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ABSTRACT. Let G be a graph and let S be a subset of vertices
of G. The open neighborhood of a vertex v of G is the set of
all vertices adjacent with v in G. The set S is an open packing
of G if the open neighborhoods of the vertices of S are pairwise
disjoint in G. The lower open packing number of G, denoted
p1(G), is the minimum cardinality of a maximal open packing
of G while the (upper) open packing number of G, denoted
p°(G), is the maximum cardinality among all open packings
of G. In this paper, we present theoretical and computational
results for the open packing numbers of a graph.

1 Introduction

In this paper, we follow the notation of [2]. Specifically, let G = (V, E) be a
graph with vertex set V of order n and edge set E, and let v be a vertex in V.
The open neighborhood of v € V' is N(v) = {u € V' |uv € E} and the closed
neighborhood of v is N[v] = {v} U N(v). For a set S of vertices, we define
the open neighborhood N(S) = UyesN(v), and the closed neighborhood
N[S] = N(S)US. For each v € V, we let N(v) denote the set of all vertices
at distance exactly 2 from v in G; that is, No(v) = {u € V|d(u,v) = 2}.
For a set S of vertices, we define N2(S) = UyesNa(v).
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A packing of a graph G is a set of vertices whose closed neighborhoods
are pairwise disjoint. Equivalently, a packing of a graph G is a set of
vertices whose elements are pairwise at distance at least 3 apart in G. The
lower packing number of G, denoted pr(G), is the minimum cardinality of
a maximal packing of G while the (upper) packing number of G, denoted
p(G), is the maximum cardinality among all packings of G. The packing
number of a graph has been studied in [1, 3, 4, 5], and elsewhere.

In this paper we study the concept of open packings in graphs. Let S be
a subset of vertices of G. The set S is an open packing of G if the open
neighborhoods of the vertices of S are pairwise disjoint in G. The lower
open packing number of G, denoted p$(G), is the minimum cardinality of
a maximal open packing of G while the (upper) open packing number of G,
denoted p°(G), is the maximum cardinality among all open packings of G.

2 The open packing number
2.1 Bounds on the open packing number

Any maximal open packing of a graph contains at least one vertex, so
p°(G) > 1 for all graphs G. That there exist graphs with open packing
number equal to 1 is evident from the complete graph K, on n vertices.
For n > 2, let T,, be a star K n—; on n vertices. Then p°(T)/n=2/n— 0
as n — o0.

Proposition 1 If F; and F» are families of subsets of V for some graph
G with each F in Fy containing some F' in F;. Then the mazimum
number of disjoint sets from Fi is greater than or egqual to the mazimum
number of disjoint sets from F,. In particular, p°(G) = p(G).

In what follows in this subsection, we investigate upper bounds on the
open packing number. We begin with the following proposition.

Proposition 2 Let G = (V,E) be a graph of order n > 2 with degree
sequence dy,do,... ,d, where dy < ds <--- <dyp. Then

P°(G) <max{k|d; +---+dx Sn}.

Proof: Let S = {v;,v2,...,vx} be an open packing of G. Then N(v;) N
N(wj) =0for1 <i < j <k Thus |US, N@w)| = 3F , degv; >
d1+da+- - -+dk. On the other hand, UX N (v;) C V,s0 |USN(v;)| £ n.O

As an immediate corollary, we have the following upper bound on the
open packing number of a graph in terms of its order and minimum degree.



Corollary 1 If G is a graph of order n with minimum degree §, then
p°(G) < n/s.

That the bound in Corollary 1 is sharp, may be seen as follows. For
each positive integer §, we construct a é-regular graph Gjs of order n that
contains an open packing of cardinality n/§. For § = 1, take G5 & mKos.
Then G| is a 1-regular graph of order n = 2m whose entire vertex set forms
an open packing. Thus G contains an open packing of cardinality n = n/s.
For 6 = 2, let G5 be the 4m-cycle v1,v2, ... ,¥4m,v1. Then Gy isa 2-regular
graph of order n = 4m with S = {v; |i = 1 or 2(mod4)} an open packing
of G of cardinality n/2 = n/é.

