtained from the other key simply by
swapping two elements). This is exactly what happens in the simulated
annealing algorithm above - two elements in the current key are swapped
and the new cost calculated. The difference between the cost of the current
solution and the new one (with the swapped elements) is used to determine
if the new key will be accepted.

It should be clear that when two key elements are swapped only the
statistics (of the decrypted message) for trigrams which contain one (or
both) of the swapped elements will change. Similarly, only the statistics for
bigrams which contain one (or both) of the swapped elements will change.
Also, only two of the unigramn statistics will change.

Making use of this property can lead to a significant increase in the
efficiency of the simulated annealing attack. The improvement obtained
using such a strategy is of the order of N. Table 2 displays the actual
improvement in terms of the number of comparisons of statistics required
in the evaluation of the cost difference. The numbers in brackets indicate
the number of calculations required when N = 27. It can be seen that
when N = 27 the complexity of determining a cost based on trigrams is
not significantly reduced using this technique. However, for larger values of
N - for example consider the ASCII alphabet of 256 characters - the saving
is great.

This technique can be used for determining the cost difference between
two keys in any system where one key is obtained from another by swapping
two elements of the original key.

The results of the attack described in this section are compared with
the attacks using the genetic algorithm and tabu search (described below),
in Section 4.

77

Statistic =~ Exhaustive Optimised

Unigrams N (27) 4

Bigrams NZ? (729) 8(N —1) (208)

Trigrams N3 (19683) 8(3N2 — 6N +4) (16232)

Table 2: Improvement gained fromn optimised calculation of the cost differ-
ence.

3.3 A Genetic Algorithm Attack

The genetic algorithm is rather more complicated than the simulated an-
nealing attack. This is because a pool of solutions is being maintained,
rather than a single solution. An extra level of complexity is also present
because of the need for a mating function.

The mating function utilised in this thesis for attacks involving substi-
tution ciphers is similar to the one proposed by Spillman et al {20}, who use
a special ordering of the key. The characters in the key string are ordered
such that the most frequent character in the ciphertext is mapped to the
first element of the key (upon decryption), the second most frequent charac-
ter in the ciphertext is mapped to the second element of the key, and so on.
The correct key will then be a sorted list of the decrypted message single
character frequencies. The reason for this ordering will become apparent
upon inspection of the mating function. Given two parents constructed in
the manner just described, the first element of the first child is chosen to
be the one of the first two elements in each of the parents which is most
frequent in the known language statistics. This process continues in a right
to left direction along each of the parents to create the first child only. If,
at any stage, a selection is made which already appears in the child being
constructed, the second choice is used. If both of the characters in the
parents for a given key position already appear in the child then a char-
acter is chosen at random from the set of characters which do not already
appear in the newly constructed child. The second child is formed in a
similar manner, except that the direction of creation is from left to right
and, in this case, the least frequent of the two parent elements is chosen.
An algorithmic description of this mating procedure for creating the two
children is now given:

1. Notation: p; and p; are the parents, ¢; and c; are the children, p;(j)
indicates character j in parent i (similarly ¢;(j) indicates the jth element

in child), {Cg"‘} denotes the set of elements in child 7 in positions j
to k (inclusive) with the limitation that if i = N + 1 or j = 0 then

{C#*} = {0} (the empty set), f(z) denotes the relative frequency of
character z in the known language.

2. Child 1: For j=1,...,N (step 1) do

78

* f f(m1(5)) > f(p2(4)) then

- i pi() ¢ {C177") then e1(5) = pu(4),
else if p2(5) ¢ {C;7 7'} then c1(j) = p2(4).
else ¢, (j) = random element ¢ {C}¥~'}.

else

~ I p2(§) ¢ {C177'} then ¢1(3) = p2(4),
else if p1(j) ¢ {C7 "'} then ¢, (j) =n(J).
else ¢, (j) = random element ¢ {C}7~'}.

3. Child 2: For j = N,...,1 (step —1) do

o If f(m (7)) < f(p2(7)) then

= If pu(§) ¢ {CIT"N} then ea(h) = pi(4),
else if pa(j) ¢ {C+"""} then c2(4) = pa(j),
else ¢3(j) = random element ¢ {CJT1V).
else

= If pa(j) ¢ {CI*""} then c2(4) = pa(),
else if pi () ¢ {C5*"Y} then ca(4) = pi (5).
else ¢2(j) = random element ¢ {C3*1N}.

