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ABSTRACT. Using the characterization of those prime powers
q for which GF(q) admits a quadratic starter: ie. a pair-
ing (z:,%:),i = 1,2,..., 952, of nonzero squares x; with non-
squares ¥; in GF(g) such that the differences + (z; — ;) are all
distinct, we obtain a new infinite family of nested row-column

designs.

1 Introduction

Let G be an abelian group of order 2t + 1. A starter in G is a parti-
tion of the nonzero elements of G into pairs (z;,%:),? = 1,...,¢, such
that {£(z; —y;) |i=1,...,t} = G — {0}. For more on starters, refer to
Wallis, Wallis and Street [10]. If G = GF (q) (additive group) and the
starter pairs a nonzero square in GF (q) with a nonsquare in GF (q), we
call it a ”quadratic starter”. Existence of quadratic starters in GF (q) for
g = 3( mod 4) is easy to establish and well-known (see Mullin and Nemeth
[7]). {(z, Az) : = a nonzero square} is a quadratic starter whenever ¢ = 3

(mod 4) and A is a nonsquare. The case ¢ = 1( mod 4) is so far open.
A few sporadic cases have been dealt with by Sreenath [8] and Aggarwal
and Arasu [1]. Using the concept of orthomorphisms (for more on ortho-
morphisms, refer to Evans [4]), we prove: for ¢ = 1( mod 4),g— 1 not a
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power of 2, GF (q) admits a quadratic starter. An alternate proof of this
is in [3].

As a consequence of these quadratic starters, along the lines of Aggarwal
and Arasu (1], we obtain a new infinite family of nested row-column designs.

Recent work of Morgan and Uddin [6] contains several examples of nested
row-column designs. But our examples contain such designs where b = v
and each block is a 2 x (-";—1) array. These do not follow from the results
of [6].

2 Preliminaries

In this section we provide all the preliminary results we need to prove our
results. First we introduce the concept of orthomorphisms.

Let G be a finite group. A bijection § : G — G is said to be an ortho-
morphism if § — I¢ is also a bijection of G. (Here (8 — Ig) (z) = 6 (z) — z).
Cyclotomic orthomorphisms use cyclotomic classes in GF (g): Let ¢ =
ef +1 and g a primitive element in GF' (q). For i =0,1,... ,e — 1, define
Ci = {g9+|j=0,1,...,f—1}. C; is called the i** cyclotomic class of
index e.

For Ag,...,A.—1 € GF(q), define [Ay,... ,Ac—1] : GF (q) — GF (q) by

0-0

z— Az ifz € C;

Then [Ao, ... , Ae—1] is an orthomorphism of GF (q) if and only if (i) C; —
A;C; permutes Cp,...,Ce—1 and (i) Ci — (A; — 1) C; permutes Cy,...,
Ce—1. These will be referred to as cyclotomic orthomorphisms of index e.
Note: cyclotomic orthomorphisms of index 2 are usually called quadratic
orthomorphisms, not to be confused with quadratic starters. For more on
orthomorphisms and related topics, see Evans [4].

We also need the following number theory result.
Result 2.1: (Ljunggren[5]). The only (non-negative) integer solutions of
zt —1

1 =yin>2

e
are (n,z,y) = (4,7,20) or (5,3,11).
3 AQuadratic starters in GF (q) for g=1( mod 4).

Let g=ef +1, e a power of 2, e #£ 2, f odd, f > 1. (Thus we assume that
g — 1 is not a power of 2.) We assert that for some cyclotomic class Cy, o
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odd, we can find A, BeC, such that (i) A — 1 is a square and (i¢) B -1 is
a nonsquare.

To prove this, we proceed by assuming the contrary. Then for each
nonsquare k, and each w € Cy, (k — 1)(wk — 1) is a square and so (wk —

1)""5l —e=0, where e = (kl—l)q—l

are precisely the elements of Cy, g(z) = (:::I‘:—l)"’_i‘l —& =0modulozf —1in
GF(q)[z]. Thus the reduction of g(z) modulo z/ —1 is the zero polynomial
and in particular the coefficient of  in this reduction is zero, i.e.

. As the f distinct rootsof zf —1=10

> (Treneo )

i=1 mod f (0<i<7t)

(1) is a polynomial expression in k. It is not identically zero, since the

coefficient of k is (43}) (—1)3’? # 0. Since each nonsquare k is a root
of (1), the degree of this polynomial is at least 5—‘— But since the index
i was over the range [O 9—] with ¢ = 1( mod f), its degree is at most
9—+1—f Thus 9— < 9-2—+1—f, which is impossible since f > 1;
proving the assemon Let a be odd such that A, BeC,, A-1 is a square,
B-1 is a nonsquare. Then A~!, B~1eC,._q.

Now we claim that

0—- 0
0: z— AzifzeCes,Cei2+2,...,C.5
z — Bz ifzeCy,Ca,... ,Cppa — 2
z— Alzif a:eCe/g.,.m C’e+2+a, ver yCe—tta
z— B7lzif zeC,, C'2+o,, -1Cs-2¢a

is a cyclotomic orthomorphism (that gives rise to a quadratic starter).
To see this we observe(z) 8 is a bijection of GF (q) that maps squares to
nonsquares and vice versa.

