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Abstract
This paper provides a general method for finding a critical set
for any latin square of order n. This method is used to prove the
existence of critical sets of a variety of sizes. It has also been applied
to all main classes of latin squares of order seven, thus producing a
critical set for each latin square of order seven.

1 Introduction

A latin square of order n is an n x n array with entries chosen from a set
N, of size n such that each element of N occurs precisely once in each row
and column.

A partial latin square P, of order n, is an n X n array where the entries
in non-empty positions are chosen from a set N, in such a way that each
element of N occurs at most once in each row and at most once in each
column of the array. A critical set is a partial latin square of order n which
is contained in precisely one latin square of the same order, and for which
the removal of any entry destroys this property. Critical sets attracted
interest after they were introduced by Nelder in 1977 in [9]. Subsequently
however, the determination of properties about them has appeared to be
a complex problem. The known algorithms for producing critical sets for
a given latin square, [7], are computationally intense and until now it has
proved difficult to investigate critical sets generally for latin squares of order
greater than 6.

This paper documents new and interesting ideas which significantly re-
duce the run time of the exhaustive search algorithms which in the past have
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been used to identify examples of critical sets in latin squares. Using these
methods, examples of critical sets for all 147 main classes of latin squares
of order 7 have been found. Arising from these ideas is the development of
a procedure for constructing general families of critical sets. Consequently,
the existence of new families of critical sets is documented in Section 4.
The methods presented are the first to establish critical set constructions
in latin squares other than the cyclic group or in latin squares that are
partitionable into cyclic subsquares. Further, they provide a critical set
of size 28 in a latin square of order 10, filling a hole in the classification
produced in [4}.

The main results of this paper, are Theorem 1 in Section 3 and the
general constructions given in Theorems 2, 3 and Corollary 2 in Section 4.
At the end of the paper a table provides an example of a critical set for
each main class of latin squares of order 7. Before tackling these however,
some background information is needed.

2 Definitions

In what follows the set N is assumed to be {0, 1, ... ,n — 1}. Further,
the representation of a latin square with a set of ordered triples {(z, j; k) |
element k occurs in position (Z, ) } will be used often.

Let

L, = {(il, g1 kl) I cell (il,jl) contains k; € N},
Ly = {(32, j2; k2) | cell (i2,72) contains ks € N, }

be two latin squares of order n. Then L, is said to be isotopic to Lo
if there exists permutations a, 8 and v such that Ly = {(}1a, 16; k1) |
(1, j1; k1) € L1 }. In this case L, is said to be an isotopeof L,. Ifa =8 =17«
then L, is said to be isomorphic to L,.

Each latin square L = {(,5; k) | cell (,5) contains k¥ € N} has five
conjugates associated with it. Conjugates result by interchanging rows
with columns and/or elements of L, and these are:

o L* ={(4,i;k) | (4,5;k) € L};

o 1L = {(k,5;1) | (i,5;k) € L};

o L= ={(i,k;j) | (4,5;k) € L};

o YL~ ={(4, ki) | (3,5:k) € L};
o (TIL)7t = {(k,i;5) | (i,5: k) € L}.
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For every latin square L of order n, the main class of L consists of all
latin squares M where either M is a conjugate of L and/or M is isotopic
to L. For more details on latin squares, isotopisms and conjugates, see [2].

Let P be a partial latin square of order n. Then |P| is said to be
the size of the partial latin square and the set of positions Sp = {(3,) |
(i,7; k) € P,3k € N} is said to determine the shape of P. Let P and P’ be
two partial latin squares of the same order, with the same size and shape.
Then P are P’ are said to be mutually balanced if the entries in each row
(and column) of P are the same as those in the corresponding row (and
column) of P’. They are said to be disjoint if no position in P’ contains
the same entry as the corresponding position in P. A latin interchange I
is a partial latin square for which there exists another partial latin square
I', of the same order, size and shape with the property that I and I are
disjoint and mutually balanced. The partial latin square I’ is said to be a
disjoint mate of I. See Table 1 for an example.

w o
Lo
O Wb N
O W
[JERE -
oo

Table 1: A latin interchange of size 8 with its disjoint mate.

