Orientable Open Domination of Graphs

Lisa Hansen¹
Department of Mathematics and Statistics
Western Michigan University
Kalamazoo, MI 49008

Yung-Ling Lai Jin-Wen College Taiwan, R.O.C.

Bill Quan Yue¹
State Farm Insurance Company
Bloomington, IL 61791

ABSTRACT

An open dominating set for a digraph D is a set S of vertices of D such that every vertex of D is adjacent from some vertex of S. The cardinality of a minimum open dominating set for D is the open domination number $\rho_1(D)$ of D. The lower orientable open domination number $\operatorname{dom}_1(G)$ of a graph G is the minimum open domination number among all orientations of G. Similarly, the upper orientable open domination number $\operatorname{DOM}_1(G)$ of G is the maximum such open domination number.

For a connected graph G, it is shown that $\mathrm{dom}_1(G)$ and $\mathrm{DOM}_1(G)$ exist if and only if G is not a tree. A discussion of the upper orientable open domination number of complete graphs is given. It is shown that for each integer c with $\mathrm{dom}_1(K_n) \le c \le \mathrm{DOM}_1(K_n)$, there exists an orientation D of K_n such that $\rho_1(D) = c$.

¹Research supported in part by Office of Naval Research Grant N00014-91-J-1060.

1. Orientable Open Domination

A vertex v in a graph G is said to 1-step dominate or openly dominate each of its neighbors. A set S of vertices of G is an open dominating set of G if every vertex of G is openly dominated by some vertex of G. The minimum cardinality among the open dominating sets of G is called the open domination number of G and is denoted by $\rho_1(G)$.

Analogous definitions can be made for digraphs. In particular, for a digraph D, a vertex v openly dominates all vertices w with $(v, w) \in E(D)$. The open domination number $\rho_1(D)$ of D is the minimum cardinality among the open dominating sets of D. Although for a graph G without isolated vertices, the open domination number $\rho_1(G)$ always exists, such is not the case for digraphs. However, for a digraph D, a necessary and sufficient condition for $\rho_1(D)$ to exist is that id $v \ge 1$ for every vertex v of D. This condition is satisfied for the digraphs D_1 and D_2 of Figure 1. In D_1 , the vertex v_1 is uniquely openly dominated by v_2 , the vertex v_4 is uniquely openly dominated by v_5 , and v_5 is uniquely openly dominated by v_6 . Hence if S is an open dominating set of D_1 , then $\{v_2, v_5, v_6\} \subseteq S$. Since $S_1 = \{v_2, v_5, v_6\}$ is itself an open dominating set of D, it follows that S_1 is a (in fact, the unique) v_3, v_4, v_5 is the unique minimum open dominating set of D_2 and so $\rho_1(D_2) = 4$. Since D_1 and D_2 are orientations of the same graph and $\rho_1(D_1) \neq \rho_1(D_2)$, this suggests some definitions.

Figure 1

For a graph G, we say that D is a valid orientation of G if every vertex of D has positive indegree. Let $D_1, D_2, ..., D_k$ be the distinct valid orientations of a graph G. We define the lower and upper orientable open domination numbers of G, respectively, as

$$dom_1(G) = min\{\rho_1(D_i) \mid 1 \le i \le k\}$$
 and $DOM_1(G) = max\{\rho_1(D_i) \mid 1 \le i \le k\}$

These concepts were defined and investigated for ordinary domination in digraphs in [1]. In order to present a necessary and sufficient condition for these parameters to be defined for a graph G, we recall a theorem of Robbins [3].

Theorem (Robbins) A graph G has a strong orientation if and only if G is 2-edge-connected (connected and has no bridges).

Theorem 1 Let G be a connected graph. Then $dom_1(G)$ and $DOM_1(G)$ exist if and only if G is not a tree.

Proof First assume that $dom_1(G)$ and $DOM_1(G)$ are defined and suppose, to the contrary, that G is a tree of order n. Let D be any valid orientation of G. Since G is a tree, it follows that the sum of the indegrees of the vertices of D is $\sum_{v \in V(D)} idv = |E(D)| = |E(G)| = n - 1$. However, since every vertex has

indegree at least 1, it follows that $\sum_{v \in V(D)} id v \ge n$, producing a contradiction.

Next, suppose that G is not a tree. We show that there exists a valid orientation D of G. Since G is not a tree, we know that G contains a cyclic block. Let B_1, B_2, \ldots, B_k denote the cyclic blocks of G. By Robbins' Theorem, each block B_i , $1 \le i \le k$, has a strong orientation. For the desired orientation D, begin by producing a strong orientation of each block B_i , $1 \le i \le k$. Then id $v \ge 1$ for every vertex v of the blocks B_1, B_1, \ldots, B_k . Next, for any shortest path P between two cyclic blocks B_i and B_j ($i \ne j$), orient the edges of P from one block to the other (say, from B_i to B_j). Then for each vertex v of P, we have id $v \ge 1$. Finally, let V be the set $\bigcup_{i=1}^k V(B_i)$, along with the vertices of all shortest paths between two cyclic blocks, and let u be any vertex of G not belonging to v. Then there exists a shortest path from v to some vertex, say v, of V. Direct the edges of the path from v to u. The resulting orientation D has minimum indegree at least v. Therefore v to v exists, implying that v domains v and v and v domains v to v.