Figure 1: The graph G3. (The darkened vertices form an open packing in
G3.)

For § > 3, let F\,F,,... ,Fn,Hy,H,,... ,H, be 2m disjoint copies of
the complete graph K; on § vertices. For i = 1,2,...,m, let V(E) =
{vi,v3,... ,v,,} and V(H;) = {ui,u},... ,ui,}. The graph Gj is obtained
from the disjoint union (U, F;) U (U, H;) of the F}’s and H;’s by adding
the edges {vju}|1 <i <m,2<j <6-1}U {wivit!|i=1,2,...,m —
puf{uduitti=1,2,...,m—1}uU {vi{u],vPuP}. Then Gj is a 6-regular
graph of order n = 2mé. (The graph Gs with m = 3 is shown in Figure 1.)
Furthermore, the set $ = {v}|i=1,2,... ,m}U{u}|i=1,2,... ,m}isan
open packing of G5 of cardinality |S| = 2m = n/6. Hence, by Corollary 1,
G; is a graph of order n with minimum degree § for which p°(Gs) =n/s.

Next we present an upper bound on the open packing number of a con-
nected graph.



Theorem 1 Let G = (V,E) be a connected graph of order n > 3. Then
p°(G) £ 2n/3 and this bound is sharp.

Proof: Let S be a maximum open packing of G. Let S; be set of all
isolated vertices in the subgraph (S) induced by S, and let S, = S — 5i.
Since each vertex of S is adjacent with at most one other vertex of S, (S2)
consists of disjoint copies of K». So |Sa| is even. Since G is a connected
graph, we know that for any two adjacent vertices of Sz at least one of
them must have degree at least 2 and is therefore adjacent with at least
one vertex in V —S. Every vertex of S; has degree at least 1 and is therefore
adjacent with at least one vertex in V —S. However S is an open packing,
so every vertex of V — S is adjacent with at most one vertex of S. Thus
n—|SI =1V =8| 2 51| + 3182| = $(1S1 +1S1]) > $S]. Henee |S| < 2n/3.

That the bound is sharp, may be seen as follows. Let H be any connected
graph, and let G be the graph obtained from H by attaching a path of
length 2 to each vertex of H so that the resulting paths are vertex disjoint.
Then G is a connected graph of order n = 3|V (H)|. The set V(G) — V(H)
is an open packing of G of cardinality 2|V (H)| = 2n/3. O

2.2 Paths and cycles

In this subsection, we determine the open packing number of paths and
cycles.

Proposition 3 For n > 2,

()

if n =0 (mod4)

P°(Pn) =
|232] otherwise

Proof: Let G be the path P, on n vertices given by vy, va, ... , . Suppose
firstly that n = 4k for some integer £ > 1. Then V(G) can be partitioned
into k subsets each of which induces a path P; on four vertices. However,
any maximal open packing contains at most two vertices from any Py, so
p°(G) < 2k =n/2. On the other hand, the set § = {v; |i = 1 or 2(mod4)}
is a maximal open packing of G of cardinality n/2, so p°(G) > n/2. Thus,
p°(G) = n/2 if n = 0(mod4). If n # 0(mod4), then S = {v;|i =1or
2(mod4)} is a maximal open packing of G of cardinality |(n + 2)/2], so
2°(G) 2 |(n +2)/2). However, by Proposition 2, p°(G) < max{k|1+1+
(k —2)2 < n} = max{k|k < (n+2)/2}, so p°(G) < |(n +2)/2]. Hence
p°(G) = |(n+2)/2] if n # 0(mod4). O



