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Abstract

Anne Street wrote an expository article about de Bruijn graphs
in the 1970’s. We review some subsequent lines of research, at least
one of which was inspired by her article.

1 Introduction

At the first Australian Conference on Combinatorial Mathematics held in
1972 at the University of Newcastle, New South Wales, Anne Street gave an
an expository talk on graph theory and the application of Eulerian cycles
to the design of circular switches, such as those found in automatic washing
machines. A brief summary of this talk appeared in the proceedings of the
Second Australian Conference with the amusing title “Eulerian Washing
Machines”, [21].

This survey was subsequently reviewed [8] by N. G. de Bruijn whose
name is most frequently associated with these graphs. Indeed, for many
years he was credited with the first construction and enumeration of these
graphs, [7]. However, de Bruijn acknowledged in his review the priority of
C. Flye Sainte-Marie [20] who published in 1894. de Bruijn had rediscovered
Sainte-Marie’s result that the number of circular arrangments of 2" 0’s and
1's with the property that every binary string of length n appears once and
only once as a substring is given by 22"7'=n_ For details see [7).

2 Definitions and Notation

The binary de Bruijn graph of order n, B, = By(2), is the directed graph
with vertex set {0,1}" and edges between vertices z = a;-:-a, and y =
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by --- b, precisely when as:--a, = by --+-b,~;. The edge of B, between
vertex = and vertex y can be labeled a; - - - @by or, equivalently, a1b; - - - b,.
Since B, has 2" vertices and every binary string of length 2"+ is the label
of some pair of vertices, B, has 2"*! edges. Similiarly a de Bruijn graph of
each order n > 1 can be defined for every finite alphabet. A 2-dimensional
version of the de Bruijn graph is considered in [14]. The following properties
of de Bruijn graphs over arbitrary finite alphabets are easy to establish.

Properties 1 All vertices of B, have in-degree and out-degree equal to the
cardinality of the alphabet, A. That is, B, is a regular digraph of degree
2|Al.

Here loops at each vertex (e, aq,...,a),a € A are counted.

Properties 2 If w,z,y,z are eny vertices of B, and (w,z),(w,y) are
edges then, for any vertez z such that (z,z) is an edge, (2,y) is also an

edge.

Properties 3 If (z,y), (y,z) are edges in B, with labels a, 3 respectively
then (a, ) is an edge of Gp4y.

Definition 1 An (n,a) de Bruijn sequence is a circular string with the
property that all strings of length n over an alphabet of size a occur as
substrings exactly once.

Over the alphabet {0, 1,2}, for example,

222212220221122102201220021212021112110210121002020112010260120001111011601010000

is a de Bruijn sequence which contains all strings of length 4 exactly once
when viewed as a circular string.

An (n,a) de Bruijn sequence corresponds to an Eulerian cycle of B, _;.
For example, 00011101 is a (3,2) de Bruijn sequence which corresponds to
the Eulerian cycle

000, 001,011,111,110, 101,010, 100

of edges in B;. Conversely, we can view an Eulerian cycle of B,, as a circular
string. There are at least three different ways of defining circular strings or
“necklaces” in the literature:

e a sequence of letters written in a circle [1]
e a doubly infinite periodic sequence (5]

e an equivalence class of strings under circular shifts (i.e., an orbit of
the action of the cyclic group of order n on the set of n-strings) [4].
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3 Golomb’s conjecture

By a factor of B, we mean a subgraph determined by a set of vertex-disjoint
directed circuits (cycles) which contain all vertices of B,. An extremal
factor is a factor which contains a maximal number of cycles. In the binary
case Solomon Golomb had conjectured [11] that the number of cycles in
any extremal factor of B, is

Z(n) = = 3 $(d)2?

din

Here ¢ is the Euler function and the summation is over all positive divisors
d of n.

A proof of Golomb’s conjecture was given by Mykkeltveit [19] in 1972.
Mykkeltveit’s proof was obtained by establishing another conjecture due to
Lempel [15] which in turn implied Golomb’s conjecture. Lempel’s conjec-
ture stated that Z(n) is the mimimal number of vertices which if removed
from B,, would leave a directed graph with no cycles.

Quite generally one may ask whether there exists a circular string of
length & < m” chosen from the alphabet {0,1,...,m} with the property
that its substrings of length k are all distinct. This was resolved in the
affirmative by Abraham Lempel [15] in 1971.

4 Embedded de Bruijn Sequences

It is a natural question to ask whether one Eulerian tour of the de Bruijn
graph can be found as a subsequence of an Eulerian tour of a higher order
de Bruijn graph over the same alphabet or a de Bruijn graph of the same
order but over a larger alphabet. As shown in [5] the answer is easy in the
latter case because B,(p) is always an induced subgraph of B,(p + 1). For
example, the de Bruijn sequence

00110 21220 3132330 414243440 - - -

is obtained by iteratively embedding sequences of orders (n, 2), (n, 3), (n,4),

. The “break points” have been indicated by inserting spaces. In [5]
the Euler tours of the de Bruijn graphs and its subgraphs were viewed
as periodic infinite sequences, but they can equally be viewed as circular
strings.
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5 Codes in the de Bruijn graph

It is well-known that the parity check matrix of a Hamming code of length
n = 2% — 1,k > 2, has as columns all non-zero binary strings of length k
appearing exactly once. [17, p 23]. The order of the columns is not impor-
tant since any two different orderings lead to equivalent codes. Accordingly,
deleting 0™ = 0- - - 0 from any Euler tour of By, leaves a Hamilton path con-
taining all the columns of a generator matrix of the Hamming code. Stated
differently, we can claim that the all information required to generate a
Hamming code can be stored as a de Bruijn sequence which has been cut
to form a linear string with 0" omitted.