Some simple bounds for these parameters are presented next.

Theorem 2 For every connected graph G of order $n \ge 3$ that is not a tree,

$$3 \le \text{dom}_1(G) \le \text{DOM}_1(G) \le n$$
.

Proof Clearly, $DOM_1(G) \le n$. Let D be a valid orientation of G and let S be a minimum open dominating set of D. For $u \in S$, there exists some vertex $v \in S$ that openly dominates u. So $(v, u) \in E(D)$. Also the vertex v must

be openly dominated by some vertex of S. Further, this vertex cannot be u since $(u, v) \notin E(D)$. Hence there exists a vertex $w \in S$ with $w \neq u, v$ that openly dominates v. Therefore $\{u, v, w\} \subseteq S$, implying $\rho_1(D) = |S| \ge 3$. We now know $\rho_1(D) \ge 3$ for any valid orientation D of G. Consequently, $dom_1(G) \ge 3$. \square

The following result shows that the upper orientable domination number of a graph attains the upper bound only in one special case. The proof of this result uses the following theorem of Hall [2].

Theorem (Hall) A collection $S_1, S_2, ..., S_n, n \ge 1$, of finite nonempty sets has a system of distinct representatives if and only if the union of any k of these sets contains at least k elements, for each k such that $1 \le k \le n$.

Theorem 3 For a connected graph G of order $n \ge 3$, $DOM_1(G) = n$ if and only if $G = C_n$.

Proof First assume that $G = C_n$. Then, we orient the edges so that the corresponding digraph D is a directed cycle. It follows that every vertex is openly dominated only by the preceding vertex along the cycle. Therefore every vertex must belong to the open dominating set, implying that $\rho_1(D) = n$. Consequently, $DOM_1(G) = n$.

For the converse, assume that $\mathrm{DOM}_1(G) = n$. Let D be an orientation of G such that $\rho_1(D) = \mathrm{DOM}_1(G) = n$. Assume that $V(D) = \{v_1, v_2, \dots, v_n\}$. Define a digraph D' by $V(D') = \{v_1, v_2, \dots, v_n, v_1', v_2', \dots, v_n'\}$ and $(u, v) \in E(D')$ if and only if

- (1) $u = v_i$ for some $i \in \{1, 2, ..., n\}$,
- (2) $v = v'_{j}$ for some $j \in \{1, 2, ..., n\}$, and
- $(3) \quad (v_i, v_i) \in E(D).$

Let $S_j = \{v_i \mid (v_i, v_j') \in E(D')\}$ for j = 1, 2, ..., n. Thus S_j is the set of vertices that openly dominate the vertex v_i in D. We claim that S_1, S_2, \dots , S_n has a system of distinct representatives. Now let $J \subseteq \{1, 2, ..., n\}$ such that |J| = k. Let $S = \bigcup_{j \in J} S_j$ and suppose, to the contrary, that |S| < |J|. Let $W = \{v_i' \mid j \in J\}$ and let $W' = \{v_1', v_2', \dots, v_n'\} - W$. In D every vertex v_i , where $j \in J$, is openly dominated by some vertex of S. Now for each $v'_{\ell} \in$ W', we know since $\mathrm{id}_D \ v_\ell \ge 1$, that there exists $(v_i, v_\ell) \in E(D)$ and hence $(v_i, v'_{\ell}) \in E(D')$. Let $v_{i_{\ell}}$ be such a vertex for each $v'_{\ell} \in W'$ and let S' = $\{v_{i,j} \mid v'_{\ell} \in W'\}$. Then $|S'| \le |W'| = n - k$. Now, in D, every vertex v_{j} , where $j \notin J$, is openly dominated by some vertex of S'. Consequently, the set $S \cup S'$ is an open dominating set of D. However $|S \cup S'| \le |S| + |S'| < S'$ k + n - k = n. This implies that $\rho_1(D) < n$, producing a contradiction. Hence $|S| \ge |J|$, implying that S_1, S_2, \dots, S_n has a system of distinct representatives. It follows that D' has an independent set of arcs. This independent set of arcs corresponds to a disjoint union of directed cycles, say $D_1, D_2, \dots, D_m, \text{ in } D.$

Suppose, to the contrary, that $\langle V(D_i) \rangle$ is not a directed cycle for some $i=1,2,\ldots,m$. Then there exist vertices v_j and v_k in $V(D_i)$ such that $(v_j,v_k)\in E(D)$ but v_k does not follow v_j on the directed cycle D_i . Let v_ℓ be the vertex preceding v_k on the directed cycle D_i . Then $V(D_i)-\{v_\ell\}$ is an open dominating set of $\langle V(D_i) \rangle$. But this would imply that $\rho_1(D) < n$. Hence $\langle V(D_i) \rangle$ is a directed cycle for each $i=1,2,\ldots,m$.

