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ABSTRACT

An open dominating sct for a digraph D isasct § of vertices of D
such that every vertex of D is adjacent from some vertex of S. The cardinality
of a minimum opcn dominating sct for D is the open domination number

p1(D) of D. The lower orientable opcn domination number dom,(G) of a

graph G is the minimum open domination number among all oricntations of
G. Similarly, the upper oricntable open domination number DOM;(G) of G

is the maximum such open domination number.
For a connccted graph G, it is shown that dom,(G) and DOMI(G)

exist if and only if G is not a tree. A discussion of the upper orientable opcn

domination number of complete graphs is given. It is shown that for cach
integer ¢ with dom,(K,) < ¢ < DOM;(K,), there exists an oricntation D of

K_ such that piD)=c.
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1. Orientable Open Domination

A vertex v ina graph G is said to 1-step dominate or openly
dominate each of its neighbors. A set S of vertices of G is an open
dominating set of G if every vertex of G is openly dominated by some vertex
of S. The minimum cardinality among the open dominating sets of G is
called the open domination number of G and is denoted by p1(G).

Analogous definitions can be made for digraphs. In particular, for a
digraph D, a vertex v openly dominates all vertices w with (v, w) € E(D).

The open domination number p,(D) of D is the minimum cardinality among

the open dominating sets of D. Although for a graph G without isolated
vertices, the opcn domination number p,(G) always exists, such is not the case

for digraphs. However, for a digraph D, a necessary and sufficient condition for
pl(D) to exist is that id v 2 1 for every vertex v of D. This condition is
satisfied for thc digraphs D, and D, of Figurc 1. In D, the vertex v, is
uniquely openly dominated by v,, the vericx vy is uniquely openly dominated
by vg,and vg is uniquely openly dominated by v¢. Hence if S is an open
dominating set of D, then vy, vs, v6] c§S. Since §; = vy, vs, v6} is
itself an open dominating set of D, it follows that §, isa(in fact, the uniquc)
minimum open dominating sct of D;. Thus p(Dy)=3. Similarly, §, = {v,,
Va, Vg, v5] is the unique minimum open dominating sct of D, and so
p(Dy)=4. Since D, and D, arc orientations of the same graph and
p(Dy)# p1(D,), this suggests some dcfinitions.
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1
D1 : D2:
Vv
v, 6 )
V3 VS V3 v,
Va Va
§1 = (vg, vs, v6) Sg = (v, v3, V4, v5)
Figure 1

For a graph G, we say that D is a valid orientation of G if every
vertex of D has positive indegree. Let D,,D,, ..., D, be the distinct valid

orientations of a graph G. We dcfine the lower and upper orientable open

domination numbers of G, respectivcly, as
dom,(G) = min(p,(D)| 1<i<k) and DOM,(G) = max(p,(D)| 1<i<k)
These concepts were defined and investigated for ordinary domination in

digraphs in [1]. In order to present a necessary and sufficicnt condition for these

parameters to be defined for a graph G, we recall a theorem of Robbins [3].

Theorem (Robbins) A graph G has a strong orientation if and only if G

is 2-edge-connccted (connected and has no bridges).

Theorem 1 Let G be a connected graph. Then dom,(G) and DOMI(G)

exist if and only if G is not a tree.
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Proof First assume that dom;(G) and DOM;(G) are defined and suppose,

to the contrary, that G is a tree of order n. Let D be any valid orientation of

G. Since G is a tree, it follows that the sum of the indegrees of the vertices of

Dis Yidv= |ED)| = |EG)| =n - 1. However, since every vertex has
ve V(D)

indegree at least 1, it follows that Y, id v > n, producing a contradiction.
ve V(D)

Next, suppose that G is not a tree. We show that there exists a valid

orientation D of G. Since G is not a tree, we know that G contains a
cyclic block. Let By, B,, ..., B, denote the cyclic blocks of G. By Robbins’

Theorem, each block B;, 1 <i<k, has a strong orientation. For the desircd
orientation D, begin by producing a strong orientation of cach block B, 1<
i<k. Then idv > 1 for every vertex v of the blocks B,,8B,, ..., B,.
Next, for any shortest path P between two cyclic blocks B; and B J G#)),

orient the edges of P from one block to the other (say, from B ; to B j)' Then

k
for each vertex v of P, we have id v= 1. Finally, let V be the set k,l' V(B)),

along with the vertices of all shortest paths between two cyclic blocks, and let u
be any vertex of G not belonging to v. Then there exists a shortest path from
u to some vertex, say v, of V. Direct the edges of the path from v to u.