If a latin interchange contains precisely two entries in each non-empty
row and column, then the latin interchange is said to be a cycle, see [6].
An intercalate is an example of a cycle of size four, and this is the smallest
possible size for a latin interchange.

Lemma 1: Suppose L is a latin square of order n, and I,J C L are
latin interchanges satisfying the following conditions.

(7') J s Of the form {(rlrcl;kl)’(rl,c2;k2)’(7'21 cl;k2)7 (‘7‘2,02;]63),
(7‘31 C1; k3)$ (7'3, C2; k4)s ceey (’I‘a, €13 k8)1 (7‘5, C2; kl)};
(i) INJ = {(r1,c1; k1), (re, c15ke)}, for some t, where 1 <t < s, and
(i) {(r1,c1;ke), (re,c1;k1)} C I, the disjoint mate of I.

Then the latin square L' = (L\ I) UI' contains two latin interchanges J1
and J2, such that S;yNSy2 =0 and Syn1,8s2 C Sy. (Note that requirement
(443) above is always satisfied if |{i | (ri,c1) € Sr}| = 2.)

Proof. Since (r1,c1; kt), (e, 15 k1) € I’ C L' it follows that {(r1, 15 ke),
(r1ycziks), (r2,ciike), (re,cesks), ...y (Te—1,c1ike-1), (Te-1,C2;ke)}
Cc L and {(ri,c1;k1), (72, €25 ke1)s (Peg1y €15 Keg1)s (Tegns €25 Keta)y -«
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(rs,€1; ks), (s, C2; k1)} C L' are two disjoint latin interchanges in (L\I)UI’
satisfying the required properties.

Corollary 1: Suppose L is a latin square of order n, and I,J C L are
latin interchanges satisfying the following conditions.

(i) J is a cycle of size 2s on the elements ky,k; € N;
(ii) INJ = {(r1,c1; k1), (e, ce; k1)}, for some ¢t where 1 < t < s and
(iii) (r1,ce; k1), (re, €15 k1) € I, the disjoint mate of I.

Then the latin square L' = (L \ I) U I’ contains two cycles J1 and J2,
such that §n NSy2 = @ and (Sn1 \ {(r1,e)}) € (Ss\ {(r1,c1)}) and
(Sr2\ {(re,c1)}) € (Ss\ {(re,ce)})-

Proof. This result is obtained by using the conjugate J~! of the latin
interchange, J, given in Lemma 1. This then gives

{(r1,c2; k2), (r1,c5k1)} U {(ri,ci5ka), (s ciprs k22 < 2 <t — 1},
{(re, 15 k1), (7o, €eaas k2), (75, s k1), (Tsy €15 K2) }
U{(rs,ci; k1), (i, ciprs k)|t +1 < i< s — 1}

J1
J2

A partial latin square C = {(i,5;k) | cell (¢,5) contains k € N}, of
order n is said to be uniquely completable (UC) (or to have unigue comple-
tion) if there is precisely one latin square L of order n that has element &
in position (Z, j) for each (%, 7; k) € C. Note that any critical set is UC. A
minimal critical set is a critical set for L of smallest possible size and hence
is also the smallest UC set for L. An example is presented in Table 2. If
C is a UC set, a triple (z,7;k) € L\ C will be said to be forced, if either
Vh # 4, 3 z such that (h,j;2) or (h,2;k) € C, or Yh # j, 3 z such that
(z,h;k) or (i,h; 2) € C, or Yh # k, 3 z such that (i,2;h) or (2,5;h) € C.

X K KD = O
* % W K KD
¥ O K ¥ ¥ *¥DO
® X K X ¥ N ¥

O * Kk K K K ¥
W R R R
OVl QO * ¥ % %

Table 2: A critical set of size 12 for a latin square of order 7.