Finally we show that m=1. If $m\geq 2$, then since the underlying graph G is connected, there exist vertices v_i and v_j such that $(v_i,v_j)\in E(D)$ where $v_i\in V(D_i)$ and $v_j\in V(D_j)$, $i\neq j$. Let v_k be the vertex preceding v_j on the directed cycle D_j . Then $V(D_i)\cup V(D_j)-\{v_k\}$ is an open dominating set of $\langle V(D_i)\cup V(D_j)\rangle$. Again, this would imply that $\rho_1(D)< n$. Hence m=1 and $D=\langle V(D_1)\rangle$, a directed cycle of length n. That is, $G=C_n$. \square

We next study a class of graphs, the difference of whose lower and upper orientable domination numbers is arbitrarily large. In particular, for $n \ge 4$, let $G_n = K_1 + P_{n-1}$ (see Figure 2).

Figure 2

It can be shown that $dom_1(G_n) = 3$ and $DOM_1(G_n) = n - 1$ with the aid of the orientations D_1 and D_2 of G_n shown in Figure 3.

For D_1 , observe that id $v_2=1$ and thus v_1 must belong to every open dominating set of D_1 . Similarly, since id $v_n=1$ and id $v_1=1$, it follows that v_{n-1} and v_n must also belong to each open dominating set of D_1 . Further, $S_1=\{v_1,v_{n-1},v_n\}$ is an open dominating set of D_1 . Thus $\rho_1(D_1)=|S_1|=3$. Also $3 \leq \operatorname{dom}_1(G_n) \leq \rho_1(D_1)=3$, which implies that $\operatorname{dom}_1(G_n)=3$.

In a similar manner, observe that $\operatorname{id}_{D_2} v_i = 1$ for $i = 2, 3, \ldots, n$. Thus $v_1, v_2, \ldots, v_{n-1}$ must belong to every open dominating set. Since $S_2 = \{v_1, v_2, \ldots, v_{n-1}\}$ is an open dominating set, it follows that $\operatorname{DOM}_1(G_n) \ge \rho_1(D_2) = |S_2| = n-1$. Further, by Theorem 3, $\operatorname{DOM}_1(G_n) \ne n$. Thus $\operatorname{DOM}_1(G_n) = n-1$.

Figure 3

This class of graphs also has the property that for each integer c, $3 \le c \le n-1$, there exists an orientation of G_n , resulting in a digraph D, such that $\rho_1(D) = c$. (See Figure 4.)

2. Upper Orientable Open Domination Numbers of Complete Graphs

In this section we investigate the growth of the function $DOM_1(K_n)$. First, we show that $DOM_1(K_n)$ is a nondecreasing function.

Lemma 4 For all $n \ge 3$, $DOM_1(K_n) \le DOM_1(K_{n+1})$.

Proof Choose a valid orientation D_n of K_n such that $\rho_1(D_n) = \mathrm{DOM}_1(K_n)$. Next define an orientation D_{n+1} of K_{n+1} by adding a vertex w to D_n and adding arcs (u, w) for every $u \in V(D_n)$. Then D_{n+1} is a valid orientation, and

$$DOM_1(K_{n+1}) \ge \rho_1(D_{n+1}) = \rho_1(D_n) = DOM_1(K_n).$$

Corollary 5 For $3 \le m \le n$, $DOM_1(K_m) \le DOM_1(K_n)$.

In the next two lemmas, we investigate how slowly the function $DOM_1(K_n)$ grows. Of course, every orientation of K_n is a tournament of order n.

Lemma 6 If $DOM_1(K_{n+1}) > DOM_1(K_n)$, then

- (a) each tournament T_{n+1} with $\rho_1(T_{n+1}) = DOM_1(K_{n+1})$ is strong, and
- (b) $DOM_1(K_{n+1}) = DOM_1(K_n) + 1$.

Proof of (a) Let T_{n+1} be any valid tournament of order n+1 such that $\rho_1(T_{n+1}) = \mathrm{DOM}_1(K_{n+1})$. Suppose, to the contrary, that T_{n+1} is not strong. Then $V(T_{n+1})$ can be partitioned into sets S_1, S_2, \ldots, S_k $(k \ge 2)$ such that (1) each $\langle S_i \rangle$ is a strong subdigraph and is maximal with respect to the property of being strong, that is, the subdigraphs $\langle S_1 \rangle, \langle S_2 \rangle, \ldots, \langle S_k \rangle$ are the strong components of T_{n+1} , and (2) for every vertex u of S_1 and for every vertex v

of S_i , $i \ge 2$, the arc (u, v) belongs to T_{n+1} . It is clear that S_1 is an open dominating set of T_{n+1} . Further, a minimum open dominating set of $\langle S_1 \rangle$ is also a minimum open dominating set of T_{n+1} . So $\mathrm{DOM}_1(K_{n+1}) = \rho_1(\langle S_1 \rangle) \le \mathrm{DOM}_1(K_{|S_1|}) \le \mathrm{DOM}_1(K_n) < \mathrm{DOM}_1(K_{n+1})$, producing a contradiction. Thus T_{n+1} is strong.