The resulting orientation D has minimum indegree at lcast 1. Thercfore
p1(D) exists, implying that dom,(G) and DOM; (G) exist. U

Some simple bounds for these parameters are presented next.
Theorem 2 For every connected graph G of order n >3 that is not a tree,
3 < dom,(G) < DOM,(G) <n.

Proof Clearly, DOMI(G) < n. Let D be a valid orientation of G and let S

be a minimum open dominating set of D. For u € §, therc exists some vertex

ve S that openly dominates u. So (v, u) € E(D). Also the vertex v must
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be openly dominated by some vertex of S. Further, this vertex cannot be u
since (u, v) ¢ E(D). Hence there exists a vertex we § with w#u,v that
openly dominates v. Therefore (u,v,w} & S, implying p,(D)= Is] = 3.
We now know p,(D)23 for any valid orientation D of G. Consequently,
dom,(G)23. Q

The following result shows that the upper orientable domination
number of a graph atains the upper bound only in one special case. The proof
of this result uses the following theorem of Hall [2).

Theorem (Hall) A collection Sy, Sy, ..., S, n 2 1, of finite nonempty sets

has a system of distinct representatives if and only if the union of any & of

these sets contains at least k elements, for each & such that 1 <k<n.

Theorem 3 For a connected graph G of order n = 3, DOMI(G) =n if and
onlyif G=C,.

Proof First assume that G = C,. Then, we orient the edges so that the

corresponding digraph D is a directed cycle. It follows that every vertex is

openly dominated only by the preceding vertex along the cycle. Therefore every
vertex must belong to the open dominating set, implying that p,(D) = n.

Consequently, DOM,(G) = n.

For the converse, assume that DOMI(G) =n. Let D be an
orientation of G such that p,(D)= DOM,(G) = n. Assume that V(D) = {vy,
Vo, ... » v, }. Define a digraph D’ by V(D) = (v, Vgs «ov s Vo V1»
vy, .o s vy} and (u,v) € E(D) if and only if

() u=v,; forsome i€ {1,2,...,n},
® v=vj’- forsome je (1,2,...,n}, and
@ pv)e ED).
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Let Sj = {Vil v; vjf) € E(D")} for j=1,2,...,n. Thus Sj is the set of
vertices that openly dominate the vertex vi in D. We claim that §;,S,, ...,
§,, has a system of distinct representatives. Now let J < (1,2, ..., n} such that

|7| =k Let S=.L{’Sj and suppose, to the contrary, that Isl < |7]. Let
Jje

W= [vjf | j€J} andlet W= (v{,vj,...,v,;}]-W. In D every vertex Vis
where j € J, is openly dominated by some vertex of S. Now for each v'e €
W’, we know since idD v€ 2 1, that there exists (v;, vg) € E(D) and hence
v; vz,) € E(D’). Let vi, be such a vertex for each v} e W andlet §’ =

[vizl v}e Ww’). Then |§’| < |wW’| =n-k. Now,in D, every vertex Vs

where j ¢ J, is openly dominated by some vertex of §’. Consequently, the set
SuS’ isanopen dominating set of D. However [Su S| < (S| + (8] <
k +n—k=n. This implies that p;(D) < n, producing a contradiction. Hence

sl = 1s], implying that S§,,S,,.... , S, has a system of distinct
192

n

representatives. It follows that D’ has an independent set of arcs. This

independent set of arcs corresponds to a disjoint union of directed cycles, say
D{,D,y,...,D,,in D.