This description of the mating operation for a simple substitution ci-
pher differs from the method described in [20] where each element of the
two children is chosen by taking the character from the two parents which
appears most frequently (for both children) in the ciphertezt. This tech-
nique is clearly less eflicient since the first element of each key represents
the most frequent plaintext character.

The mutation operation is identical to the solution perturbation tech-
nique used in the simulated annealing attack. That is, randomly select two
positions in the child and swap the two characters at those positions.

The following is an algorithmic description of the attack on a simple
substitution cipher using a genetic algorithm.

1. The algorithm is given the ciphertext (and its length) and the statistics
of the language (unigrams, bigrams and trigrams).

2. Initialise the algorithm parameters. They are: M the solution pool size
and MAX.ITER the maximum number of iterations.

3. Randomly generate the initial pool containing M solutions (keys of the
simple substitution cipher). Call this pool Prys,. Calculate the cost of
each of the keys using Equation 7.

4. For iteration/generation i = 1,..., MAX_ITER, do

79

(a) Select M/2 pairs of solutions from the current pool, Peyra, to be
the parents of the new generation. The selection should be random
with a bias towards the most fit of the current generation.

(b) Each pair of parents then mate using the algorithm above to produce
two children. These M children form the new pool, Pyew.

(c) Mutate each of the children in Puew using the random swapping
procedure described above.

(d) Calculate the suitability of each of the children in Pyew using Equa-
tion 7.

(€) Sort Puew from most suitable (least cost) to lease suitable (most
cost).

(f) Merge Pey With Py to give a list of sorted solutions (discard
duplicates) - the size of this list will be between M and 2M. Choose
the M best solutions from the merged list to become the new Prygq.

5. Output the best solution from Peyge.

This genetic algorithm was implemented and results of the attack on the
simple substitution cipher are given in Section 4. The genetic algorithin
attack is compared with the simulated annealing attack (described above)
and the tabu search attack (described now).

3.4 A Tabu Search Attack

The simple substitution cipher can also be attacked using a tabu search.
This attack is similar to the simulated annealing one with the added con-
straints of the tabu list. The same perturbation mechanisin (i.e., swapping
two randomly chosen key elements) is used. The overall algorithm is de-
scribed as follows:

1. The inputs to the algorithm are the known (intercepted) ciphertext and
the language statistics for unigrams, bigrams and trigrams.

2. Set MAX_ITER, the maximum number of iterations, N.TABU, the size
of the tabu list and N_POSS, the size of the possibilities list. Initialise
the tabu list with a list of random and distinct keys.

3. For iteration i = 1,..., MAX_TER, do
(a) Find the key in the tabu list which has the lowest cost associated
with it. Call this key Kaes'r.
(b) Forj=1,..., N.POSS, do
i. Choose n),n2 € [1,N],n; # na.
ii. Create a possible new key Kyew by swapping the elements ny
and ny in Kgest.

iii. Check that Kyew is not already in the list of possibilities for
this iteration or the tabu list. If it is return to Step 3(b)i.

80

Number of SA GA TS

Ciphertexts Z 8 z s z 8
100 '10.73 [4.70 | 7.74]| 482 | 6.02 | 4.04
200 17.70 | 3.40 | 14.17 | 6.13 | 12.76 | 6.32
300 21.07 | 2.72 | 18.77 | 6.01 | 17.33 | 6.48
400 22.86 | 2.27 | 21.72 | 4.61 | 19.45 | 6.34
500 23.73 | 2.16 | 22.44 | 4.37 | 21.77 | 5.47
600 24.50 | 1.86 | 23.69 | 3.68 | 23.50 | 4.14
700 24.72 1 1.73 | 23.82 | 3.39 | 23.68 | 4.42
800 25.08 | 1.59 | 24.64 | 2.23 | 24.18 | 4.12

Table 3: Mean and standard deviation data corresponding to Figure 4.

iv. Add Kiew to the list of possibilities for this iteration and de-
termine its cost.
(c) From the list of possibilities for this iteration find the key with the
lowest cost — call this key Ppesr.
(d) From the tabu list find the key with the highest cost — call this key
WORST *
(e) While the cost of Py is less than the cost of Tiorsr:

i. Replace Twousr with Pagst.
ii. Find the new Pagr.
iii. Find the new Tiorst-

4. Output the best solution (i.e., the one with the least cost) from the tabu
list.

Note that the choice of N_.POSS must be less than N(N —1) ~ where N
is the key size — since this is the maximum number of distinct keys which
can be created from Kgesr by swapping two elements.

