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Abstract

In this paper we first generalize a classical result of B. Toft (1974)
on r-type-constructions for graphs (rather than hypergraphs) and
then we show how the result can be used to construct colour—critical
graphs with a special focus on A-colour—critical graphs. This gen-
eralization covers most of known constructions which generate small
critical graphs. We also obtain some upper bounds for the minimum
excess function n(k,p) when 4 < k < 6; where

n(k,p) = min e(G),
in which €(G) = 2|E(G)| — [V(G)I(k — 1), and K(k,p) is the class
of all k—colour—critical graphs on p vertices with A = k. We use the
techniques to construct an infinite family of A—colour—critical graphs
for A = 5 with a relatively small minimum excess function; and we
prove that (6, 6n) < 6(n —1) (n > 2) which shows that there exists
an infinite family of A—colour—critical graphs for A = 6.

1 Preliminaries And The Background

First, we go through some basic definitions. In this paper, N = {1,2,...}
is the set of natural numbers. For any finite set X, |X| is the size of X, i.e.
the number of elements of X, and P(X) is the power sei of X, i.e. the set
of all subsets of X. Also, for any statement P, =P is the negation on P.
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A hypergraph H is an ordered pair (V(H), E(H)) in which V(H) is a finite
nonvoid set of vertices and E(H) C P(V(H)) is such that each element of
E(H) contains at least two elements of V(H). The elements of E(H) are
called edges of H; and an edge of H consisting of the subset A of V(H)
is denoted by (A4). If A = {z,y} then (A) is called a simple edge and we
say that (A) joins z and y, or z is connected to y; and we write z — y
or A = zy. An edge (A) with |A] > 2 is called a hyperedge. We usually
use capital letters for hyperedges and small letters for simple edges of a
hypergraph. Also, H + (A) is the hypergraph obtained by adding the edge
(A) to H; and H — (A) is defined similarly. A hypergraph in which each
edge consists of precisely n vertices is called n-uniform. A graph, G, is a
2-uniform hypergraph.

For two hypergraphs H, and H, we write H, < H, if V(H,) C V(H,)
and E(H,) C E(H,) and we call H, a subhypergraph of H,. Also, for a
hypergraph H and X C V(H), H[X] denotes the (sub)hypergraph induced
on X with V(H[X]) = X and E(H[X]) consists of those edges of H whose
vertices are completely contained in X.

A k—colouring of a hypergraph H is a map o : V(H) — N such that the
restriction of o to any edge of H is non—constant and |o(V(H))| = k. In
this case, any j € o(V(H)) is called a colour and ¢~1(j) which we denote
by (5] is called the colour-class of colour j. The least integer k for which H
admits a k—colouring is called the chromatic number of H and is denoted
by x(H); and in this case, H is said to be a k-chromatic hypergraph. A
hypergraph H is called k-edge-colour-critical, or k—-critical for short, if
X(H) = k and for any edge (A4) of H, x(H — (A)) < x(H).

An independent set of vertices I C V(G) in a graph G is a set of vertices
such that none of them are connected to each other. Note that for a k-
colouring of a graph G each colour—class is an independent set of vertices.
A graph G is said to be k-unigquely-vertez—colourable if k = x(G) and any
k-colouring of G induces the same colour-classes on G. Such a graph is
called a k-UCG for short.

K, is the complete graph on n vertices for which E(K ) contains any sub-
set of V(K,) whose size is 2. cl(G), the cligue number of a graph G, is
the maximum number m such that K < G; and the cocligue number of
a graph G is defined to be ccl(G) = x(G) — cl(G). Also, for any graph G,
Ng(v) = {z | v = z in S} is the neighbourhood of the vertex v in the sub-
graph S < G and deg4(v) = |Ns(v)] is the degree of the vertex v in S. Note
that, for simplification, we omit the subscript if S = G. Moreover, split-
ting a vertex z of a graph G into a set X of new vertices means replacing
z by an independent set of new vertices X such that the neighbourhoods
{Ns(2)},ex partition Ng(z).