Proposition 4 For n > 3,

2 -1 ifn=2(mod4)
P°(Cr) =

[—'zlj otherwise

Proof: Let G be the cycle C, on n vertices given by vy, va,... ,vn,v;.
By Corollary 1, we know that p°(G) < |n/2]. If n # 2(mod4), then
S = {v; |1 =0 or 3(mod4)} is a maximal open packing of G of cardinality
[n/2], so p°(G) > |n/2]. Consequently, p°(G) = |n/2] if n # 2 (mod4). It
remains for us to establish that p°(G) =n/2—1 if n = 2(mod4). Suppose,
then, that n = 2(mod4). We show that p°(G) < n/2 — 1. If this is not
the case, then there exist an open packing S of G of cardinality /2. Thus
UyesN(v) = V(G) and the sets N(v) where v € S partition V(G). In
particular, each v € S is therefore adjacent with some other vertex of S.
Thus, the subgraph (S) induced by S consists of disjoint copies of K3, so
|S| is even. This produces a contradiction since |S| = n/2 and n/2 is odd
in this case. We deduce, therefore, that for n = 2 (mod4), p°(G) < n/2-1.
On the other hand, if n = 2(mod4), then S = {v;|i = 0 or 3 (mod4)} is
a maximal open packing of G of cardinality n/2 — 1, so p°(G) > n/2 — 1.
Consequently, p°(G) =n/2 ~ 1 if n = 2 (mod4). O

2.3 Minimality

In this subsection, we investigate how the removal of an edge can effect the
open packing number of a graph.

Theorem 2 For any edge e in a graph G,
P°(G) < p°(G —€) < p°(G) +2,

and these bounds are sharp.

Proof: Any open packing in G is also an open packing in G —e, so p°(G) <
0°(G —e). Furthermore, if n = 0 (mod4), then, by Propositions 3 and 4 we
know that p°(C,) = n/2 = p°(P,). Hence there exist graphs G for which
p°(G) = p°(G — e) for every edge € of G.

To show that p°(G)+ 2 is an upper bound on p°(G —e), let S be an open
packing of G — e of maximum cardinality and let e = uv. We show that
P°(G) 2 |S] — 2. If u,v € S, then S — {u, v} is an open packing of G, so
p°(G) > |S|-2. Ifu € Sand v & S, then S—{u} is an open packing of G, so
p°(G) 2 |S|-1. Ifu,v € S, then S is an open packing of G, so p°(G) > |S].
Hence p°(G) > |S| — 2 = p°(G — €) — 2. Furthermore, if n = 2 (mod4),



then, by Propositions 3 and 4 we know that p°(P,) = n/2+1 = p°(Cy)+2.
Hence there exist graphs G for which p°(G — €) = p°(G) + 2 for every edge
eof G. 0

3 The lower open packing number

3.1 Lower bounds on the open packing number

In this subsection, we investigate bounds on the lower open packing number.
‘We begin with a lower bound on the lower open packing number of a graph
in terms of its order and maximum degree.

Theorem 3 Let G = (V, E) be a graph of order n with mazimum degree

A. Then
n

2 (G) > ——————
and this bound is sharp.

Proof: Let S be a maximal open packing of G. Let S; be set of all
isolated vertices in the subgraph (S) induced by S, and let S = S — S;.
Since each vertex of S is adjacent with at most one other vertex of S, (S2)
consists of disjoint copies of K. So |S2| is even. Since S is a maximal open
packing, every vertex of V — S is adjacent with at most one vertex of S
and is within distance 2 from some vertex of S. Furthermore, no vertex
at distance 2 from a vertex of S belongs to S, i.e., No(5) CV — S. Thus
V — 8 = (N(S) — S) U Ny(S). For each v € S, let N} = N(»)n(V - S)
and N2 = Na(v). Then (N(S) — S)U No(S) = Uyes (N2 U N2).

