Open packing in graphs

Michael A. Henning *
Department of Mathematics
University of Natal
Private Bag X01
Pietermaritzburg, 3209 South Africa

Peter J. Slater

Department of Mathematics
University of Alabama in Huntsville
Huntsville, Alabama

ABSTRACT. Let G be a graph and let S be a subset of vertices of G. The open neighborhood of a vertex v of G is the set of all vertices adjacent with v in G. The set S is an open packing of G if the open neighborhoods of the vertices of S are pairwise disjoint in G. The lower open packing number of G, denoted $\rho_L^o(G)$, is the minimum cardinality of a maximal open packing of G while the (upper) open packing number of G, denoted $\rho^o(G)$, is the maximum cardinality among all open packings of G. In this paper, we present theoretical and computational results for the open packing numbers of a graph.

1 Introduction

In this paper, we follow the notation of [2]. Specifically, let G = (V, E) be a graph with vertex set V of order n and edge set E, and let v be a vertex in V. The open neighborhood of $v \in V$ is $N(v) = \{u \in V \mid uv \in E\}$ and the closed neighborhood of v is $N[v] = \{v\} \cup N(v)$. For a set S of vertices, we define the open neighborhood $N(S) = \bigcup_{v \in S} N(v)$, and the closed neighborhood $N[S] = N(S) \cup S$. For each $v \in V$, we let $N_2(v)$ denote the set of all vertices at distance exactly 2 from v in G; that is, $N_2(v) = \{u \in V \mid d(u, v) = 2\}$. For a set S of vertices, we define $N_2(S) = \bigcup_{v \in S} N_2(v)$.

^{*}Research supported in part by the University of Natal and the South African Foundation for Research Development.

A packing of a graph G is a set of vertices whose closed neighborhoods are pairwise disjoint. Equivalently, a packing of a graph G is a set of vertices whose elements are pairwise at distance at least 3 apart in G. The lower packing number of G, denoted $\rho_L(G)$, is the minimum cardinality of a maximal packing of G while the (upper) packing number of G, denoted $\rho(G)$, is the maximum cardinality among all packings of G. The packing number of a graph has been studied in [1, 3, 4, 5], and elsewhere.

In this paper we study the concept of open packings in graphs. Let S be a subset of vertices of G. The set S is an open packing of G if the open neighborhoods of the vertices of S are pairwise disjoint in G. The lower open packing number of G, denoted $\rho_L^o(G)$, is the minimum cardinality of a maximal open packing of G while the (upper) open packing number of G, denoted $\rho^o(G)$, is the maximum cardinality among all open packings of G.

2 The open packing number

2.1 Bounds on the open packing number

Any maximal open packing of a graph contains at least one vertex, so $\rho^o(G) \geq 1$ for all graphs G. That there exist graphs with open packing number equal to 1 is evident from the complete graph K_n on n vertices. For $n \geq 2$, let T_n be a star $K_{1,n-1}$ on n vertices. Then $\rho^o(T_n)/n = 2/n \to 0$ as $n \to \infty$.

Proposition 1 If \mathcal{F}_1 and \mathcal{F}_2 are families of subsets of V for some graph G with each F in \mathcal{F}_2 containing some F' in \mathcal{F}_1 . Then the maximum number of disjoint sets from \mathcal{F}_1 is greater than or equal to the maximum number of disjoint sets from \mathcal{F}_2 . In particular, $\rho^o(G) \geq \rho(G)$.

In what follows in this subsection, we investigate upper bounds on the open packing number. We begin with the following proposition.

Proposition 2 Let G = (V, E) be a graph of order $n \ge 2$ with degree sequence d_1, d_2, \ldots, d_n where $d_1 \le d_2 \le \cdots \le d_n$. Then

$$\rho^o(G) \leq \max\{k \mid d_1 + \dots + d_k \leq n\}.$$

Proof: Let $S = \{v_1, v_2, \dots, v_k\}$ be an open packing of G. Then $N(v_i) \cap N(v_j) = \emptyset$ for $1 \leq i < j \leq k$. Thus $|\bigcup_{i=1}^k N(v_i)| = \sum_{i=1}^k \deg v_i \geq d_1 + d_2 + \dots + d_k$. On the other hand, $\bigcup_{i=1}^k N(v_i) \subseteq V$, so $|\bigcup_{i=1}^k N(v_i)| \leq n$. \square

As an immediate corollary, we have the following upper bound on the open packing number of a graph in terms of its order and minimum degree.

Corollary 1 If G is a graph of order n with minimum degree δ , then $\rho^o(G) \leq n/\delta$.

That the bound in Corollary 1 is sharp, may be seen as follows. For each positive integer δ , we construct a δ -regular graph G_{δ} of order n that contains an open packing of cardinality n/δ . For $\delta=1$, take $G_{\delta}\cong mK_2$. Then G_1 is a 1-regular graph of order n=2m whose entire vertex set forms an open packing. Thus G contains an open packing of cardinality $n=n/\delta$. For $\delta=2$, let G_{δ} be the 4m-cycle $v_1,v_2,\ldots,v_{4m},v_1$. Then G_2 is a 2-regular graph of order n=4m with $S=\{v_i \mid i=1 \text{ or } 2 \pmod{4}\}$ an open packing of G_2 of cardinality $n/2=n/\delta$.