Consider a graph G and a collection of nonvoid subsets of P(V(G)) such
as F = (W,,...,W,) with W, € P(V(G)) for all 1 < i <!. In this setting,
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note that, it is possible that a subset of P(V(G)) appear more than once in
the collection. Also, there are situations throughout this paper that such
collections appear naturally as domains of some maps. Therefore, we make
this a rule to consider a collection = (W,,...,W,) as a set of ordered
pairs as (i, W,) in which the first component is used as a counter. In this
paper, this is called a list ¥ € N x P(V(GQ)) of subsets of P(V(G)).

Considering the background of the subject of this paper, maybe, the fol-
lowing conjecture of Borodin and Kostochka [5, 17] can be distinguished as
one of the most important motivations for the study of A—critical graphs.

Conjecture 1.[5] In any graph G if A(G) > 9 and cl(G) < A(G) then
x(G) < A(G).

Note that the conjecture essentially means
(A>29& x=4) = cd=0.

Also, it is proved by B. Reed that the conjecture is correct for sufficiently
large chromatic numbers {17, 24]. In [3] Beutelspacher and Hering prove
the following.

Theorem 1.[3] Let G be a graph with A(G) = x(G) = k and ccl(G) > 0.
Then,

a) G has at least 2k — 1 vertices.
b) If G has ezactly 2k — 1 vertices, then k < 8.

The following interesting theorem is also stated without proof.

Theorem 2.[3] Let G be a critical graph with A(G) = x(G) =k > 5 and
ccl(G) > 0. Then, for any vertez v (or any edge €) there ezists a (k —1)-
critical subgraph H containing v (or e) such that A(H) = x(H) =k -1
and ccl(H) > 0.

Beutelspacher and Hering claim that there are only 13 k-critical graphs on
2k — 1 vertices with A = y = k; and they state that they have been able
to find all of them using a computer search.

There are also some results about the minimal counterexample approach.
In this regard, assume that G is a k—chromatic graph with £ = A and
ccl(G) > 0 which is vertex-minimal. Then if ¥ > 9 Mahmoodian et.al.
have proved that G is critical, any two (k — 1)—cliques are disjoint in G and
that |V(G)| > 3k — 9 [21].

On the other hand, when one considers the structure of A-critical graphs
for small cases (4 < A < 8), one encounters graphs with very interesting
structures. It is also interesting to note that these structures are very much
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related to small UCG’s and small critical graphs where k—critical graphs
with small excess function,

€G)= Y (deg(v) - (k —1)) = 2|E(G)| - IV (G)I(k - 1),

veEV(G)

are studied [2, 11, 16, 18, 19].

In the next section, first we focus on some classical results of B. Toft on
(amalgam) r—type—construction [26] which we briefly recall in what follows.
In this direction, we partially generalize the r—type—construction of Toft for
graphs and we show how it can be used to construct A-critical graphs with
small A. Also, in Section 3 we prove that there exists an infinite family of
A-~critical graphs with A = 6 on 6n vertices for each n > 1; and we obtain
some upper bounds for the minimum ezcess function of A—critical graphs
when A < 6.

Theorem 3.[26] Let k > 3 be an integer and H, and H, denote two disjoint
hypergraphs and let X, C V(H,) fori=1,2, where |X,|=|X,|>2, X, #
V(H,) and (X,) € E(H,). Also, let H denote the hypergraph obtained from
H, and H, — (X,) by identifying the two sets of vertices X, and X, and
identifying nothing else. Let H, satisfy the following conditions.

a) H, is connected.
by x(H,) <k—1.

¢) In any (k — 1)-colouring of H, the vertices of X, have at least two
different colours.

d) For all (k — 1)-colourings o of H,[X,] in which the vertices of X,
have at least two different colours, there ezisls a (k — 1)-colouring o,
of H, such that the restriction of o, to X, is 0.

e) For all edges A, of H, there ezists a (k — 1)-colouring of H, — (A,)
in which the vertices of X, all have the same colour.

Then, H is k—critical if and only if H, is k-critical.

Toft considers the class G, of graphs H, which satisfy conditions () to (e)
of the preceding theorem where X, C V(H,), X, # V(H,) and |X,| > 2.
He defines a vertex z, of a k—critical graph G, (k > 3) to be universal if
any graph H, obtained from G by splitting z, into a set of vertices X,
belongs to G, . We recall the following results from [26].
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Figure 1: The graph H (Corollary 1)

Theorem 4.[26]

a)

b)

A verter z, of a k-critical graph G, (k > 3) is universal if and only
if the graph H, obtained from G by splitting z, into a set of vertices
X,, where | X, | = deg,(x,), satisfies the condition (d) of Theorem 3.