We show next that for each v € S, |[N}|+ [N2| < A(A-1). Ifv e Sy,
then N} C N(v) so |N}| < degv < A. However, each vertex w in N}
must be adjacent to some other vertex of N(S) — S, for otherwise SU {w}
would be an open packing of G contradicting the maximality of S. Hence
each vertex w of N! is adjacent with at most degw — 2 vertices of NZ.
Thus [NZ| < X yens(degw —2) < NI (A —2) < A(A—2). Thus
for v € Sy, [N}| + |N2| < A(A —1). On the other hand, if v € Sy, then
IN}| € degv—1 < A—1. Hence |[NZ| < T e na(degw—1) < INJ]-(A-1) <
(A —1)2. Thus, for v € Sy, |[N}| + |N2| < A(A —1). Thus,

n—|S]| [(N(S) — S) U No(S)

= |Uves (Ng UNT) |

Y ves (INJ|+ IN2Z))

S| - A(A —1).

IA

IA



Thus, |S| > n/(A(A -1)+1). To show that the bound is sharp, we
first recall the definition of a circulant. A circulant is a graph H =
Cp(ay, ... ,ar) such that, if the vertices are labelled vy,vs,...,vp, then
viv; € E(H) if and only if |i — j| € {a1,...,a,} using arithmetic modu-
lar p. (We may assume that 1 < @; < --- < a, < |p/2].) We note that
Cp(1) = Cp. We now construct a 2r-regular graph G, of order n with
maximum degree A = 2r satisfying p3(G) = n/(A(A —1) +1).

For integers £ > 1 and 7 > 2, let H be the circulant Caer(r-1)(1,..., 7 —
1,2¢r(r—1)) with vertices labelled vy, v3, . .. , vggr(r—1). Then H isa (2r—1)-
regular graph. We now add 2r(£+ 1) new vertices {w}|1 <i<£1<j<
2r}U{u; |1 < @ < £} together with the edges {uwi |1 <i<¢1<j<2r}u
{Whi 41 Woiy2 |1 <1< 60 <k < r—1}0{whva(ro1y(j-1)tar(r—1)Gi-1) 4k | 1 <
1<41<35<2r1<k<2(r-1)} Let G, denote the resulting graph.
Then G, is a 2r-regular graph of order n = £(4r2 — 2r 4 1) with maximum
degree A = 2r, and S = {u,,...,u,} is a maximal open packing of G, of
cardinality £ = n/(A(A —1) +1). m]

Next we present an upper bound on the lower open packing number of
a connected graph. Since p}(G) < p°(G) for all graphs G, an immediate
corollary of Theorem 1 now follows.

Corollary 2 Let G be a connected graph of order n > 3. Then p}(G) <
2n/3.

That the upper bound in Corollary 2 is in a sense best possible, may be
seen as follows. For m > 2 an integer, let T be the tree obtained from a
star K1 m by subdividing each edge twice. Let Ty, T3, ... , T\, be m disjoint

copies of T, and let v; denote the central vertex of T; for i = 1,2,... ,m.
Finally, let G,, be the tree obtained from the disjoint union U, T; of T,
Ty,...,Ty by adding a new vertex v and the edges vv; for i =1,2,... ,m.

The graph G, is shown in Figure 2. We show that p%(Gy,) = 2m2 —m+1.
Let S be a maximal open packing of G,,. Then S contains at most one
of v1,v2,...,9m. If v; € S, then |S N V(T;)| = 2m, while if »; € S, then
[SNV(T)| = m+ 1. Thus, p§(Gm) > 2m? — m + 1. However, there exist
maximal open packing sets of G,, of cardinality 2m2 — m + 1 as illustrated
by the set of darkened vertices in Figure 2, so p$ (G,,) < 2m2—m+1. Thus,
p2.(Gm) = 2m? — m + 1. Hence G, is a tree of order n = 3m2 + m + 1
satisfying
PL(Cm) _2m’—m+1 2-1/m+1/m?
n 3mif+m+1 3+1/m+1/m?

Hence, p%(Gm)/n — 2/3 as m — oo.
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Figure 2: The graph G,,. (The darkened vertices form a maximal open
packing in Gr,.)

3.2 Paths and cycles

In this subsection, we determine the lower open packing number of paths
and cycles.

