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1 Introduction

A 2-factor of the complete undirected graph K, is a collection of vertex
disjoint cycles which partition the vertex set of K,. A 2-factorization of
K, is a partition of the edge set of K, into 2-factors. More formally, a 2-
factorization of Ky, is a pair (X, F), where F is a collection of edge disjoint
2-factors which partition the edge set of K, with vertex set X. The number
n is called the order of the 2-factorization (X, F).

Of course, a 2-factorization of K, exists if and only if n is odd and in
this case the number of 2-factors in (n — 1)/2.

Now a sinallest cycle in Ky, is a 3-cycle and a largest cycle is a Hamilton
cycle (= a cycle of length n). The most extensively studied 2-factorizations
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are Kirkman triple systems (= all cycles have length 3) and Hamilton de-
compositions (= all cycles have length n). It is well-known that Kirkman
triple systems exist precisely when n = 3 (mod 6) (8] and Hamilton decom-
positions exist for all odd n [6].

Quite recently L. Dejter, F. Franek, E. Mendelsohn, and A. Rosa [3]
looked at the problem of constructing 2-factorizations of K, containing a
specified number of 3-cycles. Modulo a few exceptions they give a complete
solution for n =1 or 3 (inod 6), while the problem for
n =5 (mod 6) remains open.

The purpose of this paper is to attack the same problem for 4-cycles.
We need to be more specific. Let F = {Fy, F2, F3,..., Fn_y)/2} be a 2-fac-
torization of Kn, and denote by z; the number of 4-cycles belonging to F;.
A simple calculation shows that

5 (n—1)(n —5)/8,n =1 (mod 4),

maxZa,, < { (n-1)(n - 3)/8,n =3 (mod 4).

The existence of a Hamilton decomposition of K, shows that min )~ 2; = 0.
For each n > 5 set

FC(n) = {0,1,2,...,(n — 1)(n - 5)/8}, if n = 1 (inod 4); and
"=1040,1,2,..., (n—1)(n - 3)/8}, if n = 3 (mnod 4).

Let Q(n) = {z | 3 2: = = for some 2-factorization of K,}.
We give a complete solution of the problem of constructing 2-factoriza-
tions of I,, with a specified numnber of 4-cycles by showing that:

(1) Q©)={0},

2 Q(7)={0,1,3},

(3) Q) =1{0,1,2,3}, and

4) Q(n) = FC(n), all odd n > 11.

We will organize our results into six sections, the first being a general
recursive construction followed by a section for each of n = 1,3,5, and 7
(mod 8), followed by a suminary.

Finally, in what follows we will denote the cycle

1
n
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by any cyclic shift of (1,2,3,...,n) or (I,n,n—1,n-2,...,3,2).

2 The qv+m Construction

The following construction is used repeatedly in what follows.

The qv 4+ m Construction Let k > 3, Q = {1,2,3,...,q}, V =
{1,2,3,...,2t = v}, and (Q, o) a commutative quasigroup with holes H
of not necessarily the same size. (See [5).) Further, let Z be a set of odd
size m and set S = Z U (Q x V). Let h* be any hole in H, which we will
call the initial hole and let (Z U (h* x V), T(h*)) be any 2-factorization of
K\pe|y4m- For each hole h, h # h*, let (ZU (h x V), T(h)) be a 2-fac-
torization of Kjpj4m containing a sub-2-factorization (Z, Z(h)) of order
m.

Now il g € H is any hole, including the initial hole h*, regardless of the
size of the hole g, if we take (|g|v)/2 2-factors of K|gy4n we will always
have (in — 1)/2 2-factors remaining. We will use this important fact in
what follows.

We construct a collection of 2-factors T’ of Kyy4rm with vertex set S as
follows:

(1) For each @ € h* let w(a) = {{z,y} | zoy =yozx =a; z # y
and {z,y} N h* = ¢}. Now K, , has exactly v/2 2-factors and
so the bipartite graphs K, , with parts {2} x V and {y} x V, all
{z,y} € m(a), can be pieced together to produce v/2 2-factors of
E(Kyvt+m\Kjns|v+m), where Kjpejp4m has vertex set Z U (h* x V).
Running over all @ € h* gives a total of (|h*|v)/2 such 2-factors. Now
choose any (|h*|v)/2 2-factors of T'(h*) and picce these together with
the above (|2*|v)/2 2-factors to obtain (|h*|v)/2 2-factors of Kyyim-
Place these 2-factors in T".