Lemma 2: Let C C L denote a critical set for L = {(i, j; k) | cell (3,5)
contains k € N}. Ifa, 8,7 are permutations of N and L' = {(ia, jB; k7) |
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(i, 7; k) € L} is an isotope of L, then C' = {(ia, jB; kv) | (3, 5; k) € C}
is a critical set for L', Similarly, if L° is some conjugate of L then the set
C¢, the relevant conjugate of C, will be a critical set for L°.

Lemma 2 implies that if a critical set C is known for a latin square L,
then a critical set for any latin square in the same main class as L can also

be produced.
Lemma 3: A partial latin square C C L, of size s and order n, is a

critical set for a latin square L if and only if the following hold:
(i) C contains an element of every latin interchange that occurs in L;

(ii) for each (i, j; k) € C, there exists o latin interchange Ir in L so that
I.NnC= {(7') 7 k)}

Proof.

(i) If C does not contain an element from some latin interchange I, where
I has the disjoint mate I’, then C is also a partial latin square of
L'=(L\I)UI'. Hence C is not UC.

(ii) If no such latin interchange I, can be found, then the position (4, j; k)
may be deleted from C and C \ {(, j; k)} will still be UC and thus
a critical set for L.

If N={0,1,...,n — 1} then a back circulant latin square has the
integer i + j (mod =) in position (%, §). The back circulant latin square of
order n will be denoted by BC,. The critical set in Table 2 completes to

BCy.
In 1978, Curran and van Rees [1] produced a UC set for BC, of size

1‘—24:3- for odd values of n. For even n, they produced a critical set of size

1‘33. These findings have been expanded on to provide the following general

result.
Lemma 4. (Donovan and Cooper [3].) The partial latin square

§ = {(i, 7;i+j(modn))|0<i<a,0<j<a—i}u
{G, j; i+ j(modn)) |a+2<i<n-1l,n+l+a—-i<j<n-1}

where ”—2‘—3 < a <n-—2, is a critical set for BCy,.

3 Main Result

In this paper, techniques for constructing critical sets are given and critical
sets are produced for all latin squares of order seven. This is accomplished
by using the result of Lemma 2 and also by utilizing the following.
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Theorem 1: If C is a critical set in a latin square L of order n, and [ is
a latin interchange in L (with disjoint mate I), then the set C' = (C\I)uI'
isa UCset for L' = (L\IT)UTI'.

Proof. Clearly C' = (C\I)UI' C L'. Suppose that C' =(C\I)urI
does not have a unique completion to L’. Then there must exist a latin
interchange .J in L’ where JNC’ = 0. Since S¢ € Sc, it follows that
JNC = 0. However, this contradicts Lemma 3, as C must contain an
element of every latin interchange occurring in L.

Theorem 1 then provides us with a method for producing a critical set
for every possible latin square of every order n. To see this, note that
Lemma 4 provides a critical set, C, for the back circulant latin square
(BC,,) for every value of n. Then for a given latin square L’ of order n
(in standard form), consider the set I = {(%,5;i +7) | (4,7;¢ + j) ¢ L'}.
That is, the set of positions in BC, which differ from L’. This set of
positions forms a latin interchange in BC,, with corresponding disjoint
mate, I’ = {(i,5; k) € L' | i+ j # k}. From Theorem 1, the set (C\I)U I’
is a UC set for L'. A critical set is contained in every UC set. Hence, by
removing elements sequentially, and testing for UC, a critical set is then
found for L’. Using this method, we have identified a critical set for each
of the 147 main classes of latin square, of order 7. The production of all
the UC sets for each main class takes only seconds and the reduction, to
the smallest critical set containing these entries of (L \ I) U I’, a further
22 minutes of CPU time on a Sun Ultra 220 machine. A representative of
each main class can be found in [5]. The largest critical set in this list is of
size 19. Consequently, these results provide an upper bound, of 19, for the
size of the minimal critical set for all latin squares of order 7.

The next lemma deals with the question of which elements of (C\I)NI’
can be removed while still retaining the property of unique completion.

Lemma 5: Let C be a critical set in a latin square L of order n. Let
f =(3,7;k) be forced in L\ C, and let I be a latin interchange, such that
(i,5; k) € I. Then, if I’ denotes a disjoint mate of I and (%, g; k) € I’ then
the set C' = (C\I)U(I'\ (3,9;k)) is a UC set for L' = (L\I)U I'.