Proposition 5 For n > 2,

[3]1+1 ifn=2 or 3 (mod 6)
pL(Pn) =

31 otherwise

Proof: If n = 2 or 3, then p}(P,) = 2 = [n/3] + 1, so we may assume
that n > 4. Let G be the path P, on n > 4 vertices given by v1,v2,... ,¥n.
By Theorem 3, we know that p°(G) > [n/3]. If n = 1 or 4(mod§6), then
S = {v; | i = 1 (mod3)} is a maximal open packing of G of cardinality [n/3].
If n = 0(mod6), then S = {v; |i = 2(mod3)} is a maximal open packing
of G of cardinality n/3. If n = 5(mod6), then S = {v; |i = 3 or 4(mod6)}
is a maximal open packing of G of cardinality [n/3]. Hence if n # 2 or
3 (mod6), then p°(G) < [n/3]. Thus, p°(G) = [n/3] if n # 2 or 3 (mod6).

Suppose that n = 6k+ 2 for some integer k > 1. Let Vi = {v1,v2,v3,v4},
Vie1 = {V6k=1,--- »Vsk+2}, and Vi = {vei—7,... ,v6i—2} for 2 < i < k.
Thus V(G) can be partitioned into k+1 subsets V}, V3, ... , Vi1 such that
each of V; and Vi1 induce a path Py on four vertices and V; induces a
path Ps on six vertices for i = 2,... ,k. Any maximal open packing of G
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contains at least two vertices from each of the sets V; (1 < i < k+ 1),
so p°(G) > 2(k +1). On the other hand, the set § = {v;|i = 3 or
4 (mod6)}U{vp—1,vn} is a maximal open packing of G of cardinality 2(k+
1), so p°(G) < 2(k +1). Thus, p°(G) = 2(k + 1) = [n/3] + 1. Hence
°(G) = [n/3] + 1 if n = 2(mod6).

If n = 6k + 3 for some integer k > 1, then V(G) can be partitioned into
k+1 subsets Vi, V3,... , Vit such that V) induces a Py and vy € Vi, Vg
induces a Ps and v, € Vi1, and V; induces a Pg for ¢ = 2,...,k. Any
maximal open packing of G contains at least two vertices from each of the
sets V; (1 £ ¢ < k+1),s0 p°(G) > 2(k+1). On the other hand, the
set S = {v;|i = 1(mod3)} U {va—1} is a maximal open packing of G of
cardinality 2(k+1), so p°(G) < 2(k+1). Thus, p°(G) = 2(k+1) = [n/3]+1.
Hence p°(G) = [n/3] + 1 if n = 3(mod§6). o

Proposition 6 For n > 3,

[3]1+1 ifn=2(mod6)
PZ(Cn) =

31 otherwise

Proof: Let G be the cycle C, on n vertices given by vy,v2,... ,%n,v;.
By Theorem 3, we know that p°(G) > [n/3]. If n = 0(mod3), then
S = {v; | i = 2(mod3)} is a maximal open packing of G of cardinality n/3.
If n =1 (mod3), then S = {v; | = 1 (mod3)} is a maximal open packing of
G of cardinality [n/3]. If n =5 (mod6), then S = {v; | i = 3 or 4 (mod6)} is
a maximal open packing of G of cardinality [rn/3]. Hence if n # 2 (mod 6),
then p°(G) < [n/3]. Thus, p°(G) = [n/3] if n # 2 (mod6). It remains for
us to establish that p°(G) = [n/3] + 1 if n = 2 (mod6).

Suppose that n = 6k + 2 for some integer k¥ > 1. By Theorem 3, we
know that p°(G) > [n/3] = 2k + 1. Thus any maximal open packing of
G (which can not contain two vertices at distance 2) must contain at least
two adjacent vertices. Let S be a maximal open packing of G of minimum
cardinality. We may assume that {v;,v2} C S (and so v3 & S and v4 & S).
We now partition V(G) into k subsets Vi, V3, ..., Vi where V; induces the
path vy, vs,... ,vs on eight vertices and V; induces a path Pg on six vertices
fori=2,...,k. Then S must contain one of vs and v7 and one of vg and vs,
so S contains at least four vertices of V;. Moreover, S contains at least two
vertices from each of the sets V; (2 < i < k). Thus, p°(G) = |S| = 2(k+1).
On the other hand, the set S = {v;|i{ = 3 or 4 (mod6)} U {vn_1,v,} is a
maximal open packing of G of cardinality 2(k + 1), so p°(G) < 2(k + 1).
Thus, p°(G) = 2(k + 1). Hence p°(G) = [n/3] +1 if n = 2 (mod6). 0O
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3.3 Minimality