The results of the tabu search are given in the following section along
with a comparison with the two alternate techniques described above.

4 Experimental Results

In this section a number of experimental results are presented which outline
the effectiveness of each of the attack algorithms described above. Each of
the attacks was run a number of times with a variety of parameter values.
The results here are presented as plotted curves (Figures 4, 5 and 6). Each
data point on these curves represents three hundred runs of the particular
algorithm. One hundred different messages were generated in each case and
the attack was run three times on each message. Of these three runs on each
message only the best result is considered. The numnerical value that is used

81

27 T T v T Y T
24 e e = E
i L
":‘ 21 - (“a 4
3 o
2 g8t o Simulated Annoaling +— -
g il Genetic Algorithm —~-
E //_.-' Tabu Search -8--
o 3 i
@ 15 e
£ /
£ 4
o <
] 12 ';/'..' b
> 4
2 &
T of]
2
5
z 6| o
3t B
o L L 1 1 L 1
100 200 300 400 500 600 700 800

Amount of Known Ciphertext

Figure 4: A comparison based on the amount of known ciphertext.

in each of the plots is then the average over the one hundred messages of the
best result for each message. Why was this technique used?It is common
when using approximation algorithins to run the algorithin a number of
times and then take the best result. This is because of the random nature
of the algorithms. By averaging the results of a large number of independent
attacks (in this case one hundred) a good representation of the algorithm’s
ability is obtained.

The first point to note is that each of the algorithms performed (ap-
proximately) as well as the other with regard to the ultimate outcome of
the attack. This is illustrated in Figure 4 which compares the average num-
ber of key elements (out of 27) correctly recovered versus the amount of
ciphertext which is assumed known in the attack. The plot shows results
for amounts ranging from 100 to 800 known ciphertext characters. In each
case the results obtained are very similar for each of the algorithms. The
mean, Z, and standard deviation values, s, for the results in Figure 4 are
given in Table 3. It can be seen that the standard deviation values for sim-
ulated annealing are less than for the other two methods. This indicates
that the simulated annealing approach, as well as being slightly superior
with respect to the mnean values, has less variance in its results.

Each of the algorithms perform roughly equally well when the compar-

82

27 &

24

21 Simulated Annealing o— .

Genetic Algorithm —~-
Tabu Search -0+

18

15

12

Number of Key Elements Cormrect (Max: 27)

5000 10000 15000 20000 25000 30000 35000
Total Keys Considered

Figure 5: A comparison based on the number of keys considered.

ison is made based on the amount of ciphertext provided to the attack.
It is interesting to make a comparison based on the complexity of each of
the attack algorithms. The remaining results in this section aim to make
a comparison of the algorithins based on complexity. In each case, the fol-
lowing results were obtained using cryptograms of length 1000. Figure 5
compares the number of correctly determined key elements with the total
number of keys considered up to that point by the algorithm. It is clear
that the number of keys considered by the simulated annealing technique
in order to obtain the correct key is significantly greater than for the other
two techniques with the genetic algorithin and the tabu search performing
roughly equally in this respect. However, this comparison does not accu-
rately indicate the relative efficiencies of the three algorithms. In Figure 6,
which compares the number of correct key elements discovered with the
amount of time used by the algorithm up to that point, it is clear that sim-
ulated annealing is actually more efficient (with respect to time) that the
genetic algorithm. By comparing Figures 5 and 6 it can be concluded that
the simulated annealing algorithmn is able to consider a far greater number
of solutions that the genetic algorithm and in much less time. It is also
clear from both of these figures that the tabu search is most efficient in
both respects.

83

Simulated Annealing ~—
Genetic Algorithm —~--
Tabu Search -B--

Number of Key Elements Comect (Max: 27)

o Lé I 1 1 1 Il 1

0 0.1 02 05 06 07

03 04
Time (seconds)

Figure 6: A comparison based on time.