Figure 1: The graph G_3 . (The darkened vertices form an open packing in G_3 .)

For $\delta \geq 3$, let $F_1, F_2, \ldots, F_m, H_1, H_2, \ldots, H_m$ be 2m disjoint copies of the complete graph K_δ on δ vertices. For $i=1,2,\ldots,m$, let $V(F_i)=\{v_1^i,v_2^i,\ldots,v_m^i\}$ and $V(H_i)=\{u_1^i,u_2^i,\ldots,u_m^i\}$. The graph G_δ is obtained from the disjoint union $(\bigcup_{i=1}^m F_i) \cup (\bigcup_{i=1}^m H_i)$ of the F_i 's and H_i 's by adding the edges $\{v_j^iu_j^i\mid 1\leq i\leq m, 2\leq j\leq \delta-1\}\cup \{v_\delta^iv_1^{i+1}\mid i=1,2,\ldots,m-1\}\cup \{u_\delta^iu_1^{i+1}\mid i=1,2,\ldots,m-1\}\cup \{v_1^iu_1^1,v_\delta^mu_\delta^m\}$. Then G_δ is a δ -regular graph of order $n=2m\delta$. (The graph G_3 with m=3 is shown in Figure 1.) Furthermore, the set $S=\{v_2^i\mid i=1,2,\ldots,m\}\cup \{u_2^i\mid i=1,2,\ldots,m\}$ is an open packing of G_δ of cardinality $|S|=2m=n/\delta$. Hence, by Corollary 1, G_δ is a graph of order n with minimum degree δ for which $\rho^o(G_\delta)=n/\delta$.

Next we present an upper bound on the open packing number of a connected graph.

Theorem 1 Let G = (V, E) be a connected graph of order $n \geq 3$. Then $\rho^{o}(G) \leq 2n/3$ and this bound is sharp.

Proof: Let S be a maximum open packing of G. Let S_1 be set of all isolated vertices in the subgraph $\langle S \rangle$ induced by S, and let $S_2 = S - S_1$. Since each vertex of S is adjacent with at most one other vertex of S, $\langle S_2 \rangle$ consists of disjoint copies of K_2 . So $|S_2|$ is even. Since G is a connected graph, we know that for any two adjacent vertices of S_2 at least one of them must have degree at least 2 and is therefore adjacent with at least one vertex in V-S. Every vertex of S_1 has degree at least 1 and is therefore adjacent with at least one vertex in V-S. However S is an open packing, so every vertex of V-S is adjacent with at most one vertex of S. Thus $n-|S|=|V-S|\geq |S_1|+\frac{1}{2}|S_2|=\frac{1}{2}(|S|+|S_1|)\geq \frac{1}{2}|S|$. Hence $|S|\leq 2n/3$.

That the bound is sharp, may be seen as follows. Let H be any connected graph, and let G be the graph obtained from H by attaching a path of length 2 to each vertex of H so that the resulting paths are vertex disjoint. Then G is a connected graph of order n = 3|V(H)|. The set V(G) - V(H) is an open packing of G of cardinality 2|V(H)| = 2n/3.

2.2 Paths and cycles

In this subsection, we determine the open packing number of paths and cycles.

Proposition 3 For $n \geq 2$,

$$ho^o(P_n) = \left\{ egin{array}{ll} rac{n}{2} & \emph{if } n \equiv 0 \, (mod \, 4) \ & & \ \lfloor rac{n+2}{2}
floor & \emph{otherwise} \end{array}
ight.$$

Proof: Let G be the path P_n on n vertices given by v_1, v_2, \ldots, v_n . Suppose firstly that n=4k for some integer $k \geq 1$. Then V(G) can be partitioned into k subsets each of which induces a path P_4 on four vertices. However, any maximal open packing contains at most two vertices from any P_4 , so $\rho^o(G) \leq 2k = n/2$. On the other hand, the set $S = \{v_i \mid i = 1 \text{ or } 2 \pmod{4}\}$ is a maximal open packing of G of cardinality n/2, so $\rho^o(G) \geq n/2$. Thus, $\rho^o(G) = n/2$ if $n \equiv 0 \pmod{4}$. If $n \not\equiv 0 \pmod{4}$, then $S = \{v_i \mid i = 1 \text{ or } 2 \pmod{4}\}$ is a maximal open packing of G of cardinality $\lfloor (n+2)/2 \rfloor$, so $\rho^o(G) \geq \lfloor (n+2)/2 \rfloor$. However, by Proposition 2, $\rho^o(G) \leq \max\{k \mid 1+1+(k-2)2 \leq n\} = \max\{k \mid k \leq (n+2)/2\}$, so $\rho^o(G) \leq \lfloor (n+2)/2 \rfloor$. Hence $\rho^o(G) = \lfloor (n+2)/2 \rfloor$ if $n \not\equiv 0 \pmod{4}$.