Proof of (b) It suffices to show that $\mathrm{DOM}_1(K_{n+1}) \leq 1 + \mathrm{DOM}_1(K_n)$. Let T_{n+1} be a valid tournament of order n+1 such that $\rho_1(T_{n+1}) = \mathrm{DOM}_1(K_{n+1})$. Choose a vertex ν of T_{n+1} with od $\nu \geq 1$. Let $S = V(T_{n+1}) - N^+(\nu)$, where $N^+(\nu)$ represents the out-neighborhood of ν . Then ν openly dominates all vertices belonging to $N^+(\nu)$. Also, since id $\nu \geq 1$, $S \neq \emptyset$. Since od $\nu \geq 1$, $|S| \leq n$. Now it follows that

$$DOM_1(K_{n+1}) = \rho_1(T_{n+1}) \le 1 + \rho_1(\langle S \rangle) \le 1 + DOM_1(K_n).$$

Theorem 7 If $DOM_1(K_n) = m$ and $DOM_1(K_{n+1}) = m + 1$, then $DOM_1(K_i) = m + 1$ for $n + 1 \le i \le 2n + 2$.

Proof It suffices to show that $DOM_1(K_{2n+2}) \le m+1$. Let T be a valid tournament of order 2n+2. Then T has a vertex v such that od $v \ge n+1$. Let $S = V(T) - (N^+(v) \cup \{v\})$. Then $|S| \le n$. As in the proof of Lemma 6(b), we have

$$\rho_1(T) \leq 1 + \rho_1(\langle S \rangle) \leq 1 + \mathrm{DOM}_1(K_n) = 1 + m.$$

Since this is true for any such tournament T, it follows that $DOM_1(K_{2n+2}) \le m+1$. \square

From our previous results, we know that $DOM_1(K_n)$ is a nondecreasing function and any increase in functional values is a step increment

of 1. However, our results so far have not shown that $DOM_1(K_n)$ increases at all. The next result shows that, in fact, the function increases without bound.

Theorem 8 The function $DOM_1(K_n)$ is unbounded as $n \to \infty$.

Proof We proceed by a counting argument. First, let T_n denote the number of labeled tournaments of order n. Since K_n has $\binom{n}{2}$ edges, each of which can be oriented in one of two directions, $T_n = 2\binom{n}{2}$.

Next, let T_n^{ν} denote the number of valid labeled tournaments of order n. We claim that $T_n^{\nu} = T_n - nT_{n-1}$. Observe that for any labeled tournament T that is not valid, there cannot exist two vertices ν and w with id $\nu = 0$ and id w = 0 because either $(\nu, w) \in E(T)$ or $(w, \nu) \in E(T)$. Hence for any labeled tournament T that is not valid, there exists a unique vertex ν such that id $\nu = 0$. Since there are n choices for the label of the vertex of indegree n and, by removing this vertex, we obtain a labeled tournament of order n = 1, it follows that the number of labeled tournaments that are not valid is nT_{n-1} . Thus the number of valid labeled tournaments is $T_n^{\nu} = T_n - nT_{n-1}$.

Next, let T_n^k denote the number of labeled tournaments of order n with open domination number equal to k, $3 \le k \le n$. Any such labeled tournament T has a minimum open dominating set S such that $\langle S \rangle$ is a valid subtournament of order k. There are $\binom{n}{k}$ ways to label the vertices of S. So the number of possible orientations of $\langle S \rangle$ is T_k^{ν} . Let T' be the subtournament $\langle V(T) - S \rangle$. The number of possible orientations of T' is T_{n-k} . Since S is an open dominating set of T, it follows that for every vertex V of T', there is at least one vertex of S adjacent to V. That is, each of the n-k vertices of T' is adjacent from at least one of the k vertices of S. Hence the number of possible orientations of edges between S and V(T') is

$$\left[\binom{k}{1} + \binom{k}{2} + \dots + \binom{k}{k}\right]^{n-k}$$

Therefore,

$$T_{n}^{k} \leq {n \choose k} \cdot T_{k}^{\nu} \cdot T_{n-k} \cdot \left[{n \choose 1} + {n \choose 2} + \dots + {n \choose k} \right]^{n-k}.$$

$$= {n \choose k} \cdot T_{k}^{\nu} \cdot T_{n-k} \cdot (2^{k} - 1)^{n-k}$$

$$= {n \choose k} \cdot T_{k}^{\nu} \cdot 2^{\frac{(n-k)(n+k-1)}{2}} \cdot \left(\frac{2^{k} - 1}{2^{k}} \right)^{n-k}$$

$$= {n \choose k} \cdot \left[2^{\frac{k(k-1)}{2}} - k2^{\frac{(k-1)(k-2)}{2}} \right] \cdot 2^{\frac{(n-k)(n+k-1)}{2}} \cdot \left(\frac{2^{k} - 1}{2^{k}} \right)^{n-k}$$

$$= {n \choose k} \cdot \left[2^{\frac{n(n-1)}{2}} - k2^{\frac{n(n-1)-2(k-1)}{2}} \right] \cdot \left(\frac{2^{k} - 1}{2^{k}} \right)^{n-k}$$

$$= {n \choose k} \cdot 2^{\binom{n}{2}} \cdot \left[1 - \frac{k}{2^{k-1}} \right] \cdot \left(\frac{2^{k} - 1}{2^{k}} \right)^{n-k}$$

Also observe that

$$T_n^{\nu} = 2^{\binom{n}{2}} - n2^{\binom{n-1}{2}} = 2^{\binom{n}{2}} \cdot \left[1 - \frac{n}{2^{n-1}}\right].$$