(2) For each hole h € H, h # h*, construct (|h|v)/2 2-factors of Kyyim
as in (1) using the 2-factors which do NOT contain cycles belonging
to the sub-2-factorization (Z, Z(h)) of
(ZU (h x V), T(h)). Place these 2-factors of Ky+m in T.

(3) Piece together the remaining (m—1)/2 2-factors of T(h*) along with
the remaining (m — 1)/2 2-factors of each T'(h), h # h*, making sure
to delete the cycles belonging to the sub-
2-factorization (Z, Z(h)) from each of the remaining 2-factors in each
T (h). Place these 2-factors in T

The union of the 2-factors in (1), (2), and (3) gives a total of (|h*|v)/2+
ZheH\{h.}(lhlv)ﬂ +(m —1)/2 = (qu+m —1)/2 2-factors which form a
2-factorization of Kgm4, with vertex set S.

103



Corollary 2.1 The qu+m Construction gives a 2-factorization of Kqyim
containing exactly ¢+ pep\(ne} S (h)+Y |zy| 4-cycles, where ¢ € Q(|h*|v+
m), S(h) = the number of 4-cycles in T{(h)\Z(h) (see (2)), and |zy| = the
number of 4-cycles in the 2-factorization of K, , with parts {z} x V aend
{y} xV.

With the qu + m Construction and Corollary 2.1 in hand, we proceed
to the cases n =1, 3,5, and 7 mod (8).

3 n=1(mod 8)

This is the most tedious case to handle for the simple reason that Q(9) =
FC9)\{4} = {0,1,2,3}.
Lemma 3.1 Q(9) = {0,1,2,3}.

Proof: To begin with the nonexistence of a solution to the Oberwolfach
Problem OP(9;4, 5) [1) shows that 4 ¢ Q(9).

(i) 0 € Q(9): Take a Kirkman triple system of order 9. (We will use this
in Section 5.)

(ii) 1 € Q(9): (1,2,3,4,5)(6,7,8,9), (1,6,
(516!4’7,1!8)2!9’3)1 (1’3? )83 1 75

(iii) 2 € Q(9): (1,2,3,4,5)(6,7,8,9),(1,6,2,
(1,4,2,5,8,6,3,9,7),(8,1,9,2,7,3,5,6,4).

(iv) 3€Q(9): (1,2,3)(4,5,6,7,8,9),(1,6,4,7,5)(3,8,9,3),
(1,8.5,3,7)(2,6,9,4), (1,3.6,8,4)(2,5,9,7).

3,8,5,9,4),

I

2
7,

7,
9).
8,3)(4,7,5,9),
4

Lemma 3.2 Q(17) = FC(17).

Proof: The complete graph K7 can be decomposed into 4 copies of the
Piotrowski graph (see (2, 4, 7]) each of which is the union of two Hamilton
cycles. Each Piotrowski graph can also be decomposed into two 2-factors
of types (i) 4 + 13 and 3 + 14, or (i) 4+ 4 + 9 and 3 + 4 + 10, or (iii)
4+4+4+4+5and 3+4+4+6. In other words, each Piotrowski graph can
be decomposed into two 2-factors so that the total number of 4-cycles in
these two 2-factors is 0,1, 3, or 5. Combining the four disjoint Piotrowski
graphs independently gives {0,1,2,3,...,20}\{17,19} C Q(17).