Proposition 4 For $n \geq 3$,

$$ho^{o}(C_{n}) = \left\{ egin{array}{ll} rac{n}{2}-1 & \emph{if } n \equiv 2 \, (mod \, 4) \\ & & \\ \left\lfloor rac{n}{2}
ight
floor & \emph{otherwise} \end{array}
ight.$$

Proof: Let G be the cycle C_n on n vertices given by $v_1, v_2, \ldots, v_n, v_1$. By Corollary 1, we know that $\rho^o(G) \leq \lfloor n/2 \rfloor$. If $n \not\equiv 2 \pmod{4}$, then $S = \{v_i \mid i = 0 \text{ or } 3 \pmod{4}\}$ is a maximal open packing of G of cardinality $\lfloor n/2 \rfloor$, so $\rho^o(G) \geq \lfloor n/2 \rfloor$. Consequently, $\rho^o(G) = \lfloor n/2 \rfloor$ if $n \not\equiv 2 \pmod{4}$. It remains for us to establish that $\rho^o(G) = n/2 - 1$ if $n \equiv 2 \pmod{4}$. Suppose, then, that $n \equiv 2 \pmod{4}$. We show that $\rho^o(G) \leq n/2 - 1$. If this is not the case, then there exist an open packing S of G of cardinality n/2. Thus $\cup_{v \in S} N(v) = V(G)$ and the sets N(v) where $v \in S$ partition V(G). In particular, each $v \in S$ is therefore adjacent with some other vertex of S. Thus, the subgraph $\langle S \rangle$ induced by S consists of disjoint copies of K_2 , so |S| is even. This produces a contradiction since |S| = n/2 and n/2 is odd in this case. We deduce, therefore, that for $n \equiv 2 \pmod{4}$, $\rho^o(G) \leq n/2 - 1$. On the other hand, if $n \equiv 2 \pmod{4}$, then $S = \{v_i \mid i = 0 \text{ or } 3 \pmod{4}\}$ is a maximal open packing of G of cardinality n/2 - 1, so $\rho^o(G) \geq n/2 - 1$. Consequently, $\rho^o(G) = n/2 - 1$ if $n \equiv 2 \pmod{4}$.

2.3 Minimality

In this subsection, we investigate how the removal of an edge can effect the open packing number of a graph.

Theorem 2 For any edge e in a graph G,

$$\rho^o(G) \le \rho^o(G - e) \le \rho^o(G) + 2,$$

and these bounds are sharp.

Proof: Any open packing in G is also an open packing in G-e, so $\rho^o(G) \le \rho^o(G-e)$. Furthermore, if $n \equiv 0 \pmod{4}$, then, by Propositions 3 and 4 we know that $\rho^o(C_n) = n/2 = \rho^o(P_n)$. Hence there exist graphs G for which $\rho^o(G) = \rho^o(G-e)$ for every edge e of G.

To show that $\rho^o(G)+2$ is an upper bound on $\rho^o(G-e)$, let S be an open packing of G-e of maximum cardinality and let e=uv. We show that $\rho^o(G) \geq |S|-2$. If $u,v \in S$, then $S-\{u,v\}$ is an open packing of G, so $\rho^o(G) \geq |S|-2$. If $u \in S$ and $v \notin S$, then $S-\{u\}$ is an open packing of G, so $\rho^o(G) \geq |S|-1$. If $u,v \notin S$, then S is an open packing of G, so $\rho^o(G) \geq |S|-1$. Hence $\rho^o(G) \geq |S|-2=\rho^o(G-e)-2$. Furthermore, if $n \equiv 2 \pmod{4}$,

then, by Propositions 3 and 4 we know that $\rho^o(P_n) = n/2 + 1 = \rho^o(C_n) + 2$. Hence there exist graphs G for which $\rho^o(G - e) = \rho^o(G) + 2$ for every edge e of G.

3 The lower open packing number

3.1 Lower bounds on the open packing number

In this subsection, we investigate bounds on the lower open packing number. We begin with a lower bound on the lower open packing number of a graph in terms of its order and maximum degree.

Theorem 3 Let G = (V, E) be a graph of order n with maximum degree Δ . Then

$$\rho_L^o(G) \geq \frac{n}{\Delta(\Delta-1)+1},$$

and this bound is sharp.

Proof: Let S be a maximal open packing of G. Let S_1 be set of all isolated vertices in the subgraph $\langle S \rangle$ induced by S, and let $S_2 = S - S_1$. Since each vertex of S is adjacent with at most one other vertex of S, $\langle S_2 \rangle$ consists of disjoint copies of K_2 . So $|S_2|$ is even. Since S is a maximal open packing, every vertex of V-S is adjacent with at most one vertex of S and is within distance 2 from some vertex of S. Furthermore, no vertex at distance 2 from a vertex of S belongs to S, i.e., $N_2(S) \subseteq V-S$. Thus $V-S=(N(S)-S)\cup N_2(S)$. For each $v\in S$, let $N_v^1=N(v)\cap (V-S)$ and $N_v^2=N_2(v)$. Then $(N(S)-S)\cup N_2(S)=\cup_{v\in S}(N_v^1\cup N_v^2)$.