Let G be a k—critical graph (k > 3) and let z € V(G). If deg,(z) <
2k—3 then x is universal in G, except perhaps if k = 4 and deg,(z) =
5.

Let G* denote a (k + 1)-chromatic graph obtained from a k-critical
graph G, (k > 3) by joining a new vertez y to all vertices of G. If =
ts a universel vertez of G, then z is also universal in G*.

Let G, and G, be two disjoint k—critical graphs (k > 3) and let G
denote a k—critical graph obiained from G, and G, by the construction
of Hajds, identifying the vertices z, and z, of G, and G,, respectively,
to the vertez x of G. If z, and x, are universal in G, and G,,
respectively, then z is universal in G.

If G* is a 4-critical graph oblained from an odd cycle G by joining a
new vertez y to all vertices of G, then y is universal in G*.

Let G* denote a (k + 1)-chromatic graph (k > 2) obtained from a k-
critical graph G by joining a new vertez y to all vertices of G. IfH isa
graph obtained from G* by splitting y into a set Y of new vertices and
if the vertices of Y are coloured with precisely two different colours
such that they do not all have the same colour, then this colouring of
Y may be eztended to a k-colouring of H.

The following statement can be considered as a simplified version of The-
orem 3, however, since we are going to use it explicitly in the sequel, we
state and prove it to show our general view to this type of constructions.
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Corollary 1. Let k > 3 be an integer, H, be a (k — 1)-critical graph, and
H, be a (k — 1)-chromatic graph with X C V(H,) such that,

a) |X|> 1.
b) For any (k — 1)-colouring o of H,, |o(X)| = 1.

c) For any edge e € E(H,) there is a (k — 1)-colouring, o, of H, — e
for whick |o(X)| = 2.

Now construct a graph H} by joining a new vertez y to all vertices of H, and
then splitting y into a setY with|Y| = |X|. Let H be the graph formed from
H? and H, by identifying the two sets X and Y and identifying nothing
else (Figure 1). Then H is a k—-critical graph which is not a k-clique.

Proof. Trivially, H is not a clique. Now for any (k — 1)-colouring of H,
change the colour of one of the vertices in X to the kth colour; then by
Theorem 4 (f), the k—colouring so obtained extends to a k-colouring of H.
But any (k — 1)-colouring of H would restrict to (k — 1)-colourings of H}
and H, making incompatible demands on X(=Y). Thus, x(H) = k.

On the other hand, condition (c) together with criticality of H,, implies
that H is k—critical. o

Note that as a classical example one can use H — (X) as H, in Corollary
1 when H is a k-critical hypergraph with only one hyperedge (X). Also
such constructions has been frequently used in the construction of critical
graphs (for instance see [1]). Actually, we will see in the sequel that there
is a close relationship between k-chromatic graphs for which there is a fized
colour class in any k—colouring, UCG’s and small critical graphs. We leave
our discussion on these relationships for the last section; however, we prefer
to state a theorem which is actually a generalization of Lemma 4 in [27]
and can be considered as the root of what will appear in the next section.
In this regard we start with the following definition.

Definition 1. Consider a (k — 1)-chromatic graph G. Then a list 7 =
{(i,W,) | 1 < i < 1} of subsets of P(V(G)) is called a transverse system®
for G if both of the following conditions are satisfied.

e For every (k—1)-colouring o of G, if (1, W) € F then W has nonempty
intersection with all colour classes of o.

e For every k-colouring o : V(G) 2 {1,...,k} of G, there exists
(i, W) € F such that W has nonempty intersection with all colour
classes of .

o
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Figure 2: The graph D4.

Example 1. Consider the prism P = D4 — {b,,b,,5,} (see Figure 2) and
note that

F= {(lv {al 183, €y, cz}), (21 {a,, as, ;) cs})! (3: {a:n ancavcl})}
is a transverse system for P. o

Theorem 5.[11] Let H be a k-chromatic graph such that in every k-
colouring of H there is a fized colour—class V" consisting of m specified
vertices v,,...,v (m > 1); and consider G = H — V. Also define

" ¥m)

F={(i,Ng(v,)) | v, EV’}. Then,

a) x(G) =k —1 and F is a transverse system for G.
Moreover if ci(H) < k — 1 then,

b) (GIW)) < k-2 for every (i, W) € F, and cl(G) < k — 1.