(Reason:

Cita|li=5,5+2,...,e-2}
U Ci+al =02...,§—2}
U Ceatili=%+0e, .,e—2+a}
U Ce_a+.|z=a2+a, e § 2+a}
= {C.I‘l-— ,...,e—-l})

(14)A —1eCyp (say) = 0 — I sends C; — Copy; fori=§,5+2,... ,e—2
B —1€Cyyy1 (say) = 0 — I sends C; — Capp144 for i =0,2,... 5 —2
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Al 1= (A-1) A_16C§_a+25

(Note: —1eC./2)

= 0—-1Isends C; > Cg_atirop fori=5+a,e/24+2+¢,...,e-2+a

Finally B~! =1 = —(B—1)B '€Ce/a_at2v+1 = 0 — I sends C; —
Cej2—at2ytiti fori=a,2+a,...,e [/ 2—2+ o thus 6 — I permutes C;
(:=0,..., e—1). Thus, we've proved

Theorem 1. For ¢ = 1( mod 4),q — 1 not a power of 2, GF (q) admits
an orthomorphism, that gives rise to a quadratic starter.

4 The case ¢ — 1= a power of 2.

In this section, we examine the exceptional case of Section 3, where ¢ — 1
is a power of 2. Write ¢ = p" and assume p" — 1 =2".

Proposition (4.1). Let p be a prune such that p™ — 1 = 2*. Then either
p is a Fermatt prime, i.e. p = 22" 4+ 1 for some non-negative integer s, or
n=3andp" =9 =32

Proof Case (1): r = 1. Then p =2" + 1. If n is odd, p = 3, because
2" +1=0( mod 3) for any odd n. So, suppose = is even. Write n = 2° . ¢,
where ¢ is odd. Now p = 2%"* + 1= 0( mod 2% +1) since ¢ is odd. But
then p = 22" + 1, since p is a prime.
Proof Case (2): 7 = 2. Then p? = 2" + 1. It is an easy exercise in
elementary number theory: 2™ 4-1 is a perfect square if, and only if, n = 3.
Hence, p? = 9.
Proof Case (3): r > 2. We've p" —1 = 2" = 0( mod p —1). Hence,
p — 1 is also a power of 2. If n is odd, 2" 4+ 1 = 0( mod 3) implies p = 3.
Hence, if n is odd, $=! = 2"~ is impossible by Result 2.1.

Ifnis even, p—1=2™ for some even integer m.

Thus, 2= =T = 2", (note: m — m even) is again impossible by Result
2.1

This complete the proof of Proposition 4.1

Remarks: For the cases ¢ = 5 and ¢ = 9,GF (q) does not admit a
quadratic starter. For other known Fermatt primes, ¢ = 17,q = 257, and
q = 65,537, GF (g) admits a quadratic starter.

For q = 17, the following serves as a quadratic starter:

1 2 4 8 9 13 15 16
3512 7 14 6 11 10

For ¢ = 257 & q = 65, 537, Dillon [2] obtained quadratic starters using a
computer search.
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5 Application
A balanced incomplete block design with nested row and columns is an
arrangement of v treatments in & blocks satisfying:

(i) each block is a p x ¢ array of pq plots,

(ii) every treatment occurs at most once in each block,

(iii) every treatment occurs in exactly r blocks,

(iv) for every pair of treatments i # #,pAf, + A7, — My = A =
r(p—1)(g—1)

v—1

Here /\R, and A, »+ denote respectively the number of rows and columns
of the blocks in which treatment pair (i, 1’) occurs together and A, ;» denotes
the number of blocks in which (3, ') occurs together. We let BIBRC (v, b, 7,
D,q,) denote such a design and all of them simply nested row-column
designs.

Aggarwal and Arasu [1] implicitly used the idea of quadratic startersin a
finite field and obtained a new construction of BI BRC in which each block
has two rows and the number of treatments is v*,» =5( mod 8),v > 5,v
a prime power, a any positive integer.

Their construction produces a quadratic starter only when GF (v) admits
a special type of primitive element. Our results in this paper strengthen the
results of [1] in two ways: (i) we do not require any special type of primitive
elements in GF (q) (ii) we establish such quadratic starters whenever ¢ — 1
is not a power of 2. (The case of [1}, v = 5(mod8),v > 5 is hence covered
here completely.) Along the lines of [1], we obtain

Theorem (5.1). Suppose GF(q) admits a quadratic starter: {z;,y;},i =
1..., %%, where {z:} = (GF (¢)")” and % = GF(g)\ ((GF (g))*u{0}).

Then (****2;1) serves as the initial block of a nested row-column
Y1.Y2.. y ~1

design with parameters (v=g;b=g;7 = g — 1; A = 252), where each block
is a 2 x (%51)array.

Hence, these designs exist for all prime powers ¢, ¢ — 1 not a power of 2,
including the Fermatt primes ¢ = 17, ¢ = 257 & q =65,537.

Combining Theorem 5.1 with a result of Uddin [9], we obtain
Theorem (5.2). Let q be a prime power such that q —1 is not a power of
2o0r q =17,q = 257,q = 65,537. Then for each positive integer c, there
exists a nested row-column design with parameters

(v:q"‘;b———q flq _1_1) r=q%~-1; A-—;s)

where each block is a 2 x (%45%) array.
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