We show next that for each $v \in S$, $|N_v^1| + |N_v^2| \leq \Delta(\Delta - 1)$. If $v \in S_1$, then $N_v^1 \subseteq N(v)$ so $|N_v^1| \leq \deg v \leq \Delta$. However, each vertex w in N_v^1 must be adjacent to some other vertex of N(S) - S, for otherwise $S \cup \{w\}$ would be an open packing of G contradicting the maximality of S. Hence each vertex w of N_v^1 is adjacent with at most $\deg w - 2$ vertices of N_v^2 . Thus $|N_v^2| \leq \sum_{w \in N_v^1} (\deg w - 2) \leq |N_v^1| \cdot (\Delta - 2) \leq \Delta(\Delta - 2)$. Thus for $v \in S_1$, $|N_v^1| + |N_v^2| \leq \Delta(\Delta - 1)$. On the other hand, if $v \in S_2$, then $|N_v^1| \leq \deg v - 1 \leq \Delta - 1$. Hence $|N_v^2| \leq \sum_{w \in N_v^1} (\deg w - 1) \leq |N_v^1| \cdot (\Delta - 1) \leq (\Delta - 1)^2$. Thus, for $v \in S_2$, $|N_v^1| + |N_v^2| \leq \Delta(\Delta - 1)$. Thus,

$$\begin{aligned} n - |S| &= |(N(S) - S) \cup N_2(S)| \\ &= |\cup_{v \in S} \left(N_v^1 \cup N_v^2\right)| \\ &\leq \sum_{v \in S} \left(|N_v^1| + |N_v^2|\right) \\ &\leq |S| \cdot \Delta(\Delta - 1). \end{aligned}$$

Thus, $|S| \geq n/(\Delta(\Delta-1)+1)$. To show that the bound is sharp, we first recall the definition of a circulant. A circulant is a graph $H = C_p\langle a_1,\ldots,a_r\rangle$ such that, if the vertices are labelled v_1,v_2,\ldots,v_p , then $v_iv_j \in E(H)$ if and only if $|i-j| \in \{a_1,\ldots,a_r\}$ using arithmetic modular p. (We may assume that $1 \leq a_1 < \cdots < a_r \leq \lfloor p/2 \rfloor$.) We note that $C_p\langle 1 \rangle \cong C_p$. We now construct a 2r-regular graph G_r of order n with maximum degree $\Delta = 2r$ satisfying $\rho_L^o(G) = n/(\Delta(\Delta-1)+1)$.

For integers $\ell \geq 1$ and $r \geq 2$, let H be the circulant $C_{4\ell r(r-1)}\langle 1,\ldots,r-1,2\ell r(r-1)\rangle$ with vertices labelled $v_1,v_2,\ldots,v_{4\ell r(r-1)}$. Then H is a (2r-1)-regular graph. We now add $2r(\ell+1)$ new vertices $\{w_j^i\mid 1\leq i\leq \ell,1\leq j\leq 2r\}\cup\{u_i\mid 1\leq i\leq \ell\}$ together with the edges $\{u_iw_j^i\mid 1\leq i\leq \ell,1\leq j\leq 2r\}\cup\{w_{2k+1}^iw_{2k+2}^i\mid 1\leq i\leq \ell,0\leq k\leq r-1\}\cup\{w_j^iv_{2(r-1)(j-1)+4r(r-1)(i-1)+k}\mid 1\leq i\leq \ell,1\leq j\leq 2r,1\leq k\leq 2(r-1)\}$. Let G_r denote the resulting graph. Then G_r is a 2r-regular graph of order $n=\ell(4r^2-2r+1)$ with maximum degree $\Delta=2r$, and $S=\{u_1,\ldots,u_\ell\}$ is a maximal open packing of G_r of cardinality $\ell=n/(\Delta(\Delta-1)+1)$.

Next we present an upper bound on the lower open packing number of a connected graph. Since $\rho_L^o(G) \leq \rho^o(G)$ for all graphs G, an immediate corollary of Theorem 1 now follows.

Corollary 2 Let G be a connected graph of order $n \geq 3$. Then $\rho_L^o(G) \leq 2n/3$.

That the upper bound in Corollary 2 is in a sense best possible, may be seen as follows. For $m\geq 2$ an integer, let T be the tree obtained from a star $K_{1,m}$ by subdividing each edge twice. Let T_1,T_2,\ldots,T_m be m disjoint copies of T, and let v_i denote the central vertex of T_i for $i=1,2,\ldots,m$. Finally, let G_m be the tree obtained from the disjoint union $\bigcup_{i=1}^m T_i$ of T_1,T_2,\ldots,T_m by adding a new vertex v and the edges vv_i for $i=1,2,\ldots,m$. The graph G_m is shown in Figure 2. We show that $\rho_L^o(G_m)=2m^2-m+1$. Let S be a maximal open packing of G_m . Then S contains at most one of v_1,v_2,\ldots,v_m . If $v_i\not\in S$, then $|S\cap V(T_i)|=2m$, while if $v_i\in S$, then $|S\cap V(T_i)|=m+1$. Thus, $\rho_L^o(G_m)\geq 2m^2-m+1$. However, there exist maximal open packing sets of G_m of cardinality $2m^2-m+1$ as illustrated by the set of darkened vertices in Figure 2, so $\rho_L^o(G_m)\leq 2m^2-m+1$. Thus, $\rho_L^o(G_m)=2m^2-m+1$. Hence G_m is a tree of order $n=3m^2+m+1$ satisfying

$$\frac{\rho_L^o(G_m)}{n} = \frac{2m^2 - m + 1}{3m^2 + m + 1} = \frac{2 - 1/m + 1/m^2}{3 + 1/m + 1/m^2}.$$

Hence, $\rho_L^o(G_m)/n \to 2/3$ as $m \to \infty$.