Proof. First suppose that element (4, j; k) is forced by reason of Vh # j,
3z such that (i, h; 2) or (2, h; k) € C. Now note that if (%, j; k) is forced in
C, then for h # j, either column h contains element & or position (i, k) is
filled. Then, if k occurred in column % # g of I, k occurs in column h of I,
(Note that column j must contain & in I'.) If (i,h) was filled in I, h # g,
then (i, h) will be filled in I’ and also (¢,h) € Scr. For all other columns
h, if k occurred in column A in C, it is unchanged and if (i, k) was filled, it
will contain the same entry in (C \ I)U(I’\ (¢, g; k)). Hence in all cases, it
is impossible to place element k in any position of row i other than position
(,9).

An element (%, j; k) may be forced for other reasons and the same argu-
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ment applies in these cases.

Consequently (4, g; k) is forced in the completion of C’. Now application
of the proof of Theorem 1 establishes that C' = (C\I)U (I'\ (i,g;k)) is a
UC set for L' = (L\I)U I

4 General Constructions

In Theorem 1 it was established that a UC set could easily be produced
for any latin square, using the existence of a critical set in another latin
square of the same order. It is then of interest to know what the size of the
underlying critical sets might be. The following investigates this concept.
In what follows, addition and subtraction is performed modulo n.

Theorem 2: When n is even and n > 6, there exist critical sets of
order n and sizes "Tz + 2 and "Tz + 3.

Proof. We shall begin by noting the following facts. When N has even
order 7, position (z,y) in the back circulant latin square BCyp, occurs in
the intercalate I, = {(z,y;2 + %), (z, ¥y + iz +y+ §), (z+ 5,52+ y +

n?

2),(z + 3,y + %;z +y)}. Thus there are precisely - non-intersecting
intercalates in BC,, with each position (z,%) occurring in precisely one of
these intercalates. In each case the set L' = (BCp \ In) U I},, where I} is
the disjoint mate of I, is a latin square of order n. From Lemma 4, with
a = 233, note that the set

C = {Gj;i+j(modn) [0<i<Z-1,0Sj<F—1-i}U
{G s i+i(modm) | Z+1SiSn-Ln+Z-i<j<n-1},

is a critical set for BC,, of size "72.

By Theorem 1 the set (C \ I,) U I}, has a unique completion. For all
elements (i, j;k) € C \ I, there exists an intercalate P such that PNC =
{(3,5; k)}, and PNI, = . It follows that each element of C\ I, is necessary
for unique completion. We shall now determine which elements of I, are
necessary for UC.

Consider intercalates I,, containing positions (z,y) in C. Due to the
symmetry of BC,, and C, only positions (z,y) on or above the diagonal
need consideration. For 0 < z < [!‘—4'—2-1 and z < y < 3 -1-xz, observe from
Corollary 1, that L’ contains two cycles on the elements z +y+ %, z+y+
2+ 1. The cycle on rows £ + 1 to = + § has positions {(z+ 3,y + %), (z +
2y+1),(z+i,y+3—19),(z+i,y+5—i+1)|1<i < § -1} Thiscycle
intersects (C\ In)UI, in (z+ 5,y+ §;z+y+ 5) alone. Similarly, provided
both z and y are not equal to 0, Corollary 1, can be used to show that L’
contains two cycles on the elements z +y+ %, z+y+ 3 — 1. Further, the
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cycle on rows z to z + § — 1 intersects (C \ I,) U1}, in (z,y;z +y + 3)
alone. Note that in the completion of C, the element (0, ;%) is forced,
and so when z =0 and y = 0, by Lemma 5, (C'\ I,) U(1;,\ (0,0; 3)) has a
unique completion.