The following solution to the Oberwolfach Problem OP(17;4,4,4,5)
shows that 24 € Q(17) : (0,1, 8,9)(2,5,11,7)(3,13,10,15)(co0, 6,4, 12, 14)
(mod 16).
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Now replace the two 2-factors
(0,1,8,9)(2,5,11,7)(3,13, 10, 15)(c0, 6, 4, 12, 14)

and
(1,2,9,10)(3,6,12,8)(4, 14, 11,0)(c0, 7, 5,13, 15)

in the above 2-factorization with the two 2-factors
(0,1,8,9)(2,5,11,7)(3,6,4,12,14, 00,15, 10,13)

and
(1,2,9,10)(4,14,11,0)(3,8,12,6,00,7,5,13,15).

This decreases the number of 4-cycles by two and so 22 € Q(17).
At this point we have shown that FFC(17)\{17,19,21, 23} C Q(17).
Take K7 to have vertex set (Z5 x {1,2,3}) U {A, B}. Define a 2-factor
F by

Fo=((0,1),00,3),(0,2),(2,1),(2,2)((11,1),(2,3),(1,2),(4,3))
((4,1),(3,3),(4,2), (1,3))(4, (3,1), B, (3,2)).

If z € Zs, denote by I’ + z the 2-factor of K7 obtained from F by adding
z (mod §) to the first coordinates of the ordered pairs belonging to I'. The
complement C of FU(F + 1)U (F 4+ 2) U (F + 3) U (F + 4) consists of two
components one of which has vertex set (Z5x{3})U{ A, B} and is isomorphic
to K7, and the other has vertex set Zs x {1,2} and is isomorphic to the
graph with vertex set Z;o consisting of the 30 edges of lengths 1,2 and 4.
For simplicity we will describe the following two 2-factorization of this latter
component of the graph C using the symbols {1,2,3,4,5,6,7,8,9,10}: (i)
1, 3, 2, 10)(4, 6, 8,9, 7, 5), (1, 2, 6, 7)(3, 4, 8 10, 9, 5), (1, §, 6, 10,
4, 2, 8, 7, 3, 9) and (ii) (1, 3, 2, 10)(4, 6, 8, 9, 7, 5), (5, 6, 10, 9)(1,
2,8,4,3,7), (1, 5 3, 9)(2, 4, 10, 8 7, 6). Taking into account that
Q(7) = {0,1,3} (see Section 6), we can now combine the 15 4-cycles in the
2-factors F, P+ 1,F+2,F+3,and F+4 withz 4+ y

4-cycles, where 2 € {2,3} and y € {0,1,3}. This gives {17,19,21} C Q(17),
leaving only the value 23 in doubt. The following examnple (by computer
construction) takes care of 23:

((0,1,2,3)(4,5,6,7)(8,9,10,11)(12,13, 14, 15, 16),
(0,2,4,6)(1,3,5,7)(8,10,12,14)(9, 11, 15, 13, 16),
(0,4,1,5)(2,6,3,7)(8,12,9,15)(10, 13,11, 14, 16),
4 (O! 7s 81 13)(1s 61 91 14)(2: 5: 101 14)(334v 12: 117 16))
(0,8,1,9)(2,10,3,11)(4,13, 5, 14)(6, 12, 15,7, 16),
(0,10,1,12)(4,9,5,15)(6, 11, 7,14)(2, 13, 3,8, 16),
(0,11,4,16)(1,13,6,15)(2,8,5,12)(3,9,7,10, 14),

L (1,11,5,16)(4,8,6,10)(7,12,3,15,0, 14, 2,9,13).
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Combining all of the above cases shows that Q(17) = FC(17).
Lemma 3.3 Q(25) = I'(25).

Proof: In the qu + m Construction take ¢ = 6, v = 4, and m = 1; and
use a commutative quasigroup of order 6 with holes of size 2 (see [5]).
Since I{44 can be 2-factored into 0 or 4 4-cycles, Corollary 2.1 gives
FC(25)\{48,49,60} C Q(25). To handle the values 58 and 59 we again
use the qv + m Construction, this time with ¢ = 12, v = 2, and m = 1;
and a commutative quasigroup of order 12 with one hole of size 4 (the
initial hole) and the remaining holes of size 2. This quasigroup is easy to
construct. Take a transversal design with 3 groups of size 4 and blocks of
size 3, add a common point to each group, delete any point other than the
“added point”, and define an idempotent commutative quasigroup on the
two blocks of size 5 and each of the blocks of size 3. Finally, to handle the
value 60, take ¢ = 12, v = 2, and m = 1 in the gv + m Construction and
use a commutative quasigroup of order 12 with holes of size 2 (see [5]).