5 Conclusions

This paper has developed the theory and presented a number of auto-
mated attack methodologies against simple substitution ciphers. In the
first instance, properties of these ciphers which make them vulnerable were
discussed. The comnmon failing of the classical ciphers is that none is sophis-
ticated enough to hide the inherent properties or statistics of the language
of the plaintext.

Comparisons of the three techniques were also made based on the num-
ber of keys considered and the time taken by the algorithm. It was found
that for the simple substitution cipher the tabu search out-performed both
simulated annealing and the genetic algorithm with simulated annealing
taking roughly twice as long as the tabu search and the genetic algorithm
taking roughly twice as long as simulated annealing.

Overall, optimisation heuristics are ideally suited to implementations in
attacks on the classic ciphers. This has been shown by the experimental
results in the paper.

References

[1} J. Wesley Barnes and Manuel Laguna, A tabu search experience in
production scheduling. Ann. Oper. Res. 41 (1993), 141-156.

[2] Paulo Brandimarte, Routing and scheduling in a flexible job shop by
tabu search. Ann. Oper. Res. 41 (1993), 157-183.

[3] Andrew Clark, Ed Dawson, and Helen Bergen, Combinatorial optimi-
sation and the knapsack cipher. Cryptologia 20 (1996), 85-93.

[4] Richard L. Daniels and Joseph B. Mazzola, A tabu-search heuristic for
the flexible-resource flow shop scheduling problem. Ann. Oper. Res. 41
(1993), 207-230.

[5] K.A. DelJong, An Analysis of the Behavious of ¢ Class of Genetic
Adaptive Systems. (Doctoral Dissertation, University of Michigan
Press, Ann Arbor, Michigan, 1975)

[6] W. S. Forsyth and R. Safavi-Naini, Automated cryptanalysis of sub-
stitution ciphers. Cryptologia 17(4) (1993), 407-418.

[7] Fred Glover, Tabu search: A tutorial. Interfaces 20 (1990), 74-94.

[8] Fred Glover, Eric Taillard, and Dominique de Werra, A user’s guide
to tabu search. Ann. Oper. Res. 41 (1993), 3-28.

[9] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning. (Addison Wesley, Reading, Mass., 1989).

[10] Pierre Hansen, Eugenio de Luna Pedrosa Filho, and Celso Carneiro
Ribeiro, Location and sizing of offshore platforms for oil exploration.
Europ. J. Oper. Res. 58 (1992), 202-214.

[11] J. Holland, Adaptation in Natural and Artificial Systems. (University
of Michigan Press, Ann Arbor, Michigan, 1975.)

[12] Thomas Jakobsen, A fast method for cryptanalysis of substitution ci-
phers. Cryptologia 19 (1995), 265-274.

[13] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, Optimization by
simulated annealing. Science 220(4598) (1983), 671-680.

(14] Robert A. J. Matthews, The use of genetic algorithms in cryptanalysis.
Cryptologia 17 (1993), 187-201.

[15] N. Metropolis, A. W. Rosenblunth, M. N. Rosenblunth, A.H. Teller,
and E. Teller, Equations of state calculations by fast computing ma-
chines. J. Chem. Phys. 21 (1953), 1087-1092.

85

[16] Abraham P. Punnen and Y. P. Aneja, Categorized assignment schedul-
ing: A tabu search approach. J. Oper. Res. Soc. 44 (1993), 673-679.

[17) Colin R. Reeves, Improving the efficiency of tabu search for machine
sequencing problems. J. Oper. Res. Soc. 44 (1993), 375-382.

[18]) Frederic Semet and Eric Taillard, Solving real-life vehicle routing prob-
lems efficiently using tabu search. Ann. Oper. Res. 41 (1993). 469-488.

[19]) Richard Spillman, Cryptanalysis of knapsack ciphers using genetic al-
gorithms. Cryptologia 17 (1993), 367-377.

[20] Richard Spillman, Mark Janssen, Bob Nelson, and Martin Kepner,
Use of a genetic algorithm in the cryptanalysis of simple substitution
ciphers. Cryplologia 17 (1993), 31-44.

[21] U.S. Department of Commerce/National Bureau of Standards, Data
Encryption Standard, January 1988. (Federal Information Processing
Standards Publication 46-1.)

86