Finally, provided (z,y;z+y) # (0,5 — 1;  — 1) Lemma 1 gives a latin
interchange on rows = to z + 5 — 1 and columns y + % and y + § +1,
which intersects (C'\ I) U I}, in (z,y + ;z + y) alone. Note that in the
completion of C, the element 5 — 1 is forced to occur in (,n —1). Hence
r=0and y =% —1, by Lemma 5, (C\ I,) U(J;, \ (0,n — 1;3 — 1)) has
unique completion.

Consequently when (z,y; z+y) € {(0,0;0),(0, 5-1;%-1),(3-1,0; 3—
1)}, the sets (C\ I,) U(I,\ (0,0; 3)), (C\ LL)U (I, \ (0,n—1; 2 — 1)) and
(C\I)U (I, \ (n—1,0; 5 — 1)) respectively are examples of critical sets
of size "Tz + 2. For all other values of z and y in the range 0 < z < -1
and 0 <y < § — 1 -z, the sets (C'\ I,) U, are examples of critical sets
of size "T’ +3.

A similar argument can be used to show that for 7+1<z<n-1
andn+ % —z <y<n-1theset (C\I,)UI, is also a critical set of size
243

Corollary 2: When 7 is even, critical sets exist of sizes:

2=2 for n = 2(mod4)

a2 = = )
1. &-+3tfort=0,1,2,...,w, where w {2___4 for n = 0(modd)

-6 =
n? — = 1 forn=2 (mod4)
2. Z-+2+3tfort=0,1,2,...,w, wherew { ,,4_4 for n = 0 (mod4)

n—6 —

3. 2 4443tfort=0,1,2,...,w, wherew = { ,,_%_g fﬁi : = ggggg

Proof. The result applies by progressively interchanging intercalates
that intersect with element § —1 in C. The values of w then correspond to
the number of times element % — 1 can be used. In particular, for the set
of sizes in (1), select ¢ distinct values of i where 1 < i < w, and interchange
the intercalates I; that intersect (2 — 1, % — 2¢). For each intercalate I;,
a new critical set C; is produced where C; = (Ci-1 \ ;) U (I}). Each
intercalate I; has positions {(2i —1, § —2i),(2i—1,n—2i),(2i+ 3 -1,5 -
2i),(2¢ + % — 1,n — 2i)} and hence is at least two rows and columns away
from intercalate I;_,. Each set C; has size |C;—;| + 3 and each element is
still necessary in Cj;, due to the following latin interchanges. The element
in position (2i — 1, § — 2i) is necessary as it is the only element in C; that
intersects the latin interchange on rows 2i — 1 and 2i and columns % — 2:
to n — 1 — 2. This latin interchange is the transpose of that described in
Lemma 1. The element in position (2 — 1,n — 27) is necessary as it is the
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only element in C; that intersects the latin interchange as per Lemma 1
on columns n — 2 and n — 2i + 1 and rows 2i — 1 to 2{ + § — 2. Position
(2i+ % —1, 3 — 2i) occurs uniquely in the transpose of the latin interchange
from Lemma 1in rows 2i+ % —1 and 2i+ % and columns 3 —2i ton—1-2i.
Finally, position (2i+ % — 1, n—2i) occurs uniquely in the latin interchange
from Lemma 1 in rows 2 through to 2i+ % — 1 and columns n —1— 27 and
n — 2i.

For the set of sizes in (2), this time interchange the intercalate with
(z,y) = (0,% — 1) to produce a critical set of size 541 + 2. Then select ¢
distinct values of i where 1 < i < w, and interchange intercalates I; which
contain position (2i, 252 — 2i). Again each new critical set C; has size
|Ci-1]+3 and the relative latin interchanges as used in (1) ensures that all
elements of C; are necessary.

For the third set of sizes, interchanges the intercalates on (0,% — 1)

and (% — 1,0). This provides a critical set of size -’-‘4: + 4. Then select ¢
values of i where 1 < i < w, and interchange the intercalates that intersect
(23, 252 — 2i). Again, the same argument as for (1) and (2) applies to the
size of C; and the result follows.
0

We shall now apply a similar technique to the back circulant latin
squares of odd order.