Suppose, to the contrary, that (V(D))) is not a directed cycle for some
i=1,2,...,m. Then there exist vertices Vi and v, in V(D) such that (v;,
v,) € E(D) but v, docs not follow v; on the dirccted cycle D;. Let v ’ be
the vertex preceding v, on the directed cycle D ;- Then V(D) - {vg} is an
open dominating sct of (V(D))). But this would imply that p,(D) < n. Hence
(V(D,)) is adirected cycle foreach i=1,2,...,m.

Finally we show that m = 1. If m = 2, then since the underlying graph G
is connected, there exist vertices v; and Vi such that (v;, vj) € E(D) where
v;€ V(D)) and v; € V(Dj), i #j. Let v, be the vertex preceding v; on the
directed cycle Dj. Then V(D)) v V(D j) - {v;} is an opcn dominating sct of
(VD) v V(Dj)). Again, this would imply that p,(D)<n. Hence m=1 and
D =(V(D,)), a directed cycle of length n. Thatis,G=C,. QO
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We next study a class of graphs, the difference of whose lower and
upper orientable domination numbers is arbitrarily large. In particular, for n>
4,let G,=K,+P,_; (seeFigure2).

Figure 2

It can be shown that dom(G,) = 3 and DOMI(Gn) =n-1 with the
aid of the orientations D; and D, of G, shown in Figure 3.

For D, observe that id vy =1 and thus v, must belong to every
open dominating sct of D,. Similarly, since id v, =1 and id vi=1it
follows that v,_1 and v, must also belong to each open dominating set of
D,. Further, §; = {v,,v,_;,v,) is an open dominating set of D;. Thus
P10 =181 =3. Also 3 <dom,(G,)<p,(D,) = 3, which implies that
dom,(G,) = 3.

In a similar manner, obscrve that idD2 v;=1for i=23,..,n
Thus v,,v,, ..., v, | must belong to every open dominating set. Since
Sy= {vy,vg, ..., v,_1} is an open dominating sct, it follows that
DOM,(G,) 2 p,(D,) = |S,| = n - 1. Further, by Theorem 3, DOM,(G,,) # n.
Thus DOM,(G,)=n- 1.
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S1={v v, va) Sy ={visvgs e v V)
Figure 3

This class of graphs also has the property that for each integer ¢, 3 <
¢ < n -1, there exists an orientation of G, resulting in a digraph D, such that

p(D) =c. (See Figure 4)

D:

pD)=c

Figurc 4
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2. Upper Orientable Open Domination Numbers of Complete

Graphs

In this section we investigate the growth of the function DOM, (K).

First, we show that DOM;(K,) is a nondecreasing function.
Lemma 4 Forall n >3, DOMI(Kn) < DOM,(K,,,1)-

Proof Choosc a valid orientation D, of K, such that p1(D,) =
DOM;(K,). Next define an orientation D, , of K, ; by adding a vertex w
to D, and adding arcs (u,w) forevery ue V(D,). Then D, , isa valid

orientation, and

Corollary 5 For 3<m <n, DOM,(K,,) < DOM(K,).

In the next two lemmas, we investigatc how slowly the function
DOM, (K,) grows. Of course, every oricntation of K, is a tournament of

order n.

Lemma 6 If DOM, (K, ) > DOM,(K,), then

(@ each tournament 7, , with Pl(Tn s = DOMI(K n +1) is strong, and
b DOM(X,,.;)=DOM (K, +1.

Proof of (a) Lect T,,., beany valid tournament of order n + 1 such that
p1(T,,1) = DOM (X, ). Suppose, t0 the contrary, that T, is not strong.
Then V(T,,;) can be partitioned into sets 81589 -+ » 8 (k22) such that
(1) each (S is a strong subdigraph and is maximal with respect to the property
of being strong, that is, the subdigraphs (S§;), (S;). ..., (§;) are the strong

components of T, ,,and (2) for every vertex u of §; and for every vertex v

+1°
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of §;,i22,thearc (u,v) belongs to T,,,- Itisclear that §; isan open
dominating set of T, . Further, a minimum open dominating set of (§) is
n+l1- So DOM] (Kn+l) =
P1(Tp)=pP 1SN < DOM1(1(|S1 |} € DOM,(K,) < DOM, (K

producing a contradiction. Thus T, , is strong.