In this subsection, we investigate how the removal of an edge can effect the
lower open packing number of a graph. We show firstly that deleting an
edge from a graph can increase its lower open packing number by at most 2.

Theorem 4 For any edge e in a graph G,
pL(G —€) < pL(G) +2,

and this bound is sharp.

Proof: Let S be a maximal open packing of G of minimum cardinality and
let ¢ = uv. We show that p3 (G —e€) < |S|+ 2. If u,v € S, then the only
possible vertices in G —e that can be added to S to produce a maximal open
packing are those vertices of G — e in N(u) U N(v). However, at most one
vertex from any open neighborhood belongs to an open packing of G —e.
Thus if S is not a maximal open packing of G — e, then it can be extended
to a maximal open packing of G — e by adding at most two vertices. If
u € S and v € S, then the only possible vertices in G — e that can be added
to S to produce a maximal open packing are those vertices of G —e in N[v].
However, at most two vertices from any closed neighborhood belongs to an
open packing of G — e. Once again, S can be extended, if necessary, to a
maximal open packing of G — e by adding at most two vertices. Finally, if
u,v € S, then S is also a maximal open packing of G —e. In all three cases
we have p} (G — €) < |S|+2 = p}(G) + 2. That the bound is sharp, may
be seen by considering the tree G obtained from the disjoint union of two
stars by joining the two vertices of maximum degree with an edge e. Then
P3.(G—e)=4=p3(G)+2. o

Although deleting an edge can increase the lower open packing number
of a graph by at most 2, it can decrease its lower open packing number by
an arbitrarily large amount.

Theorem 5 For every positive integer n, there erists a graph G and an
edge e of G satisfying p3(G — e) = p3(G) — n.

Proof: Let T be the tree obtained from a star K, by subdividing each
edge exactly once. Let T} and T3 be two disjoint copies of T', and let v
and v, be vertices of maximum degree n in T} and T3, respectively. Finally,
let G be the graph obtained from 77 U T3 by adding a new vertex v and
the edges e = vy, vv and vyv2. Then {v;, v} is a maximal open packing
of G — e, so p7(G — e) = 2. We show next that p3(G) = n+2. Let S
be any maximal open packing of G. Then S contains at most one of v, v;
and vo. If v € S, then S consists of v and the 2n leaves so |S| = 2n + 1.
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If v; € S, then S contains the n leaves of T and one vertex of T that is
adjacent with vy, so |S| = n 4+ 2. Similarly, if v, € S, then [S| = n + 2.
Finally, if S contains none of the vertices v, v; or vy, then S contains all
2n leaves, one vertex of T} that is adjacent with v;, and one vertex of T
that is adjacent with w2, so |S| = 2n + 2. Thus, p¢(G) = n + 2. Hence
pL(G —€) = pi(G) — n. O

4 Bounds relating p° and p}

In this section, we present an upper bound on the difference between the
open packing number and the lower open packing number of a tree. If T is
a rooted tree with root r and v is a vertex of T, then the level number of
v, which we denote by I(v), is the length of the unique r-v path in T. If a
vertex v of T is adjacent to u and I(u) > l(v), then u is called a child of v,
and v is the parentof u. A vertex w is a descendant of v if the level numbers
of the vertices on the v-w path are monotonically increasing. The subtree
of T induced by v and all its descendants is called the mazimal subtree of
T rooted at v. We will refer to an end-vertex of T as a leaf.

Theorem 6 If T is a tree of order n > 2, then

P -1 < 202

and this bound is sharp.