Figure 2: The graph G_m . (The darkened vertices form a maximal open packing in G_m .)

3.2 Paths and cycles

In this subsection, we determine the lower open packing number of paths and cycles.

Proposition 5 For $n \geq 2$,

$$ho_L^o(P_n) = \left\{ egin{array}{ll} \lceil rac{n}{3}
ceil + 1 & ext{if } n \equiv 2 \ ext{or } 3 \ (mod \ 6) \ \\ \lceil rac{n}{3}
ceil & ext{otherwise} \end{array}
ight.$$

Proof: If n=2 or 3, then $\rho_L^o(P_n)=2=\lceil n/3\rceil+1$, so we may assume that $n\geq 4$. Let G be the path P_n on $n\geq 4$ vertices given by v_1,v_2,\ldots,v_n . By Theorem 3, we know that $\rho^o(G)\geq \lceil n/3\rceil$. If $n\equiv 1$ or $4\pmod{6}$, then $S=\{v_i\mid i=1\pmod{6}\}$ is a maximal open packing of G of cardinality $\lceil n/3\rceil$. If $n\equiv 0\pmod{6}$, then $S=\{v_i\mid i=2\pmod{6}\}$ is a maximal open packing of G of cardinality n/3. If $n\equiv 5\pmod{6}$, then $S=\{v_i\mid i=3\text{ or }4\pmod{6}\}$ is a maximal open packing of G of cardinality $\lceil n/3\rceil$. Hence if $n\not\equiv 2$ or $3\pmod{6}$, then $\rho^o(G)\leq \lceil n/3\rceil$. Thus, $\rho^o(G)=\lceil n/3\rceil$ if $n\not\equiv 2$ or $3\pmod{6}$.

Suppose that n=6k+2 for some integer $k \ge 1$. Let $V_1 = \{v_1, v_2, v_3, v_4\}$, $V_{k+1} = \{v_{6k-1}, \ldots, v_{6k+2}\}$, and $V_i = \{v_{6i-7}, \ldots, v_{6i-2}\}$ for $2 \le i \le k$. Thus V(G) can be partitioned into k+1 subsets $V_1, V_2, \ldots, V_{k+1}$ such that each of V_1 and V_{k+1} induce a path P_4 on four vertices and V_i induces a path P_6 on six vertices for $i=2,\ldots,k$. Any maximal open packing of G

contains at least two vertices from each of the sets V_i $(1 \le i \le k+1)$, so $\rho^o(G) \ge 2(k+1)$. On the other hand, the set $S = \{v_i \mid i = 3 \text{ or } 4 \pmod{6}\} \cup \{v_{n-1}, v_n\}$ is a maximal open packing of G of cardinality 2(k+1), so $\rho^o(G) \le 2(k+1)$. Thus, $\rho^o(G) = 2(k+1) = \lceil n/3 \rceil + 1$. Hence $\rho^o(G) = \lceil n/3 \rceil + 1$ if $n \equiv 2 \pmod{6}$.

If n=6k+3 for some integer $k\geq 1$, then V(G) can be partitioned into k+1 subsets $V_1,\,V_2,\ldots,V_{k+1}$ such that V_1 induces a P_4 and $v_1\in V_1,\,V_{k+1}$ induces a P_5 and $v_n\in V_{k+1}$, and V_i induces a P_6 for $i=2,\ldots,k$. Any maximal open packing of G contains at least two vertices from each of the sets V_i $(1\leq i\leq k+1)$, so $\rho^o(G)\geq 2(k+1)$. On the other hand, the set $S=\{v_i\mid i=1\ (mod\ 3)\}\cup\{v_{n-1}\}$ is a maximal open packing of G of cardinality 2(k+1), so $\rho^o(G)\leq 2(k+1)$. Thus, $\rho^o(G)=2(k+1)=\lceil n/3\rceil+1$. Hence $\rho^o(G)=\lceil n/3\rceil+1$ if $n\equiv 3\ (mod\ 6)$.

Proposition 6 For $n \geq 3$,

$$ho_L^o(C_n) = \left\{ egin{array}{ll} \left\lceil rac{n}{3}
ight
ceil + 1 & \emph{if } n \equiv 2 \, (mod \, 6) \\ \\ \left\lceil rac{n}{3}
ight
ceil & \emph{otherwise} \end{array}
ight.$$

Proof: Let G be the cycle C_n on n vertices given by $v_1, v_2, \ldots, v_n, v_1$. By Theorem 3, we know that $\rho^o(G) \geq \lceil n/3 \rceil$. If $n \equiv 0 \pmod{3}$, then $S = \{v_i \mid i = 2 \pmod{3}\}$ is a maximal open packing of G of cardinality n/3. If $n \equiv 1 \pmod{3}$, then $S = \{v_i \mid i = 1 \pmod{3}\}$ is a maximal open packing of G of cardinality $\lceil n/3 \rceil$. If $n \equiv 5 \pmod{6}$, then $S = \{v_i \mid i = 3 \text{ or } 4 \pmod{6}\}$ is a maximal open packing of G of cardinality $\lceil n/3 \rceil$. Hence if $n \not\equiv 2 \pmod{6}$, then $\rho^o(G) \leq \lceil n/3 \rceil$. Thus, $\rho^o(G) = \lceil n/3 \rceil$ if $n \not\equiv 2 \pmod{6}$. It remains for us to establish that $\rho^o(G) = \lceil n/3 \rceil + 1$ if $n \equiv 2 \pmod{6}$.