Now let $g(n) = T_n^v - \sum_{i=3}^k T_n^i$, which counts the number of valid tournaments of order n with minimum open dominating set of cardinality exceeding k. Then we have

$$g(n) = T_n^{\nu} - \sum_{i=3}^k T_n^i$$

$$\geq 2^{\binom{n}{2}} \left[1 - \frac{n}{2^{n-1}} \right] - \sum_{i=3}^k {\binom{n}{i}} \cdot 2^{\binom{n}{2}} \cdot \left[1 - \frac{i}{2^{i-1}} \right] \left[\frac{2^i - 1}{2^i} \right]^{n-i}$$

$$= 2^{\binom{n}{2}} \left(\left[1 - \frac{n}{2^{n-1}} \right] - \sum_{i=3}^k {\binom{n}{i}} \cdot \left[1 - \frac{i}{2^{i-1}} \right] \left[\frac{2^i - 1}{2^i} \right]^{n-i} \right).$$

Since
$$\lim_{n\to\infty}\sum_{i=3}^k \binom{n}{i} \cdot \left[1 - \frac{i}{2^{i-1}}\right] \left[\frac{2^i - 1}{2^i}\right]^{n-i} = 0$$
, it follows that $\lim_{n\to\infty} g(n) = 0$

 ∞ . Thus, for any fixed k, $3 \le k < n$, there exists a sufficiently large integer n such that for some valid labeled tournament T of order n, $\rho_1(T) > k$, implying that $DOM_1(K_n) > k$. \square

Using the method described above, the first value of n for which g(n) > 0 is 77. Thus $DOM_1(K_{77}) > 3$. However this is not the least integer n for which $DOM_1(K_n) > 3$. It can be verified that $DOM_1(K_n) = 3$ for n = 3, 4, ..., 10, the most difficult of which is n = 10. We verify this.

Theorem 9 DOM₁(K_{10}) = 3.

Proof Let D be an orientation of K_{10} such that $\rho_1(D) = \text{DOM}_1(K_{10})$. There exists a vertex, say ν_1 , with maximum outdegree. Necessarily, od $\nu_1 \ge 5$.

Case 1 od $v_1 = 5$. Let $N^+(v_1) = \{u_1, u_2, u_3, u_4, u_5\}$, and let $N^-(v_1) = \{v_2, v_3, v_4, v_5\}$. Assume, without loss of generality, that v_2 is adjacent to at least two of $\{v_3, v_4, v_5\}$. In particular, assume the arcs (v_2, v_4) and (v_2, v_5) belong to D.

Subcase 1.1 $(v_2, v_3) \in E(D)$. Then, since id $v_2 \ge 1$, it follows that $(u_i, v_2) \in E(D)$ for some $i \in \{1, 2, 3, 4, 5\}$. It follows that $S = \{u_i, v_2, v_1\}$ is an open dominating set. Thus $\rho_1(D) = 3$.

Subcase 1.2 $(v_3, v_2) \in E(D)$. Since the maximum outdegree of D is 5, it follows that at least 3 of the vertices of $N^+(v_1)$ are adjacent to v_2 . Suppose u_1, u_2 , and u_3 are among the vertices adjacent to v_2 . Assume that none of the sets $\{u_i, v_2, v_1\}$, $1 \le i \le 3$, is an open dominating set. Then there must exist some vertex not openly dominated by any of these sets. In particular, v_3 is the

only such vertex. So $(v_3, u_i) \in E(D)$ for i = 1, 2, 3. Now since the maximum outdegree of D is 5, it follows that $(v_4, v_3) \in E(D)$ and $(v_5, v_3) \in E(D)$. Without loss of generality, assume $(v_4, v_5) \in E(D)$. Since the maximum outdegree of D is 5, it follows that at least 3 of the vertices of $N^+(v_1)$ are adjacent to v_4 . Hence there is at least one vertex, say u_i , for some i, of $N^+(v_1)$ which is adjacent to both v_2 and v_4 . Then $S = \{u_i, v_1, v_4\}$ is an open dominating set, implying $\rho_1(D) = 3$.

Case 2 od $v_1 = 6$. Let $N^+(v_1) = \{u_1, u_2, u_3, u_4, u_5, u_6\}$, and let $N^-(v_1) = \{v_2, v_3, v_4\}$. Assume, without loss of generality, that v_2 is adjacent to at least one of v_3 and v_4 .

Subcase 2.1 $\langle v_2, v_3, v_4 \rangle$ is a directed 3-cycle. If $\{v_2, v_3, v_4\}$ is not an open dominating set, then there exists u_i $(1 \le i \le 6)$ such that (u_i, v_2) , (u_i, v_3) , $(u_i, v_4) \in E(D)$. Then $S = \{u_i, v_1, v_2\}$ is an open dominating set and $\rho_1(D) = 3$.

Subcase 2.2 $\langle v_2, v_3, v_4 \rangle$ is not a directed 3-cycle. Then one of the vertices, say v_2 , is adjacent to the other two, v_3 and v_4 . And since the maximum outdegree of D is 6, it follows that at least 3 of $N^+(v_1)$ are adjacent to v_2 . Suppose u_1, u_2 , and u_3 are among the vertices adjacent to v_2 . Then $S = \{u_1, v_1, v_2\}$ is an open dominating set, implying $\rho_1(D) = 3$.