also a minimum open dominating set of T

n+l)’

Proof of (b) It suffices to show that DOMI(K

Tn+l
DOM (K,

(T, 1) - N*(v), where Nt(v) represents the out-neighborhood of v. Then v

)< 1+DOM;(X,). Let

be a valid tournament of order n + 1 such that P (T

n+l1

n+l) =
). Choose a vertex v of T, , with odv>1. Let §=

openly dominates all vertices belonging to N*(v). Also, since idv=>1, §#

@. Since odv=1, |S| < n. Now it follows that
DOMI(Kn+1) =p(T, DS+ pl((S)) <1+DOM;(,). Q

Theorem 7 If DOM,(K,)=m and DOM, (X, ;) =m + 1, then
DOMI(Ki)=m+I for n+1<i<2n+2.

Proof It suffices to show that DOMl(K2n+2) <Sm+ 1. Let T be a valid

tournament of order 22 + 2. Then T hasa vertex v suchthat odv=n+ 1.
Let S=WV(T) - (N+(v) v {v}). Then Is| <n. Asin the proof of Lemma
6(b), we have

PN <T+p SN <1+ DOM, (X)) =1+ m.

Since this is true for any such tournament T, it follows that DOM, (K,,,2) <

m+1. Q

From our previous results, we know that DOMI(Kn) isa

nondecreasing function and any increase in functional valucs is a stcp increment
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of 1. However, our results so far have not shown that DOM1 (K, incrcases at

all. The next result shows that, in fact, the function increases without bound.

Theorem 8 The function DOM; (K,)) is unbounded as n — e,

Proof We procecd by a counting argument. First, let T, denote the number

of labeled tournaments of order n. Since K, has (;) edges, each of which

can be orientcd in one of two directions, T, = 2(;).
Next, let T; denote the number of valid labeled tournaments of order

n. We claim that TZ =T, -nT, ;. Obscrve that for any labcled tournament

T that is not valid, therc cannot exist two vertices v and w with id v =0
and id w = 0 because cither (v,w) € E(T) or (w,v) e E(T). Hence for any
labeled tournament T that is not valid, there exists a unique vertex v such that
idv=0. Since there are n choices for the label of the vertex of indegree 0

and, by removing this vertex, we obtain a labeled tournament of order n - 1, it
follows that the number of labeled tournaments that are not valid is nT, ;.

Thus the number of valid labeled tournaments is T, =T, — nT,_;.

Next, let Tﬁ denote the number of labeled tournaments of order n

with open domination number equal to & ,3 <k<n. Any such labeled

tournament T has a minimum open dominating set S such that {(S) is a valid
subtournament of order k. There are ( :) ways to label the vertices of S. So

the number of possible oricntations of (S) is T‘,:. Let T be the

subtournament (V(T) — §). The number of possible oricntations of T’ is
T, Since § is an open dominating sct of T, it follows that for every vertex

v of T, there is at Icast one vertex of S adjacent to v. That is, each of the
n—k vertices of T’ is adjacent from at least one of the k vertices of S.

Hencc the number of possiblc orientations of edges between S and V(T") is

[+ + e+ (DI
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Therefore,

< (1) T T [+ (e s (1R

(1) T4 Ty @ -1
Bpsk=1) 2% _ 1\nk
= (;)Tp-2 2 '('—;r—)"

= (1) (25 B L R (_2k2; Iyn-k

= (:) . [2"""2;1')_&::1&1)5—21&_—11] . (21;2; l)n-k

n n k k_ n—
(k).z(z).[l_;;__l].(%) k

Also observe that

T\;l =2(;)_n2("£1)=2(;) . [l—#]'

k .
Now let g(n)=T, - ¥, T ,, which counts the number of valid tournaments of
i=3

order n with minimum open dominating sct of cardinality exceeding k. Then

we have

ko
v i
g =T,-3T,

22(;)[1-

n Eoay (3) 1y i 2-1yni
2,._1]_i=23(‘-) 22 []_21_1][ 2" ]