Proof: We proceed by induction on the order n > 2 of a tree. If T is a tree
of order n < 5 that is not a path on five vertices, then p°(T) = p%(T) = 2
and the result is immediate. If T is a path on n = 5 vertices, then p°(T) =
3=p3(T)+1, s0 p°(T) — p3.(T) = 1 < (n — 2)/2. Hence the result is true
for all trees of order n < 5. So, assume that for all trees 7" of order n’ > 2
where n' < n and n > 6, that p°(T’) — p2(T’) < (n’ — 2)/2. Let T be a
rooted tree of order n. We show that p°(T') — p% (T) < (n—2)/2. Let w be
a leaf of T at furthest distance from the root (so w is a vertex of T' with
maximum level number), and let v be the parent of w.

If T contains a vertex adjacent with at least two leaves, then removing
one of these leaves produces a tree T” of order n’ = n—1 satisfying p°(T") =
p°(T) and p§(T") = p3(T). Thus, applying the inductive hypothesis, we
have p°(T) — p§,(T) = p°(T") - p3(T") < (v’ —2)/2 < (n —2)/2. Hence we
may assume that every vertex of T is adjacent with at most one leaf. In
particular, v has degree 2. Let u be the parent of v in 7.

If u has degree 2, then let z be the parent of » and consider the nontrivial
tree " = T — {u,v,w} of order n’ = n — 3. Since every maximal open
packing of T' contains two of the vertices u, v, w, z, we may assume without
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loss of generality, that there is a maximum open packing S of T containing
v and w. Hence § — {v,w} is a maximal open packing of T’, so p°(T") >
p°(T) — 2; equivalently, p°(T) < p°(T’) +2. On the other hand, every
maximal open packing of T contains at least one of the vertices u,v,w,
so p2(T) = p3(T") + 1. Thus, applying the inductive hypothesis, we have
p°(T) — p2(T) < p°(T") = p3(T) +1< (0 = 2)/2+1=7'/2 < (n - 2)/2.
Hence we may assume that v has degree k41 > 3.

If u is adjacent with a leaf z, then the tree 7’ = T —z of order n=n-1
satisfies p°(T") = p°(T) and p3(T") = p,(T). Thus, applying the inductive
hypothesis, we have p°(T) — p3.(T) = p°(T") — p3(T") < (n' - 2)/2 <
(n —2)/2. Hence we may assume that every child of u has degree 2. Thus
the maximal subtree of T rooted at u is isomorphic to K x with each edge
subdivided once. Let vy, ... , v be the children of u, and let w; be the leaf
adjacent with v;, 1 <i < k.

We now consider the nontrivial tree 7/ = T — {v1,w;} of order n’ = n—2.
Every maximal open packing of T' contains at most one child of u, so we may
assume without loss of generality, that there is a maximum open packing S
of T that does not contain »;. If u € S, then S contains none of the leaves
wy,w, ... ,wk. But then (S — {u})U {w1,wz,... ,wx} would be an open
packing of T of cardinality exceeding that of S, producing a contradiction.
Thus u ¢ S. Consequently, {wy,ws,...,wx} C S. Hence S — {w } is a
maximal open packing of T, so p°(T") > p°(T) — 1; equivalently, p°(T) <
p°(T") +1. On the other hand, let S be a maximal open packing of T
of minimum cardinality. Once again, we may assume that S does not
contain v;. Then SN V(T”) is a maximal open packing of T of cardinality
at most |S|. Thus, p%(T) > p%(T’). Therefore, applying the inductive
hypothesis, we have p°(T) — p%(T) < p°(T") — p3,(T") +1 < (n' -2)/2+1 =
n'/2 = (n —2)/2. This completes the inductive proof.