Lemma 3.4 Q(33) = IFC(33).

Proof: Use the qu + m Construction with ¢ =8, v=4,and m=1;and a
commutative quasigroup of order 8 with holes of size 2. In view of Corollary
2.1 FC(33)\{109,110,111,112} € Q(33). The values 109,110,111,112 are
handled exactly as in the case 1 = 25, first by using a cominutative quasi-
group of order 16 with exactly one hole of size 4 (the initial hole) and the
remaining holes of size 2, and then a commutative quasigroup of order 16
with all holes of size 2. The first quasigroup can be constructed from a
pairwise balanced design (PBD) of order 17 with one block of size 5 and
the remaining blocks of size 3 [5) by deleting a point from the block of size
5. The second quasigroup is constructed in [5].

Lemma 3.5 Q(41) = FC(41).

Proof: Take ¢ = 10, v = 4, and m = 1 in the gv + m Construction
along with a quasigroup of order 10 with holes of size 2. This gives
FC(41)\{176,177,178,179,180} C Q(41). To handle these values use the
qu + m Construction with ¢ = 20, v = 2, and m = 1, and a commutative
quasigroup of order 20 with one hole of size 6 (the initial hole) and the
remaining holes of size 2. This quasigroup can be constructed by taking a
Steiner triple system of order 21 with a subsystem of order 7 and deleting
a point belonging to the subsystem of order 7.

Lemma 3.6 Q(n) = FC(n) for alln =1 (mod 8), n > 49.
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Proof: We split the proof into two parts: n = 1 (inod 16) and n = 9 (imod
16).

n =1 (mod 16). Write n = 16k + 1. Take ¢ = 2k > 6, v = 8, and
m =1 in the gv + m Construction along with a commutative quasigroup
of order 2k with holes of size 2. Trivially K3 g can be 2-factored into 0 or
16 4-cycles and so an easy counting argument shows that F'C(n) = Q(n)
(Corollary 2.1).

n = 9 (mod 16). Write n = 16k + 9. In order to handle this case we
will need two special 2-factorizations of Kas: one containing a sub-2-factor-
ization of order 9 with 56 4-cycles none of which belong to the sub-2-factor-
ization; and one containing a sub-2-factorization of order 9 with 0 4-cycles.
Both are constructed in Lemina 3.3. Using the qv + m Construction with
g = 2k, v = 8, m = 1 and the special 2-factorization of K55 above, Corollary
2.1 gives FC(n) = Q(n).

Combining these two cases completes the proof.

4 n=3(mod 8)

We begin with the cases n = 11 and 19 followed by a construction for all
n =3 (mod 8), n > 27.

Lemma 4.1 Q(11) = I'C(11).

Proof: We break the proof into five parts.

(i) To begin with we will denote by Gj; the subgraph of K, with
vertex set Z)) cousisting of all edges of length i and j. The subgraph G, 2
of K can be decomposed into two 2-factors of type 11,11; or 11,7+ 4; or
11,4+443. Since G3 4 is isomorphic to G| 2 this gives {0,1, 2,3,4} C Q(11).
(We also note that there exists a solution to the Oberwolfach Problem
OP(11;3,8) which is a 2-factorization of K, with zero 4-cycles in which
each 2-factor contains a cycle of length 3. We will use this 2-factorization
in Lemma 4.3.)

(ii) There exist solutions to the Oberwolfach Problem OP(11;4,7) and
OP(11;3,4,4) which gives {5,10} C Q(11) [1].