_o(2) n koay py b2 =1qn-i
—22([1-2,._1]-‘%(,.) [1—2;_1][ ” 1.
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. k i . .
. lim n i 2 —1n-i _ . Iim _
Since "5 i=23 (*)-[1- pr=i 10 5 1" =0, it follows that "\ g(n) =

oo, Thus, for any fixed k&, 3 <k < n, there exists a sufficiently large integer n
such that for some valid labeled tournament T of order n, p(7) > k, implying
that DOM,(X,)) >k Q

Using the method described above, the first value of n for which g(n) >
0 is 77. Thus DOM,(K57) > 3. However this is not the least integer n for
which DOM,(K,) > 3. It can be verified that DOM,(K,)=3 for n =3,

4, ..., 10, the most difficult of which is n = 10. We verify this.

Theorem 9 DOM,(K,) = 3.

Proof Let D be an oricniation of K, such that p,(D) = DOM,(Kq)-

There exists a vertex, say vy, With maximum outdegree. Necessarily, od vy 2

5.

Case1 odv;=5. Let N+(vl) = {uy, Uy, U, Uy, usg}), and let N (v;) = {v,,
V3, V4, V). Assume, without loss of gencrality, that v, is adjaccnt to at least
two of {v3,v,, vs}. In particular, assume the arcs (v4, v4) and (v,, vs)

belong to D.

Subcase 1.1  (v,, v3) € E(D). Then, since id vy 2 1, it follows that (x;,
v,) € E(D) forsome ie (1,2,3,4, 5}). It follows that S = (1), vy, v} is
an open dominating set. Thus p,(D) = 3.

Subcase 1.2 (v3,v,) € E(D). Since the maximum outdegree of D is 5, it
follows that at least 3 of the vertices of N+(v1) are adjacent to v,. Suppose
uy, Uy, and uy arc among the vertices adjacent to v,. Assume that none of the
sets {u;, vy, v;}, 1<i <3, is an open dominating sct. Then there must exist

some vertex not openly dominated by any of these sets. In particular, v4 is the
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only such vertex. So (v4,u;) € E(D) for i =1, 2,3. Now since the
maximum outdegree of D is 5, it follows that (v4, v3) € E(D) and (vs»
v3) € E(D). Without loss of generality, assume (v4, v5) € E(D). Since the

maximum outdegree of D is 5, it follows that at least 3 of the vertices of
N* (v,) are adjacent to v,. Hence there is at least one vertex, say u;, for some

i, of N+(v1) which is adjacent to both v, and v,. Then § = {u,, V. V) s
an open dominating set, implying p,(D) =3.

Case 2 odv,;=6. Let N+(vl) = { uy, uy, uz, uy, us, ug), and let N (v)=
{vy,v3,v4}. Assume, without loss of generality, that v, is adjacent to at

least one of vy and v,.

Subcase 2.1 (v,,v3,v,) is a directed 3-cycle. If {vg.v4,v4} is not an
open dominating set, then there exists u; (1<i<6) such that (“i’ Vs), (u;,
v3), (;, vy) € E(D). Then § = [“i’ Vv, V5] is an open dominating set and
p(D)=3.

Subcase 2.2 (v,, v3,v,) is not a directed 3-cycle. Then one of the
vertices, say v,, is adjacent to thc other two, v5 and v,. And since the
maximum outdegree of D is 6, it follows that at least 3 of N+(v1) are
adjacent to v,. Suppose u;,u,,and u; are among the vertices adjacent to

vy. Then § = {u;,v{,v,} is an open dominating set, implying p(D) =3.

Case3 odv) =7 Let N(v;) = {4;| 1<i<7) and N"(v) = (v}, v5).
Assume, without loss of generality, that (v,, v3) € E(D). Since the maximum

outdegree of D is 7, there exist at least two vertices of N+(v1) adjacent to

v,. Suppose u; is one of these vertices for some i. Then § = {u; vy, vy} is

an open dominating set. So p;(D) = 3.