Theorem 3: When n is odd, and n > 5, there exists a critical set of

n:—l +2.
Proof. Let

cC = {(z],z+J)|0<z<—3-0<J<

_3}

l—iSJ'Sn—l}

1 —
u {(i,j;i+j)|—2—SiSn—1,”

and I = {(0,0;0), (7" -3 n-l) (‘t - Za%l)v(nT_l"ﬂg_l')o) |
i=0,..., 251} It will be shown ‘that the set
n+1 1 n+1 n+1
@ = @\ Du {020,325 000, (252, 20 2 )

is a critical set of size "24‘1 +2, for L' (Z\D)UTI where I’ = { (0,0; 251),
(ot — 20,6 + 1,52 - in5h), (32,0,0), (25, =i nd),
(o, —+— O)Iz—O 1,. "-3}

To show that C’ has unique completion, we need only show that the
cells of S; must contain a umque entry and then invoke Theorem 1.

To begin, note that (" ,0; "‘1) was forced in the completion of C, and
it follows that (0,0; 251) is forced in the completion of C’. Now for i = 251
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downto 1, the entry ("T — 1,1 —+—) is forced. Then, for i = %= L downto
1, the entry (—'t— —1,1; ﬂ‘1) is forced and unique completion follows.

Corollary 1 and the cycle on elements 0 and n — 1 can be used to
show that both of the entries (0, 2£%;0), (252, 0; 0) are necessary for unique
completion. Also using Lemma 1, it is easy to see that a latin interchange
exists on the elements in rows 23, and 7= 1 and columns 1 to —"'— This
latin interchange intersects C in the entry (23%, 2f%; 241) alone

Next consider the element (0,1;1). For n > 5 the latin interchange
{(0,1;1),
0,n-1;n-1),(1,n-2;n-1),(1,n—1;0),(2,n - 2;0),(2,n - 1;1),(3 +
2i,n—2—2;1),(3+ 2i,n -4 - 2i;n - 1)}, fori = 0,..., "—;5- intersects
C’ in (0,1;1) alone. For n = 5, element (0,1;1) is needed as it is the only
entry in columns 1 and 2. For element (1,0;1), take the transpose of the
latin interchange used for (0,1;1), and thls now also applies for n = 5.

For i = 1 to 252, the interclate {(i, 2 — i; 23), (i,n — 4;0), (25> +
i, 28 —4;0), (2 +'L n - i 211)} mterse(,ts C' in (";1 +1i,n — 3 "gl
alone. Similarly {(z 2l g "2 ), (,n —%0), (2 +4, 251 —4;0), ("
i,n—i; —““—)}, intersects C’ in (—L +i,n—1i; —"2—) alone

Forn >9and n = 1(mod4), the entries (2 ";3 221), (2, 253 243,
(2, B 243), (3, 253, 243), (3, 251, 245), (3, 231, 247), (3425, 28 s
23), (3 + 2,2 -+- + 2), (n - 2, "-1, n=s ) (n - 1, "-3, ";5),
(n-1,254 n"3?) (n—- 1, —‘L "'1) fori =1 to "—é form a latm in-
terchange whlch intersects C’ in (n 1,24, ";1) alone For n>Tandn=

3( mod 4), the latin interchange {(2, n=37n1 azl), (2, 2 283, (27,, 2-3.2i+
2=3), (2i, 24 2z+-+—)|2<z<""g}mtersectc;C’ in (n—l ? a-l)

alone For n 5 the latm mterchange

{(112; 2)1(11 3;4)1 (2,1;2)’(2: 2 4)s (7‘).7)7"*'.7) | i=3,4j= 1v273}

has the required property.

Finally, for all other entries (z,¥;z + y) of C’, there exists a latin in-
terchange, of the form {(z,y;z +y), (:L‘ +i,y—1i+ "; ixt+y+ n—l) (:z:+

hy—i+ 3+ y+ 28 (o + 25y + 2z +y)}, for i —0 to o251

which mtersects C'ina smg,le entry

Thus €’ is a critical set for L’.

The authors wish to thank B McKay [8] for supplying the 147 main
classes of latin squares of order seven and I Mortimer for the use of programs
for finding critical sets.
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