(iii) Take K; to have vertex set (Z4 x {1,2}) U {4,B,C} and let

F=(A4,(0,1),B,(1,2))
(C,(3,1),(2,1),(0,2),(1,1),(2,2),(3,2)). If 2 € Z4, denote by F + z the
2-factor of K, obtained from F by adding z (mod 4) to first coordi-
nates of the ordered pairs belonging to F. Then {F+2z | 2 € Z4} U
{(Aa B: C)((O? 1)! (2: 1)) (2» 2)) (O: 2))((1: 1): (31 1)1 (3a 2)$ (]-s 2)) is a 2-factor-
ization of I, containing ezactly 6 4-cycles.

(iv) Take K to have vertex set (Zs x {1,2}) U {oo} and let

F = (00,(0,1),(3,2))((1,1),(0,2), (2,2), (1,2))((3,1), (4, 1), (3,1), (4, 2)).
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Then {I"+ 2 | z € Z5} is a 2-factorization of K, containing 10 4-cycles.
The union of F and F + 2 can be decomposed into two 2-factors as follows:

(a)  ((3,1),(2,2),(4,2),(3,2))(o0, (0,1),(1,1),(1,2), (4, 1), (2, 1), (0, 2)),
and (00, (3,2),(0,1),(1,2),(2,2),(0,2),(1,1),(4,1),(3,1), (4, 2), (2, 1))).
(b)  ((0,1),(1,1),(4,1),(1,2))(00, (0,2),(2,1), (4,2),(2,2), (3,1),(3,2)),
and  ((1,1),(0,2),(2,2),(1,2))(00, (0,1), (3,2), (4, 2), (3,1), (4,1), (2,1))-

This reduces the number of 4-cycles by 3 and 2 respectively. Hence {7,8} C
Q(11).
(v) Finally, the 2-factorization of K); given by

(1,2,3,4)(5,6,7,8,9,10,11),
(1,8,3,9)(2,6,4,11), (, 7, 10),
(1,3,5)(2,7,4,9)(6,10,8,11),
(2,4,10)(1,7,3,11)(5,8,6,9),
(1,6,3,10)(2,5,4,8)(7,9,11)

shows that 9 € Q(11).
Combining all of the above cases shows that Q(11) = FC(11).

Lemma 4.2 Q(19) = FC(19).

Proof: In the qu + m Construction take ¢ = 3, v = 6, and m = 1; and
use an idempotent commutative quasigroup of order 3 (= a commutative
quasigroup with holes of size 1). It is an easy exercise to construct 2-fac-
torizations of Kgg containing 0,3, or 9 4-cycles. Since Q(7) = {0,1,3}
(see Section 6), Corollary 2.1 gives FC(19)\{35} C Q(19). The value 35 is
handled by the following example (by computer):

t g |

(4,5,6,7
] (1131 5’7
(2,6,3,7
¢

2,3) (8,9,10,11)(12,13,14,15)(16,17,18),
4,6)
,1,5)
8,15
1,9

)
)(8,10,12,14)(9,16,11,17)(13, 15, 18),
,6,3,7)(8,12,9,13)(10,16,15,17)(11, 14, 18),

1,6,9,11)(2, 5, 10,13)(3, 16,12, 18)(4, 14, 17),
)(2,10,3,11)(4, 12, 17, 13)(5, 15, 6, 18)(7, 14, 16),
12)(3, 14,6, 17)(4,8, 5,16)(7, 13, 11, 15)(2, 9, 18),
18)(1, 14,10, 15)(2,8, 3,12)(5,9,7,17)(6, 13, 16),
14)(1,16,2,17)(3,9,4,15)(6, 8, 18,10)(7,11,12),
17)(2, 14,9, 15)(5,11,6,12)(1, 13,3, 4, 10, 7,18).

-

-

1Y

(0,1
(0,2
(0,4
(0,7
. 0,8,
(0,1
(0,1
(0,1
(0,1

3

3 r ™

3

0,1
1,4
3,5
6,8

) bl
) ]
\ ) vy

Combining the above cases completes the proof.

Lemma 4.3 Q(n) = FC(n) for alln =3 (mod 8) > 27.
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Proof: Writen = 8k+3. Takeq =2k > 6,v=4,and m = 3 in thequ+m
Construction and use a commutative quasigroup of order 2k with holes of
size 2 and a pair of 2-factorizations of K, one containing a sub-2-factori-
zation of order 3 with 10 4-cycles, and one containing a sub-2-factorization
of order 3 with 0 4-cycles. Both are constructed in Lemma 4.1. Corollary
2.1 now gives Q(n) = FC(n).