Case4 odv,=8. Let N*(v;) = (u;| 1<i<8) and N"(v)) = (v,}. Since

the maximum outdegree of D is 8, there exists at least one vertex, say u;, of
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N+(vl) adjacent to vy. Then §= (u; vy, v} is an open dominating sct.
Therefore p,(D)=3. QO

Finally, to show that the lcast intcger n for which DOM(K,) =4 is
n =11, it is required to verify that DOM, (K, ,) # 3.

Theorem 10 DOM](K”) =4,

Proof We need only show the existence of an oricntation of K 11 With open

domination number 4. We describe such an oricntation D as follows. Let
V(D) = {uy, u,, Uz, Uy, Us, Vq, Vp, V3, V4, Vs, w}. The tournament D
contains two strong subtournaments of order 5, say T, = ({ul, Ugy ee s u5})
and T, =({v,v,, ..., vs)). Also the vertices of T, are adjacent o w, and

the vertices of T, are adjacent from w. See Figure 5.

Figure 5

The orientations of cdges between V(T,) and V(Tz) remain to be

described. We determinc these oricntations in the following way. There are
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precisely 5 directed 3-cycles in T,. Let S1 = {vl, vy, v3}, S2 = {v3, V4o
vsl, 83 ={v,v5,v5), S4={vg.v3, v}, and Sg={v,,v,, vs} bethe 5
sets of vertices which determine the directed 3-cycles of T,. Now for each i =
1,2,3,4,5, let u; be adjacentto V(S;). All other arcs not mentioned thus far
are directed from V(Tz) to V(T)). The resulting orientation is the desired
orientation D.

It remains to show that there is no minimum open dominating set of 3
vertices. Suppose, to the contrary, that p,(D) = 3. Then there exists a directed
3-cycle, say (S), which openly dominates all vertices of D. Observe that (S)
cannot be one of the triangles of T, sincc w is adjacent to all vertices of
V(T,). Also, by construction, each of the triangles of T, is openly dominated
by some vertex of V(T;). So (S) cannot be one of the triangles of T,. Hence
we consider 3-cycles which contain vertices from both T, and T,.

Casel S={w,u, vj] for some i, some j. Then (S) is the cycle w,u;,
Vi W Now u; is directed toward a unique 3-cycle, say C,of T, where Vi
belongs to C. Of the two vertices of V(T,) - V(C), one is adjacent to vi and

one is adjacent from v.. Let v, be the vertex adjacent to Ve Then v, openly

V.
J
dominates S. So S cannot be an open dominating set of D.

Case2 §={u, uj, v} for some i,j and k. Thereare 15 triangles of this

type. However, each triangle is openly dominated by some vertex. (Sce

Figure 6.) So § cannot bc an open dominating set of D.
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S openly dominated by
vertex
ul, u2, v5 u5
Uy, Uy, vy Us
Uq, Uz, v V4
Uy, Uy, Vq Vs
Us, Uy, v Uy
Ug, Uy, vy Uy
Uy, Uz, Vq Uy
u2, lt3, V2 “1
Uy, Uy, Vy Vi
Usg, Uy, V3 vy
u3, iy, vy u2
Uz, Uy, v4 Uy
u3, u5, V4 V3
Uy, us, vy Uq
Uy, Usg, Vg U

Figure 6

Case3 §={(u Vjs v} for some i,j and k. There arc 15 triangles of this

type. However, cach triangle is openly dominated by some vertex. (See
Figure 7.) Thus S cannot be an open dominating set of D.
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S openly dominated by
vertex
Vs Vs Us U3
V3, Vs Uy #
V3, vy, Uy s
Vs Vg U3 V3
Vs Vg» Uy us
Vs, Vi, Uy Ug
Vi V3, U3 !
Vg Voo Uiy Y1
Vg4, Vo, Ug Uy
Vs Vs U V4
Vo, Vs, iy Uy
V3, Vg, uy Uy
Vs, V3, U3 L)
Vss V3, Us Y2
Vg4, Vg, Uy Uy