The extended Golay code has as generator matrix a 12 x 24 matrix
which has the form [I,A] bordered by a first column of the form 1!'0 and
last row of the form 012112, Here, I is the 11 x 11 identity matrix and A is
a 11 x 11 matrix obtained from a Hadamard matrix of Paley type. In fact,
A is a cyclic matrix so each row is obtained from the preceding one by a
cyclic shift. In addition, the first row is a cylic shift of the last one 17, p
65]; thus, the matrix A is equivalent to a 'pure’ cycle of length 11 in Bj;.
The matrix A contains the “informational content” of the extended Golay
code. Indeed, any cyclic code, such as the BCH codes can be represented
in this manner. The importance of this particular representation of these
well-known error-correcting codes is not clear, but the de Bruijn graph is
valuable in the study of synchronizable codes.

A great deal of research has gone into correcting bit errors in the study
of error-correcting codes. Another kind of error is a mis-framing error. To
correct mis-framing errors a class of codes known as synchronization codes
have been developed. One class of synchronizable codes are the comma-free
codes.

As its name implies, a comma-free code is a set of codewords which do
not require a “comma” to establish synchronization; that is,

Definition 2 A set of strings C over an alphabet A is a comma-free code
of length n if all strings have length n and

al...an‘blo..bn ec
implies each of the “overlaps” of length n
az---by,az---biby,...,05b1 - bn1 €C

In [2] a theorem of Golomb, Gordon, and Welch [13] about comma-free
codes is interpreted as a statement about edges in By, (|Al)-

Theorem 1 Ifn > 4 is odd then a collection, C of edges in B,(|A|) corre-
sponding to the words of a mazimum comma-free code is a bipartite subgraph

of Bn(|Al).
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A proof of theorem 1 is found in [3].

Another synchronizable code is An, the set of Lyndon strings of fixed
length n. These are the aperiodic strings of length n which are lexicograph-
ically least in their equivalence classes under the relation of cyclic permu-
tation. Golomb and Gordon [12] showed that A,, while not comma-free
is a bounded synchronization delay code over an arbitrary finite alphabet
A. Thus, there is a fixed integer M such that after M letters have been
read from a message encoded with A, synchronization can be established.
Although bounds exist, the exact value of M given n and A has never been
determined. It has been shown in [3] that the Lyndon strings for any fixed
n viewed as edges in B,_1(2) are a collection of disjoint paths. A coun-
terexample was given in (3] to show that this is not true when |A| > 2. The
structure of A, for higher order alphabets remains an open question.

References

(1] J. Berstel and D. Perrin, Codes circulaires, Combinatorics on
Words, Progress and Perspectives, ed. L. Cummings, Academic
Press, 1983.

[2] L. Cummings, Comma-free codes in the de Bruijn Graph, Caribb.
J. Math. 3(1983), 65- 68.

[3] L. Cummings, Synchronizable codes in the de Bruijn Graph, Ars
Combinatoria 19(1985), 73-80.

[4] L. Cummings, Aspects of synchronizable coding, JCMCC, 1(1987),
67-84.

[5] L. Cummings and D. Wiedemann, Embedded de Bruijn sequences,
Congressus Numeratium, 53(1986), 155-160.

[6] N. G. de Bruijn, A combinatorial problem, Proc. Nederl. Akad.
Wetensch., 49(1946), 758-764.

[7] N. G. de Bruijn, Acknowledgement of priority to C. Flye Sainte-
Marie on the counting of circular arrangements of 2" zeros and ones
that show each n-letter word exactly once, T'.H.-Report 75- WSK-06
(Technological University Eindhoven, 1975).

[8] N. G. de Bruijn, Review of Eulerian washing machines by Anne
Penfold Street. Mathematical Reviews #12538, Vol. 51.

[9] H. Fredricksen, Survey of full length nonlinear shift register cycle
algorithms, SIAM Review, 24(1982), 195-221.

99



[10] H. Fredricksen, A new look at the de Bruijn graph, Discrete Applied
Mathematics, 37/38(1992), 193-203.

[11] S. Golomb, Shifé Register Sequences (Holden-Day, 1967).

[12] S. Golomb and B. Gordon, Codes with bounded synchronization
delay, Information and Control, 8(1965), 355-372.

[13] S. Golomb, B. Gordon, and L. Welch, Comma-free codes, Canadian
J. Math., 10(1958), 202-209.

[14] G. Hurlbert and G. Isaak, On the de Bruijn torus problem, SIAM
Review, 24(1982), 195-221.

[15] A. Lempel, m-ary closed sequences, J. Combinatorial Theory
11(1971), 17-27.

[16] A. Lempel, On extremal factors of the de Bruijn Graph, J. Com-
binatorial Theory 11(1971), 17-27.

[17] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-
Correcting Codes (North Holland, 1978).

[18] M.H. Martin, A problem in arrangements, Bull. Amer. Math. Soc.
40(1934), 859-864.

[19] J. Mykkeltveit, A proof of Golomb’s conjecture for the de Bruijn
graph, J. Combinatorial Theory 13B(1972), 40-45.

[20] C. Sainte-Marie, Question 48, Intermédiaire des Mathématiciens,
Rev. Semestrielle Publ. Math. 1(1894), 107-110.

[21) A. P. Street, Eulerian washing machines, Lecture Notes in Mathe-
matics, Vol. 403 (Springer-Verlag, 1973), 105-108.

100