5 n=5 (mod 8)

Trivially, Q(5) = {0}. We handle the cases 13 and 21 separately, followed
by a construction for all n = 5 (mod 8), n > 29.

Lemma 5.1 Q(13) = 'C(13).

Proof: The complete graph K3 can be written as the union of 3 Piotrowski
graphs (see (2, 4, 7]) each of which is the union of two Hamilton cycles. Each
Piotrowski graph can also be decomposed into two 2-factors of types (i) 4+9
and 3+ 10, or (ii) 4+ 4+ 5 and 3+ 4 + 6. In other words each Piotrowski
graph can be decomposed into two 2-factors so that the total number of
4-cycles in these two 2-factors in 0,1, or 3. Combining the three Piotrowski
graphs independently gives {0,1,2,3,4,5,6,7,9} C Q(13).

The qu + m Construction with ¢ = 3, v =4, and m = 1 using an idemn-
potent commutative quasigroup of order 3 (= a commutative quasigroup
with holes of size 1) gives {0,4,8,12} C Q(13).

At this point we have FC(13)\{10,11} C Q(13).

Now take K)3 to have vertex set (Z; x {1,2}) U {4, B,C}. Then

F =(4,(0,1),B,(0,2))
(C$ (2: 1), (31 1),(4,2))((1,1), (4, 1),(2,2),(1, 2),(3,2)) is a two factor of K3.
The complement of FU (F +1)U(F +2)+(F+3)+(F+4) (nod 5) is a
2-factor of type 3 + 10. Hence 10 € Q(13).

Finally the following 2-factorization shows that 11 € Q(13).

(1,8,10)(2,11,6,4,7,12)(3,9,5,13),
(1,13,2,10,7)(3,6,5,12)(4,8,11,9),
(1,6,2,9,12)(3,10,4,11)(5, 7,13, 8),
(1,9,10,5,11)(2,7,3,8)(4, 12,6, 13),
(1,2,3,4,5)(6,7,8,9)(10,11, 12,13),
(1,3,5,2,4)(6,8,12,10)(7,9, 13,11).

Lemma 5.2 Q(21) = FC(21).

Proof: Use the gv + 1n Construction with ¢ = 3, v = 6, and m = 3, an
idempotent commutative quasigroup of order 3, and a pair of 2-factoriza-
tions of Ky each containing a sub-2-factorization of order 3, one containing
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0 4-cycles and the other 3 4-cycles. (See Lemma 3.1.) As pointed out
in Lemma 4.2, there exists 2-factorizations of Kg¢ containing 0,3, or 9
4-cycles. Corollary 2.1 shows that I"C(21)\{37,38,39,49} C Q(21). The
values 37,38, and 39 are handled with the gv + m Construction with ¢ =
10,v = 2, and m = 1 using a commutative quasigroup of order 10 with
one hole of size 4 (the initial hole) and the remaining holes of size 2. To
construct such a quasigroup, delete a point from the block of size 5 of a
PBD of order 11 with one block of size 5 and the remaining blocks of size
3. (See [5).) The value 40 is obtained by using the qu + m Construction
with ¢ = 10,v = 2, and m = 1 and commutative quasigroup of order 10
with holes of size 2.

Lemma 5.3 Q(n) = F(n) for alln =5 (mod 8) > 29.

Proof: Write n = 8k + 5. Inspection of the 2-factorizations in Lemma 5.1
gives a 2-factorization of K3 with a sub-2-factorization of order 5 contain-
ing 12 4-cycles and a 2-factorization of K3 with a sub-2-factorization of
order 5 containing 0 4-cycles. In the qu + m Construction take ¢ = 2k,
v = 4, and m = 3, and use a commutative quasigroup of order 2k with
holes of size 2k. Corollary 2.1 completes the proof.