Figure 7

We have now exhausted all possibilities. Thus there is no such open
dominating set of 3 vertices, implying p,(D) # 3. By Lemma 6, it follows

that DOM,(K,)=4. Q

3. An Intermediate Value Theorem for Orientable Open

Domination in Complete Graphs

By the results of the preceding section, it follows that if m, n, and ¢ are
positive integers such that m<n and DOM,(K,) < c < DOM,(K,), then

there exists an integer &, with m < k < n, such that DOM,(K,) = c. Hence

we have a certain type of Intcrmediate Value Theorem. In this section, we

consider the existence of another type of Intermediate Valuc Theorem. In
particular, for a graph G, given an integer ¢ such that dom,(G) <c <

DOM; (G), does there exist an oricntation D of G such that pl(D) =¢?
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Although such a theorem has not yct been proven for an arbitrary graph G, the
result does hold for complete graphs. We begin by establishing a few lemmas

for graphs in general.

Lemma 11 Let G be a graph and let v be any vertex of G. If
DOMI(G —v) is defined, then

DOM,(G) 2 DOM, (G - v) 2 DOM, (G) - 1.

Proof Assume DOM,(G -v) is defincd. Let D —v be an orientation of
G - v such that p;(D -v) = DOM;(G -v). Definc D by dirccting all edges
of G incident with v towards the vertex v. Notice that a minimum open
dominating sct of D also openly dominates D —v. Hence pl(D) 2pD-v).
Thus DOM,(G) 2 p,;(D) 2 p;(D - v) = DOM,(G - v).

Next let D be any orientation of G such that every vertex of D has
positive indegree. Then, for the given vertex v, there exists some arc, say (u,

v) in D. Now an open dominating sct of D can be formed from an open
dominating set of D — v, possibly along with the vertex u. Thus p;(D) <

p1(D -v)+ 1< DOM,(G -v) + 1. Since this is true for any valid orientation
D of G, it follows that DOM,(G) < DOM,(G -v) + 1, thatis, DOM, (G -
v) 2 DOM,(G)-1. O

Lemma 12 If DOM,(G) > doml(G), then there exists a vertex v of G
such that

@  dom;(G-v) and DOM, (G -v) are dcfined
®  dom,(G) 2dom(G -v) 2 dom,(G) -1
(©  either DOM,(G -v) = DOM(G) or DOM,(G -v) = DOM,(G) - 1.
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Proof Clearly, if G is a cycle, then doml(G) = DOMI(G). Thus,
assuming DOM,(G) > dom,(G), it follows that G isnotacycleand G is
not a tree.

Now let D be an orientation of G such that every vertex has positive
indegree. Let S be a minimum open dominating set of D. Since G isnota
cycle, we know |S| < n. Hence there exists some vertex, say v, in V(G) - S.
Now since S is an open dominating set of D, it follows that {(S) contains a
cycle. Further every vertex of V(G) - S is adjacent from some vertex of S.
Consequently G - v is connected and contains a cycle. In fact, every vertex of
D —v has positive indegree and pl(D —-v) exists. So doml(G -v) and
DOM; (G - v) are defined, proving part (a).

Let D be an oricntation of G such that pl(D) =doml(G). Let S bca
minimum open dominating set of D. And let v be a vertex of V(G) - S, as in
the proof of part (a). Then dom(G)=p(D)2p(D-v) 2 dom,(G - ),
proving the first inequality of part (b).

Next let D —v be an orientation of G —v such that dom, (G -v) =
py(D —v). Let D be the orientation of G formed by directing all edges
incident with v toward the vertex v. Then dom,(G)<p;(D) < 1D -v)+
1. Hence dom(G)-1< pl(D -v) = doml(G - v), proving the second
inequality in part (b).

The proof of part (c) follows dircctly from Lemma 11. Q

Lemma 13 Let G be a connected graph such that G is not a tree, and let
¢ be an integer such that

dom,(G) < ¢ < DOM,(G).