Conversely, let G be a (k — 1)~colourable graph and let F C N x P(V(G))
be a transverse sysiem for G. Then the graph H obtained by adding to G
new vertices v;, for each ((i, W,) € F), and joining each v, to all vertices
in W, is a k-chromatic graph such that in any one of its k-colourings the
class V' = {v, | (i, W,) € F} is fized. If in addition (b) is also fulfilled
then cl(H) < k — 1.

3The author is very grateful to the anonymous referee who suggested this formulation
and the name transverse system for this concept.
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Proof. First note that for (a), if V™ is a fixed colourclass in H and
G=K,_,,then N;(v) = V(G) forallv e V" or otherwise, v can take the
colour of any vertex of G which is not connected to it. Also, if G # K, _,
then the first condition of the transverse system is clearly satisfied. For the
next condition, assume (by contradiction) that there exists a k—colouring
o of G such that for all v € V', there exists a colour ¢, which does not
appear in N, (v). Then we can extend this k-colouring to H by colouring
v with ¢, and this is a contradiction. Moreover, if ¢l(H) < k — 1 then (b)
is clearly satisfied.

The converse also follows similarly. m]

As an application of this theorem we can consider the transverse system
of Example 1 and deduce that {b,,b,,b,} is a fixed colour—class in any 4-
colouring of D4 (see Figure 2). Also, note that by joining any two vertices
of {b,,b,,b,} we obtain a 5-chromatic graph with cc/ = 1 and x = A = 5.
For more on this theorem and related subjects see (8, 11].

2 The Generalization

In this section we partially generalize Theorem 3 for graphs in two steps.
First, we note that the theorem essentially means that H, and H, reject
their (k—1)-colourings through X; considering the contradictory properties
taking the same colour and taking at least two different colours in each
(k — 1)-colouring. This will make sure that the chromatic number of the
new graph is greater than or equal to k. Also, the extension properties will
guarantee edge-minimality and consequently we obtain a k-critical graph.
We generalize the above concepts in the following definition.

Definition 2. Let G be a graph, X C V(G), k¥ > 1, > 0, and |X]| > &.
Then, we call G to be of type L(X, k, &) if

11) G is k—colourable.
12) For any k-colouring of G such as ¢ we have 0 < |o(X)| < .

13) For any edge ¢ € E(G) there is a k—colouring of G — e such as o*
such that |o*(X)| > «.

14) For any k-colouring o of G[X] for which |¢(X)| < & there is a k-
colouring o* of G such that the restriction of ¢* to X is .

Also, we call G to be of type M(X,k, k) if
ml) G is k-colourable.

m2) For any k-colouring of G such as ¢ we have |o(X)| > «.
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Figure 3: 4-critical graphs T: with 3n + 1 vertices n > 1.

m3) For any edge e € E(G) there is a k—colouring of G — e such as o*
such that |o*(X)| < «.

m4) For any k—colouring o of G[X] for which |¢(X)| > & there is a k—
colouring o* of G such that the restriction of o* to X is 0.

o

Now, we can generalize Theorem 3 as follows.

Theorem 6. Let k > 2,4 > 0 and let H, and H, be two graphs such that
H, is of type M(X,,k — 1,&), H, is of type L(X,,k — 1,&) and |X,| =
|X,| > 1. Then the graph H obtained by identifying the two sets of vertices
X, and X, is k-critical.

Proof. First, note that for any (k— 1)~colouring o of H, and H, we have

lo(X,)| > & and |o(X,)| < «. Hence x(H) > k.

Also for any edge e € E(H,), (i = 1,2) there is a (k — 1)-colouring of
— e by the hypothesis; and consequently H is k—critical.

Example 2. Note, that if G is a k—critical hypergraph with only one
hyperedge (A), then G — (A) is of type L(V(A), k ~ 1,1). Also, it is clear
that any graph H, obtained from splitting the universal vertex z of a k-
critical graph G into a new set of vertices X is of type M(X,k — 1,1).
Hence, Theorem 3 can be considered as the special case of Theorem 6 for
k=1.