Case 3 od $v_1 = 7$. Let $N^+(v_1) = \{u_i \mid 1 \le i \le 7\}$ and $N^-(v_1) = \{v_2, v_3\}$. Assume, without loss of generality, that $(v_2, v_3) \in E(D)$. Since the maximum outdegree of D is T, there exist at least two vertices of $N^+(v_1)$ adjacent to v_2 . Suppose u_i is one of these vertices for some i. Then $S = \{u_i, v_1, v_2\}$ is an open dominating set. So $\rho_1(D) = 3$.

Case 4 od $v_1 = 8$. Let $N^+(v_1) = \{u_i \mid 1 \le i \le 8\}$ and $N^-(v_1) = \{v_2\}$. Since the maximum outdegree of D is 8, there exists at least one vertex, say u_i , of

 $N^+(v_1)$ adjacent to v_2 . Then $S = \{u_i, v_1, v_2\}$ is an open dominating set. Therefore $\rho_1(D) = 3$. \square

Finally, to show that the least integer n for which $DOM_1(K_n) = 4$ is n = 11, it is required to verify that $DOM_1(K_{11}) \neq 3$.

Theorem 10 DOM₁ $(K_{11}) = 4$.

Proof We need only show the existence of an orientation of K_{11} with open domination number 4. We describe such an orientation D as follows. Let $V(D) = \{u_1, u_2, u_3, u_4, u_5, v_1, v_2, v_3, v_4, v_5, w\}$. The tournament D contains two strong subtournaments of order 5, say $T_1 = \langle \{u_1, u_2, \dots, u_5\} \rangle$ and $T_2 = \langle \{v_1, v_2, \dots, v_5\} \rangle$. Also the vertices of T_2 are adjacent to w, and the vertices of T_1 are adjacent from w. See Figure 5.

Figure 5

The orientations of edges between $V(T_1)$ and $V(T_2)$ remain to be described. We determine these orientations in the following way. There are

precisely 5 directed 3-cycles in T_2 . Let $S_1 = \{v_1, v_2, v_3\}$, $S_2 = \{v_3, v_4, v_5\}$, $S_3 = \{v_1, v_2, v_5\}$, $S_4 = \{v_2, v_3, v_4\}$, and $S_5 = \{v_1, v_4, v_5\}$ be the 5 sets of vertices which determine the directed 3-cycles of T_2 . Now for each i = 1, 2, 3, 4, 5, let u_i be adjacent to $V(S_i)$. All other arcs not mentioned thus far are directed from $V(T_2)$ to $V(T_1)$. The resulting orientation is the desired orientation D.

It remains to show that there is no minimum open dominating set of 3 vertices. Suppose, to the contrary, that $\rho_1(D) = 3$. Then there exists a directed 3-cycle, say $\langle S \rangle$, which openly dominates all vertices of D. Observe that $\langle S \rangle$ cannot be one of the triangles of T_1 since w is adjacent to all vertices of $V(T_1)$. Also, by construction, each of the triangles of T_2 is openly dominated by some vertex of $V(T_1)$. So $\langle S \rangle$ cannot be one of the triangles of T_2 . Hence we consider 3-cycles which contain vertices from both T_1 and T_2 .

Case 1 $S = \{w, u_i, v_j\}$ for some i, some j. Then $\langle S \rangle$ is the cycle w, u_i, v_j, w . Now u_i is directed toward a unique 3-cycle, say C, of T_2 where v_j belongs to C. Of the two vertices of $V(T_2) - V(C)$, one is adjacent to v_j and one is adjacent from v_j . Let v_k be the vertex adjacent to v_j . Then v_k openly dominates S. So S cannot be an open dominating set of D.

Case 2 $S = \{u_i, u_j, v_k\}$ for some i, j and k. There are 15 triangles of this type. However, each triangle is openly dominated by some vertex. (See Figure 6.) So S cannot be an open dominating set of D.

S	openly dominated by vertex
u_1, u_2, v_5	<i>u</i> ₅
u_1, u_2, v_4	<i>u</i> ₅
u_1, u_3, v_5	v ₄
u_4, u_1, v_1	ν ₅
u_5, u_1, v_3	u_4
u_5, u_1, v_2	u_4
u_2, u_3, v_1	u_1
u_2, u_3, v_2	u_1
u_2, u_4, v_2	ν ₁
u_5, u_2, v_3	v_2
u_3, u_4, v_4	u_2
u_3, u_4, v_3	u_2
u_3, u_5, v_4	ν ₃
u_4, u_5, v_1	u ₃
u_4, u_5, v_5	u_3

Figure 6

Case 3 $S = \{u_i, v_j, v_k\}$ for some i, j and k. There are 15 triangles of this type. However, each triangle is openly dominated by some vertex. (See Figure 7.) Thus S cannot be an open dominating set of D.