Then there exists a sequence vy, v,, ..., v, of vertices of G such that for

G;=G - {vl, Vg, .oy Vi), 120 <k, we have

178



(@) dom(G;) and DOM,(G,) are dcfined
(b) DOM,(G,) =c.

Proof The result is obvious if ¢ = dom,(G). Thus we assume dom,(G) <
¢. We proceed iteratively.

By Lemma 12, there exists a vertex, say v, such that dom,(G,) and
DOM; (G,) are defined and either DOM,(G,) = DOM,(G) or DOM,(Gy) =
DOM; (G) — 1. We consider the following two cascs.

Casel DOM,(G,) = DOM,(G). Then, by Lemma 12, dom;(G ) <
dom (G) < DOM, (G) = DOM, (G,). That is, dom,(G,) < DOM,(G,).

Case2 DOM,(G,) =DOM;(G) -1 and ¢ < DOM,(G). Then, by Lemma
12, dom,(G,) < dom;(G) <c¢ < DOM,(G,). That is, dom,(G,) <
DOM,(G)).

Observe that for each of these cases, the graph G, satisfies the
hypothesis of Lemma 12. Thus there exists a vertex, say v,, such that
DOM,; (G,) is defined, and the process continues.

In general, as long as domI(G )< DOMI(G ;) there cxists a vertex v; 1
such that DOM,(G,, ) is defined. Further, the process continues as long as

@  DOM,(G,,;) =DOM,(G) -1 and ¢ < DOM,(G;, )

We claim that the process terminates, that is, there exists & such that
DOM,(G,) = DOM,(G, ;) -1 and ¢ = DOM,(G,). Let k-1 be the

largest integer such that dom,(G k—l) <S¢ < DOM(G; ;). Then, it follows
that there exists a vertex v, such that DOM,(G,) is dcfined and
DOM,(Gp) < c. Butwe know cither DOM,;(G,) = DOM,(G,_,) or
DOM,(G,) = DOM,(G,_p) - 1. Since DOM,(G,_,) > ¢, we must have
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DOMI(Gk) = DOMI(G,C—]) - 1. Hence ¢ 2 DOMI(Gk) = DOMI(Gk—l) -1>
¢ — 1, implying DOM,(G,)=c. Q

Finally, we have an Intermediate Valuc Theorem for the upper orientable

open domination number of a complete graph.

Theorem 14 Let ¢ be an integer such that dom;(K,)<c < DOM, (X ).
Then there exists an orientation D of K » such that pyD)=c.

Proof Certainly if ¢ = dom,(K,) or ¢ = DOM, (K n)» the result is clear.
Thus we assume dom,(K,) < ¢ < DOM,(K,). By Lemma 13, there exists a sct
of vertices W = {v,, Vgy ee s vk], k21, such that DOM, (K, - W) is
defined and DOM;(K, —W)=c. Let D’ be an orientation of XK n— W such
that p,(D) = DOM, (K, — W). Form an orientation D of K n from D’ by
letting (D — W)= D’ and directing all edges incident with the vertices of W

toward W. Now let S be a minimum open dominating set of D’, that is,
p(D) = Is]. By construction, the arc (1, v;) belongsto D forevery ue §

and for every v; € W. Thus every vertex of W is openly dominated by a

vertex of S. Hence, § is an open dominating set of D. Further S is, in fact,
a minimum open dominating set, for otherwise we would have pl(D') <|s | .

Therefore

p,(D) = |S| =p,(D) = DOM, (K, - W) =¢c. Q

Another consequence of the previous lemmas is the following.

Corollary 15 Lect G be a connected graph which is not a tree. Let ¢ be
any integer such that dom;(G) < ¢ < DOM,(G). Then G contains an
induccd subgraph 7/ such that DOM; (H) =c.

We conclude with a conjecture.
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Conjecture Lect G beagraph. If ¢ is an integer for which dom(G)<c¢
< DOMI(G), then there exists an orientation D of G such that pl(D) =c.
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