Suppose that n=6k+2 for some integer $k\geq 1$. By Theorem 3, we know that $\rho^o(G)\geq \lceil n/3\rceil=2k+1$. Thus any maximal open packing of G (which can not contain two vertices at distance 2) must contain at least two adjacent vertices. Let S be a maximal open packing of G of minimum cardinality. We may assume that $\{v_1,v_2\}\subset S$ (and so $v_3\not\in S$ and $v_4\not\in S$). We now partition V(G) into k subsets V_1,V_2,\ldots,V_k where V_1 induces the path v_1,v_2,\ldots,v_8 on eight vertices and V_i induces a path P_6 on six vertices for $i=2,\ldots,k$. Then S must contain one of v_5 and v_7 and one of v_6 and v_8 , so S contains at least four vertices of V_1 . Moreover, S contains at least two vertices from each of the sets V_i ($2\leq i\leq k$). Thus, $\rho^o(G)=|S|\geq 2(k+1)$. On the other hand, the set $S=\{v_i\mid i=3\text{ or }4\pmod{6}\}\cup\{v_{n-1},v_n\}$ is a maximal open packing of G of cardinality 2(k+1), so $\rho^o(G)\leq 2(k+1)$. Thus, $\rho^o(G)=2(k+1)$. Hence $\rho^o(G)=[n/3]+1$ if $n\equiv 2\pmod{6}$.

3.3 Minimality

In this subsection, we investigate how the removal of an edge can effect the lower open packing number of a graph. We show firstly that deleting an edge from a graph can increase its lower open packing number by at most 2.

Theorem 4 For any edge e in a graph G,

$$\rho_L^o(G-e) \le \rho_L^o(G) + 2,$$

and this bound is sharp.

Proof: Let S be a maximal open packing of G of minimum cardinality and let e = uv. We show that $\rho_L^o(G - e) \le |S| + 2$. If $u, v \in S$, then the only possible vertices in G-e that can be added to S to produce a maximal open packing are those vertices of G - e in $N(u) \cup N(v)$. However, at most one vertex from any open neighborhood belongs to an open packing of G - e. Thus if S is not a maximal open packing of G - e, then it can be extended to a maximal open packing of G - e by adding at most two vertices. If $u \in S$ and $v \notin S$, then the only possible vertices in G - e that can be added to S to produce a maximal open packing are those vertices of G - e in N[v]. However, at most two vertices from any closed neighborhood belongs to an open packing of G - e. Once again, S can be extended, if necessary, to a maximal open packing of G - e by adding at most two vertices. Finally, if $u, v \notin S$, then S is also a maximal open packing of G - e. In all three cases we have $\rho_L^o(G-e) \leq |S|+2 = \rho_L^o(G)+2$. That the bound is sharp, may be seen by considering the tree G obtained from the disjoint union of two stars by joining the two vertices of maximum degree with an edge e. Then $\rho_L^o(G-e) = 4 = \rho_L^o(G) + 2.$

Although deleting an edge can increase the lower open packing number of a graph by at most 2, it can decrease its lower open packing number by an arbitrarily large amount.

Theorem 5 For every positive integer n, there exists a graph G and an edge e of G satisfying $\rho_L^o(G-e) = \rho_L^o(G) - n$.

Proof: Let T be the tree obtained from a star $K_{1,n}$ by subdividing each edge exactly once. Let T_1 and T_2 be two disjoint copies of T, and let v_1 and v_2 be vertices of maximum degree n in T_1 and T_2 , respectively. Finally, let G be the graph obtained from $T_1 \cup T_2$ by adding a new vertex v and the edges $e = vv_1$, vv_2 and v_1v_2 . Then $\{v_1, v_2\}$ is a maximal open packing of G - e, so $\rho_L^o(G - e) = 2$. We show next that $\rho_L^o(G) = n + 2$. Let S be any maximal open packing of G. Then S contains at most one of v, v_1 and v_2 . If $v \in S$, then S consists of v and the 2n leaves so |S| = 2n + 1.

If $v_1 \in S$, then S contains the n leaves of T_2 and one vertex of T_1 that is adjacent with v_1 , so |S| = n + 2. Similarly, if $v_2 \in S$, then |S| = n + 2. Finally, if S contains none of the vertices v, v_1 or v_2 , then S contains all 2n leaves, one vertex of T_1 that is adjacent with v_1 , and one vertex of T_2 that is adjacent with v_2 , so |S| = 2n + 2. Thus, $\rho_L^o(G) = n + 2$. Hence $\rho_L^o(G - e) = \rho_L^o(G) - n$.