6 n=7(mod 8)

We begin with the cases 7 and 15 followed by a counstruction for all n =7
(mod 8), n > 31.

Lemma 6.1 Q(7) = {0,1,3}.

Proof: It is an casy exercise to show that 2 ¢ Q(7). The following example
shows that Q(7) = {0,1,3}.

(i) 0 € Q(7): Take a Hamilton decomposition of K7.
(i) 1€ Q(7):(1,2,3)(4,6,5,7),(1,4,3,6,7,2,5),(1,6,2,4,5,3,7).
(i) 3€ Q(7):(1,2,7)(3,5,4,6),(1,3,4)(2,5,7,6),(1,5,6)(2,3,7,4).
Lemma 6.2 Q(15) = FC(15).

Proof: The following 2-factorization of K5 containing 0 4-cycles contains
a sub-2-factorization of order 7:
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((9,10,11,12,13,14,15)(1,2,3)(4, 5,6, 7, 8)
(9,11,13,15,10,12,14)(1,4,6)(2, 7, 3,8,5)
(9,12,15,11,14,10,13)(1,5,7)(2, 4, 3,6, 8)

{ (1,8,9,2,10,6,11,3,12,5,13,4, 14, 7, 15)
(2,6,9,3,10,5,11,4,12,7,13,1, 14, 8, 15)
(3,5,9,4,10,7,11,1,12,8,13,2,14, 6, 15)

\(479110811212613314515)

If we replace the sub-2-factorization of order 7 in the above 2-factoriza-
tion with the 2-factorization (ii) in Lemma 6.1 the result is a 2-factorization
of order 15 containing exactly one 4-cycle; i.e., 1 € Q(15).

We now use the gqv + m Construction with ¢ =3, v =4,and m =3
with an idempotent commutative quasigroup of order 3 (= all holes of size
1) and the 2-factorizations (ii) and (iii) of order 7 in Lemina 6.1. Corollary
2.1 gives 'C(15)\ {0, 1,20} C Q(15). Note (for use in Lemina 6.3) that the
2-factorization containing 18 4-cycles is constructed by taking 4 4-cycles
on each of the three copies of K44, a Hamilton decomposition of K7 on
the initial hole, and the 2-factorization (iii) of X7 on the two holes other
than the initial hole. Combined with the preceding two examnples this result
gives FPC(15)\{20} € Q(15).

The following example shows that 20 € Q(15):

((1,11,8)(2,4,3, 0)(6 7,9,14)(5,12,13,15)
(1,12,9)(2,5,3,11)(7,9,4, 15)(6, 13, 14, 10)
(1,13,4)(2,6,3,12)(8,9,5,10)(7, 14, 15,11)
{ (1,14,5)(2,7,3,13)(9,4,6,11)(8, 15,10,12)
(1,15,6)(2,8,3,14)(4, 5,7, 12)(9, 10, 11,13)
(1,7,10)(2,3,15,19)(4, 11,12, 14)(5, 6, 8, 13)
[ (1,2,15,12,6,9,3)(4,7, 13,10)(5,8, 14,11)

Combining all of the above results completes the proof.

Lemma 6.3 Q(n) = FC(n) for alln =7 (mod 8) > 31.

Proof: Write n = 8k + 7. Inspection of the 2-factorizations in Lemma 6.2
gives a 2-factorization of K5 with a sub-2-factorization of order 7 contain-
ing 0 4-cycles and a 2-factorization of K5 with a sub-2-factorization of
order 7 containing 18 4-cycles none of which belong to the sub-2-factoriza-
tion of order 7. Now use the quv + m Construction with ¢ = 2k, v = 4 and
m = 7 with a commutative quasigroup of order 2k with holes of size 2 and
the above pair of 2-factorizations of Ks. An easy application of Corollary
2.1 shows that Q(n) = FC(n).
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7 Summary
We summarize the results in this paper with the following theorem.

Theorem 7.1 Q(5) = {0}, Q(7) = {0,1,3}, Q(9) = {0,1,2,3}, and
Q(n) = FC(n) for all odd n > 11. 0
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