S	openly dominated by vertex
v_1, v_2, u_5	<i>u</i> ₃
v_3, v_1, u_2	u_1
v_3, v_1, u_4	ν ₅
v_1, v_4, u_3	v_3
v_1, v_4, u_1	u_5
v_5, v_1, u_2	<i>u</i> ₅
v_2, v_3, u_3	u_1
v_4, v_2, u_2	ν ₁
v_4, v_2, u_5	u_4
v_2, v_5, u_1	v ₄
v_2, v_5, u_4	u_3
v_3, v_4, u_1	u_4
v_5, v_3, u_3	u_2
v_5, v_3, u_5	ν ₂
v_4, v_5, u_4	u_2

Figure 7

We have now exhausted all possibilities. Thus there is no such open dominating set of 3 vertices, implying $\rho_1(D) \neq 3$. By Lemma 6, it follows that $DOM_1(K_{11}) = 4$. \square

3. An Intermediate Value Theorem for Orientable Open Domination in Complete Graphs

By the results of the preceding section, it follows that if m, n, and c are positive integers such that $m \le n$ and $\mathrm{DOM}_1(K_m) \le c \le \mathrm{DOM}_1(K_n)$, then there exists an integer k, with $m \le k \le n$, such that $\mathrm{DOM}_1(K_k) = c$. Hence we have a certain type of Intermediate Value Theorem. In this section, we consider the existence of another type of Intermediate Value Theorem. In particular, for a graph G, given an integer c such that $\mathrm{dom}_1(G) \le c \le \mathrm{DOM}_1(G)$, does there exist an orientation D of G such that $\rho_1(D) = c$?

Although such a theorem has not yet been proven for an arbitrary graph G, the result does hold for complete graphs. We begin by establishing a few lemmas for graphs in general.

Lemma 11 Let G be a graph and let ν be any vertex of G. If $DOM_1(G-\nu)$ is defined, then

$$\mathrm{DOM}_1(G) \geq \mathrm{DOM}_1(G-\nu) \geq \mathrm{DOM}_1(G) - 1.$$

Proof Assume $\mathrm{DOM}_1(G-\nu)$ is defined. Let $D-\nu$ be an orientation of $G-\nu$ such that $\rho_1(D-\nu)=\mathrm{DOM}_1(G-\nu)$. Define D by directing all edges of G incident with ν towards the vertex ν . Notice that a minimum open dominating set of D also openly dominates $D-\nu$. Hence $\rho_1(D) \ge \rho_1(D-\nu)$. Thus $\mathrm{DOM}_1(G) \ge \rho_1(D) \ge \rho_1(D-\nu) = \mathrm{DOM}_1(G-\nu)$.

Next let D be any orientation of G such that every vertex of D has positive indegree. Then, for the given vertex v, there exists some arc, say (u, v) in D. Now an open dominating set of D can be formed from an open dominating set of D-v, possibly along with the vertex u. Thus $\rho_1(D) \le \rho_1(D-v) + 1 \le \mathrm{DOM}_1(G-v) + 1$. Since this is true for any valid orientation D of G, it follows that $\mathrm{DOM}_1(G) \le \mathrm{DOM}_1(G-v) + 1$, that is, $\mathrm{DOM}_1(G-v) \ge \mathrm{DOM}_1(G) - 1$. \square

Lemma 12 If $DOM_1(G) > dom_1(G)$, then there exists a vertex ν of G such that

- (a) $dom_1(G v)$ and $DOM_1(G v)$ are defined
- (b) $dom_1(G) \ge dom_1(G v) \ge dom_1(G) 1$
- (c) either $DOM_1(G \nu) = DOM_1(G)$ or $DOM_1(G \nu) = DOM_1(G) 1$.

Proof Clearly, if G is a cycle, then $dom_1(G) = DOM_1(G)$. Thus, assuming $DOM_1(G) > dom_1(G)$, it follows that G is not a cycle and G is not a tree.

Now let D be an orientation of G such that every vertex has positive indegree. Let S be a minimum open dominating set of D. Since G is not a cycle, we know |S| < n. Hence there exists some vertex, say v, in V(G) - S. Now since S is an open dominating set of D, it follows that $\langle S \rangle$ contains a cycle. Further every vertex of V(G) - S is adjacent from some vertex of S. Consequently G - v is connected and contains a cycle. In fact, every vertex of D - v has positive indegree and $\rho_1(D - v)$ exists. So $\operatorname{dom}_1(G - v)$ and $\operatorname{DOM}_1(G - v)$ are defined, proving part (a).

Let D be an orientation of G such that $\rho_1(D) = \mathrm{dom}_1(G)$. Let S be a minimum open dominating set of D. And let ν be a vertex of V(G) - S, as in the proof of part (a). Then $\mathrm{dom}_1(G) = \rho_1(D) \ge \rho_1(D - \nu) \ge \mathrm{dom}_1(G - \nu)$, proving the first inequality of part (b).

Next let D-v be an orientation of G-v such that $\operatorname{dom}_1(G-v)=\rho_1(D-v)$. Let D be the orientation of G formed by directing all edges incident with v toward the vertex v. Then $\operatorname{dom}_1(G) \le \rho_1(D) \le \rho_1(D-v) + 1$. Hence $\operatorname{dom}_1(G) - 1 \le \rho_1(D-v) = \operatorname{dom}_1(G-v)$, proving the second inequality in part (b).

The proof of part (c) follows directly from Lemma 11. \Box

Lemma 13 Let G be a connected graph such that G is not a tree, and let c be an integer such that

$$\mathsf{dom}_1(G) \leq c < \mathsf{DOM}_1(G).$$

Then there exists a sequence v_1, v_2, \ldots, v_k of vertices of G such that for $G_i = G - \{v_1, v_2, \ldots, v_i\}, \ 1 \le i \le k$, we have

- (a) $dom_1(G_i)$ and $DOM_1(G_i)$ are defined
- (b) $DOM_1(G_k) = c$.