4 Bounds relating ρ^o and ρ_L^o

In this section, we present an upper bound on the difference between the open packing number and the lower open packing number of a tree. If T is a rooted tree with root r and v is a vertex of T, then the level number of v, which we denote by l(v), is the length of the unique r-v path in T. If a vertex v of T is adjacent to u and l(u) > l(v), then u is called a child of v, and v is the parent of u. A vertex w is a descendant of v if the level numbers of the vertices on the v-w path are monotonically increasing. The subtree of T induced by v and all its descendants is called the maximal subtree of T rooted at v. We will refer to an end-vertex of T as a leaf.

Theorem 6 If T is a tree of order $n \geq 2$, then

$$\rho^o(T) - \rho_L^o(T) \le \frac{n-2}{2},$$

and this bound is sharp.

Proof: We proceed by induction on the order $n \geq 2$ of a tree. If T is a tree of order $n \leq 5$ that is not a path on five vertices, then $\rho^o(T) = \rho_L^o(T) = 2$ and the result is immediate. If T is a path on n = 5 vertices, then $\rho^o(T) = 3 = \rho_L^o(T) + 1$, so $\rho^o(T) - \rho_L^o(T) = 1 \leq (n-2)/2$. Hence the result is true for all trees of order $n \leq 5$. So, assume that for all trees T' of order $n' \geq 2$ where n' < n and $n \geq 6$, that $\rho^o(T') - \rho_L^o(T') \leq (n'-2)/2$. Let T be a rooted tree of order n. We show that $\rho^o(T) - \rho_L^o(T) \leq (n-2)/2$. Let m be a leaf of m at furthest distance from the root (so m is a vertex of m with maximum level number), and let m be the parent of m.

If T contains a vertex adjacent with at least two leaves, then removing one of these leaves produces a tree T' of order n'=n-1 satisfying $\rho^o(T')=\rho^o(T)$ and $\rho^o_L(T')=\rho^o_L(T)$. Thus, applying the inductive hypothesis, we have $\rho^o(T)-\rho^o_L(T)=\rho^o(T')-\rho^o_L(T')\leq (n'-2)/2<(n-2)/2$. Hence we may assume that every vertex of T is adjacent with at most one leaf. In particular, v has degree 2. Let v be the parent of v in T.

If u has degree 2, then let x be the parent of u and consider the nontrivial tree $T' = T - \{u, v, w\}$ of order n' = n - 3. Since every maximal open packing of T contains two of the vertices u, v, w, x, we may assume without

loss of generality, that there is a maximum open packing S of T containing v and w. Hence $S - \{v, w\}$ is a maximal open packing of T', so $\rho^o(T') \ge \rho^o(T) - 2$; equivalently, $\rho^o(T) \le \rho^o(T') + 2$. On the other hand, every maximal open packing of T contains at least one of the vertices u, v, w, so $\rho_L^o(T) \ge \rho_L^o(T') + 1$. Thus, applying the inductive hypothesis, we have $\rho^o(T) - \rho_L^o(T) \le \rho^o(T') - \rho_L^o(T') + 1 \le (n'-2)/2 + 1 = n'/2 < (n-2)/2$. Hence we may assume that u has degree $k+1 \ge 3$.

If u is adjacent with a leaf x, then the tree T' = T - x of order n' = n - 1 satisfies $\rho^o(T') = \rho^o(T)$ and $\rho^o_L(T') = \rho^o_L(T)$. Thus, applying the inductive hypothesis, we have $\rho^o(T) - \rho^o_L(T) = \rho^o(T') - \rho^o_L(T') \le (n'-2)/2 < (n-2)/2$. Hence we may assume that every child of u has degree 2. Thus the maximal subtree of T rooted at u is isomorphic to $K_{1,k}$ with each edge subdivided once. Let v_1, \ldots, v_k be the children of u, and let w_i be the leaf adjacent with v_i , $1 \le i \le k$.

We now consider the nontrivial tree $T'=T-\{v_1,w_1\}$ of order n'=n-2. Every maximal open packing of T contains at most one child of u, so we may assume without loss of generality, that there is a maximum open packing S of T that does not contain v_1 . If $u \in S$, then S contains none of the leaves w_1,w_2,\ldots,w_k . But then $(S-\{u\})\cup\{w_1,w_2,\ldots,w_k\}$ would be an open packing of T of cardinality exceeding that of S, producing a contradiction. Thus $u \notin S$. Consequently, $\{w_1,w_2,\ldots,w_k\}\subset S$. Hence $S-\{w_1\}$ is a maximal open packing of T', so $\rho^o(T')\geq \rho^o(T)-1$; equivalently, $\rho^o(T)\leq \rho^o(T')+1$. On the other hand, let S be a maximal open packing of T of minimum cardinality. Once again, we may assume that S does not contain v_1 . Then $S\cap V(T')$ is a maximal open packing of T' of cardinality at most |S|. Thus, $\rho_L^o(T)\geq \rho_L^o(T')$. Therefore, applying the inductive hypothesis, we have $\rho^o(T)-\rho_L^o(T)\leq \rho^o(T')-\rho_L^o(T')+1\leq (n'-2)/2+1=n'/2=(n-2)/2$. This completes the inductive proof.