That the bound is sharp as may be seen as follows. For an integer k > 2,
let T; and T> be two disjoint copies of a star K x with each edge subdivided
exactly once. For i = 1,2, let v; denote the central vertex of T;. Finally, let
T be the tree obtained from T3 U T, by adding the edge vjv2. Then T is a
tree of order n = 4k + 2. Furthermore, the set {vq,v2} is a maximal open
packing in T, so p%(T) = 2. On the other hand, the set containing the 2k
leaves of T, one vertex of T; that is adjacent with v; and one vertex of T3
that is adjacent with v is a maximum open packing of T, so p°(T) = 2k+2.
Thus, p°(T) — p%(T) = 2k = (n — 2)/2. o

5 Complexity results

In this section we show that the decision problem
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OPEN PACKING (OPK)

INSTANCE: A graph G = (V, E) and a positive integer k < |V|.

QUESTION: Does G have an open packing of cardinality k?
is NP-complete, even when restricted to bipartite and chordal graphs, by
describing polynomial transformations from the following well-known N P-
complete problem:
EXACT COVER BY 3-SETS (X3C)

INSTANCE: A finite set X with |X| = 3¢q and a collection C of 3
element subsets of X.

QUESTION: Does C contain an exact cover for X, that is, a subcollec-
tion C’ C C such that every element of X occurs in exactly one member of
C.

Theorem 7 OPEN PACKING is N P-complete, even for bipartite graphs.

Proof: It is obvious that OPK is a member of NP since we can, in
polynomial time, guess at set S of vertices and verify that S has cardinality
at least m and is an open packing. We next show how a polynomial time
algorithm for X3C could be used to solve OPK in polynomial time. Let
X = {x1,...,735} and C = {C},...,Cr} be an arbitrary instance of X3C.
We will construct a bipartite graph G such that this instance of X3C
will have an exact three cover if and only if G has an open packing of
cardinality k, where k = m + 7q.

The graph G is constructed as follows. Corresponding to each variable
z; € X, we associate the graph H; which consists of the path =z;, y;,w;, %
on four vertices. Corresponding to each set Cj, we associate the graph F;
which consists of the path c;,d; on two vertices. The construction of the
bipartite graph G is completed by adding the edges {zicj|z: € C;}. Tt
is easy to see that the construction of the graph G can be accomplished
in polynomial time. Let W = {w,wa,...,wsq}, Z = {z1,22,..., 234},
C = {e1,...,cm} and D = {d;,...,dm}. We show that C has an exact
3-cover if and only if G has an open packing of cardinality k = m + 7q.

Suppose C’ is an exact 3-cover for X. Then [C’| =q. Let S = {¢;|C; €
C'’YUDUWU Z. Then S is an open packing of cardinality k = m + 7q.
Suppose, conversely, that S is an open packing of cardinality k = m + 7q.
Let S’ = SN C. Since each vertex of S’ is adjacent with three vertices
of X, and since no two vertices of S have a common neighbor, there are
3|8’| vertices of X that are adjacent with vertices of S’. However there are
precisely 3¢ vertices of X, so |§'| < q. Furthermore, at most two vertices
of H; are in the open packing S for every i = 1,2,..., 3¢, so S contains at
least m + g vertices from C U D. Thus D C S and |S’| = q. Consequently,
C’' = {Cj|c; € S} is an exact 3-cover for X. a
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Theorem 8 OPEN PACKING is N P-complete, even for chordal graphs.

Proof: It is clear that OPK is in NP. To show that OPK is an NP-
complete problem, we will establish a polynomial transformation from X3C.
Let X = {z1,...,%34} and C = {C},...,Cn} be an arbitrary instance of
X3C. We will construct a chordal graph H such that this instance of X3C
will have an exact three cover if and only if H has an open packing of
cardinality k = m 4+ 7q.

Let H be obtained from the graph G constructed in the proof of Theo-
rem 7 by adding an edge between every two vertices of X so that the z;'s
induce a clique; that is, ({z1,...,%34}) = K3, It is easy to see that the
construction of the graph H can be accomplished in polynomial time. Pro-
ceeding now as in the proof of Theorem 7, we can show that C has an exact
3-cover if and only if H has an open packing of cardinality k=m +7¢. O
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