Proof The result is obvious if $c = dom_1(G)$. Thus we assume $dom_1(G) < c$. We proceed iteratively.

By Lemma 12, there exists a vertex, say v_1 , such that $dom_1(G_1)$ and $DOM_1(G_1)$ are defined and either $DOM_1(G_1) = DOM_1(G)$ or $DOM_1(G_1) = DOM_1(G) - 1$. We consider the following two cases.

Case 1 $DOM_1(G_1) = DOM_1(G)$. Then, by Lemma 12, $dom_1(G_1) \le dom_1(G) < DOM_1(G) = DOM_1(G_1)$. That is, $dom_1(G_1) < DOM_1(G_1)$.

Case 2 $DOM_1(G_1) = DOM_1(G) - 1$ and $c < DOM_1(G_1)$. Then, by Lemma 12, $dom_1(G_1) \le dom_1(G) < c < DOM_1(G_1)$. That is, $dom_1(G_1) < DOM_1(G_1)$.

Observe that for each of these cases, the graph G_1 satisfies the hypothesis of Lemma 12. Thus there exists a vertex, say v_2 , such that $DOM_1(G_2)$ is defined, and the process continues.

In general, as long as $dom_1(G_i) < DOM_1(G_i)$, there exists a vertex v_{i+1} such that $DOM_1(G_{i+1})$ is defined. Further, the process continues as long as

- (1) $DOM_1(G_{i+1}) = DOM_1(G_i)$ or
- (2) $DOM_1(G_{i+1}) = DOM_1(G_i) 1$ and $c < DOM_1(G_{i+1})$

We claim that the process terminates, that is, there exists k such that $\mathrm{DOM}_1(G_k) = \mathrm{DOM}_1(G_{k-1}) - 1$ and $c = \mathrm{DOM}_1(G_k)$. Let k-1 be the largest integer such that $\mathrm{dom}_1(G_{k-1}) \le c < \mathrm{DOM}_1(G_{k-1})$. Then, it follows that there exists a vertex v_k such that $\mathrm{DOM}_1(G_k)$ is defined and $\mathrm{DOM}_1(G_k) \le c$. But we know either $\mathrm{DOM}_1(G_k) = \mathrm{DOM}_1(G_{k-1})$ or $\mathrm{DOM}_1(G_k) = \mathrm{DOM}_1(G_{k-1}) - 1$. Since $\mathrm{DOM}_1(G_{k-1}) > c$, we must have

$$\mathrm{DOM}_1(G_k) = \mathrm{DOM}_1(G_{k-1}) - 1$$
. Hence $c \ge \mathrm{DOM}_1(G_k) = \mathrm{DOM}_1(G_{k-1}) - 1 > c - 1$, implying $\mathrm{DOM}_1(G_k) = c$. \square

Finally, we have an Intermediate Value Theorem for the upper orientable open domination number of a complete graph.

Theorem 14 Let c be an integer such that $dom_1(K_n) \le c \le DOM_1(K_n)$. Then there exists an orientation D of K_n such that $\rho_1(D) = c$.

Proof Certainly if $c = \text{dom}_1(K_n)$ or $c = \text{DOM}_1(K_n)$, the result is clear. Thus we assume $\text{dom}_1(K_n) < c < \text{DOM}_1(K_n)$. By Lemma 13, there exists a set of vertices $W = \{v_1, v_2, \dots, v_k\}$, $k \ge 1$, such that $\text{DOM}_1(K_n - W)$ is defined and $\text{DOM}_1(K_n - W) = c$. Let D' be an orientation of $K_n - W$ such that $\rho_1(D') = \text{DOM}_1(K_n - W)$. Form an orientation D of K_n from D' by letting $\langle D - W \rangle = D'$ and directing all edges incident with the vertices of W toward W. Now let S be a minimum open dominating set of D', that is, $\rho_1(D') = |S|$. By construction, the arc (u, v_i) belongs to D for every $u \in S$ and for every $v_i \in W$. Thus every vertex of W is openly dominated by a vertex of S. Hence, S is an open dominating set of D. Further S is, in fact, a minimum open dominating set, for otherwise we would have $\rho_1(D') < |S|$. Therefore

$$\rho_1(D) = |S| = \rho_1(D') = DOM_1(K_n - W) = c.$$

Another consequence of the previous lemmas is the following.

Corollary 15 Let G be a connected graph which is not a tree. Let c be any integer such that $dom_1(G) \le c \le DOM_1(G)$. Then G contains an induced subgraph II such that $DOM_1(H) = c$.

We conclude with a conjecture.

Conjecture Let G be a graph. If c is an integer for which $dom_1(G) \le c$ $\le DOM_1(G)$, then there exists an orientation D of G such that $\rho_1(D) = c$.

REFERENCES

- [1] G. Chartrand, D. W. VanderJagt, and B.Q. Yue, Orientable domination in graphs. Preprint.
- [2] P. Hall, On representation of subsets. J. London Math. Soc. 10 (1935) 26-30.
- [3] H. E. Robbins, A theorem on graphs, with an application to a problem in traffic control. *Amer. Math. Monthly* 46 (1939) 281-283.