That the bound is sharp as may be seen as follows. For an integer $k \geq 2$, let T_1 and T_2 be two disjoint copies of a star $K_{1,k}$ with each edge subdivided exactly once. For i=1,2, let v_i denote the central vertex of T_i . Finally, let T be the tree obtained from $T_1 \cup T_2$ by adding the edge v_1v_2 . Then T is a tree of order n=4k+2. Furthermore, the set $\{v_1,v_2\}$ is a maximal open packing in T, so $\rho_L^o(T)=2$. On the other hand, the set containing the 2k leaves of T, one vertex of T_1 that is adjacent with v_1 and one vertex of T_2 that is adjacent with v_2 is a maximum open packing of T, so $\rho^o(T)=2k+2$. Thus, $\rho^o(T)-\rho_L^o(T)=2k=(n-2)/2$.

5 Complexity results

In this section we show that the decision problem

OPEN PACKING (OPK)

INSTANCE: A graph G = (V, E) and a positive integer $k \le |V|$. **QUESTION:** Does G have an open packing of cardinality k?

is NP-complete, even when restricted to bipartite and chordal graphs, by describing polynomial transformations from the following well-known NP-complete problem:

EXACT COVER BY 3-SETS (X3C)

INSTANCE: A finite set X with |X| = 3q and a collection C of 3-element subsets of X.

QUESTION: Does \mathcal{C} contain an exact cover for X, that is, a subcollection $\mathcal{C}' \subseteq \mathcal{C}$ such that every element of X occurs in exactly one member of \mathcal{C}' .

Theorem 7 OPEN PACKING is NP-complete, even for bipartite graphs.

Proof: It is obvious that **OPK** is a member of NP since we can, in polynomial time, guess at set S of vertices and verify that S has cardinality at least m and is an open packing. We next show how a polynomial time algorithm for **X3C** could be used to solve **OPK** in polynomial time. Let $X = \{x_1, \ldots, x_{3q}\}$ and $C = \{C_1, \ldots, C_m\}$ be an arbitrary instance of **X3C**. We will construct a bipartite graph G such that this instance of **X3C** will have an exact three cover if and only if G has an open packing of cardinality K, where K = M + M.

The graph G is constructed as follows. Corresponding to each variable $x_i \in X$, we associate the graph H_i which consists of the path x_i, y_i, w_i, z_i on four vertices. Corresponding to each set C_j , we associate the graph F_j which consists of the path c_j, d_j on two vertices. The construction of the bipartite graph G is completed by adding the edges $\{x_i c_j \mid x_i \in C_j\}$. It is easy to see that the construction of the graph G can be accomplished in polynomial time. Let $W = \{w_1, w_2, \ldots, w_{3q}\}, Z = \{z_1, z_2, \ldots, z_{3q}\}, C = \{c_1, \ldots, c_m\}$ and $D = \{d_1, \ldots, d_m\}$. We show that C has an exact 3-cover if and only if G has an open packing of cardinality k = m + 7q.

Suppose C' is an exact 3-cover for X. Then |C'| = q. Let $S = \{c_j \mid C_j \in C'\} \cup D \cup W \cup Z$. Then S is an open packing of cardinality k = m + 7q. Suppose, conversely, that S is an open packing of cardinality k = m + 7q. Let $S' = S \cap C$. Since each vertex of S' is adjacent with three vertices of X, and since no two vertices of S have a common neighbor, there are 3|S'| vertices of S that are adjacent with vertices of S'. However there are precisely S vertices of S, so $|S'| \leq q$. Furthermore, at most two vertices of S' are in the open packing S for every S for every S and S' contains at least S vertices from S for every S and S' and S' eq. Consequently, S' is an exact 3-cover for S.

Theorem 8 OPEN PACKING is NP-complete, even for chordal graphs.

Proof: It is clear that **OPK** is in NP. To show that **OPK** is an NP-complete problem, we will establish a polynomial transformation from **X3C**. Let $X = \{x_1, \ldots, x_{3q}\}$ and $C = \{C_1, \ldots, C_m\}$ be an arbitrary instance of **X3C**. We will construct a chordal graph H such that this instance of **X3C** will have an exact three cover if and only if H has an open packing of cardinality k = m + 7q.

Let H be obtained from the graph G constructed in the proof of Theorem 7 by adding an edge between every two vertices of X so that the x_i 's induce a clique; that is, $(\{x_1,\ldots,x_{3q}\})\cong K_{3q}$. It is easy to see that the construction of the graph H can be accomplished in polynomial time. Proceeding now as in the proof of Theorem 7, we can show that C has an exact 3-cover if and only if H has an open packing of cardinality k=m+7q. \square

References

- [1] N. Biggs, Perfect codes in graphs, J. Combin. Theory Ser. B 15 (1973), 289-296.
- [2] G. Chartrand and O.R. Oellermann, Applied and Algorithmic Graphs Theory, McGraw-Hill, Inc. (1993).
- [3] L. Clark, Perfect domination in random graphs, J. Combin. Math. Combin. Comput. 14 (1993), 173-182.
- [4] A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree. *Pacific J. Math.* 61 (1975), 225-233.
- [5] J. Topp and L. Volkmann, On packing and covering numbers of graphs. Discrete Math. 96 (1991), 229-238.