The preceding paragraph shows that graphs of type £(X,k — 1,1) can be
applied to construct new colour—critical graphs. Therefore, we note again
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that if G is a graph of type E({u,v},k — 1,1), then one can consider n
identical copies of G such as G,’s ({ = 1,...,n) with the corresponding
subsets {u,,v;} such that each G is of type L',({u v, },k—1,1), and one
can construct a new graph G with identifying v, with v, for i odd and
identifying u, with u,,, for i even. Now, it is easy to see that G is of type
C()z U {u,,z},k — 1,1) in which identified vertices are not distinguished,
X cur,{u,,v}, z=u, for n even and z = v, for n odd.

As an example for this constructlon consider the graph G = K, —e in which
the two ends u,v of the edge e are forced to take the same colour in any
3-colouring of G. Hence, G is of type L({u,v},3,1). If we apply the above
construction with »r = n and the partition {{u}, {v}} we obtain the graph
T‘ a,,, of Figure 3 which is of type £({a,,qa,,,},3,1). Also, note that
if we app]y Theorem 6 with K, as a graph of type M({e,,a,,,},3,1) we
obtain the 4-critical graphs T,.'

It is not surprising to note that the above construction and Theorem 6 can
be considered as generalizations of the well-known Hajés Construction.
We note that it also covers a classical construction of G.A. Dirac for the
family D, and a construction of Kostochka and Stiebitz for the family F,
of edge-minimal k—critical graphs. [13, 14, 16, 18]. o

Example 3. In this example we wish to note that if G is a graph of type
L(X,k, k) then G — e is not necessarily of type £(X, k,x+ 1), even if 11, 12
and 13 are satisfied.
For this, consider the graph D4 depicted in Figure 2. It can be easily
checked that the graph has only two 4-colourings in both of which B =
{b, | i = 1,2,3} is a fixed colour—class (see [7, 9, 10] and Theorem 5).
Hence, it is easy to see that D4 is of type £(B, 4,1). However, D4 — b, a, is
not of type £(B, 4,2), although, 11, 12 and 13 are satisfied.
For this first note that there is no 4—colouring of D4 — b,a, in which B
takes three different colours. Moreover, consider the following colouring of
Bin D4 - b,a,.

{b,0,} 1], b, €2

Then without loss of generality we may assume that a, € [3]; which forces
¢, to take the colour 4. This forces c, to take the colour 3, and consequently

¢, €[2, a, €[4

This forces a, to take a new colour which shows that this colouring of B
has no extension to a 4—colouring of D4 — b, q,; and this contradicts 14. &

Example 4. Consider the complete graph K,, add m new vertices X =
{z, |i=1,...,m} and join each z, to all vertices of K,. Denote this new
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Figure 4: The graph K7 _ (Example 4)

graph by K . Then it is easy to see that if ¥ >t and m > k — 1, K is of
type L£(X, Ic k—t).

Also, consider the graph K* __ depicted in Figure 4, in which there are
r copies of K, along with a partltlon of its vertices {A, B} such that
|A] = m and |B| = n. Assume that M, and N, be the subgraphs of
the ith copy of K, which are induced on A and B respectively; and
connect each vertex of N, to each vertex of M,,, (i =1,...,7 —1). Then
if we define X = V(M,)UV(N,) it is easy to see that K* . is of type
M(X,m+n,m+n-1). "

Now, as an application of Theorem 6 consider graphs Ky, (r>1)and
K: and apply the theorem with X, = V(M,)UV(N,) and X, ={z, | i =
1,...,4}. This gives rise to the graph of Figure 5 as a A—critical graph with
A = 5. Also, we should note that the same idea covers a construction of
Kostochka and Stiebitz for the class &, of edge-minimal k—critical graphs
[18].

As one more application, note that if we split any vertex of a K, to 3 new
vertices X = {2, | i = 1,2,3}, then we obtain a graph of type M(X 6 1).
Hence, if we identify these new vertices with the three vertices of I{ we
obtain a A-critical graph for A = 7. This construction for different vertices
of the K, recursively, gives rise to A-—critical graphs with A = 7 and
Tn vertices for n = 2,...,8 (the symmetric graph with 56 vertices was
independently constructed by R. Naserasr [22]). <

At this stage we wish to consider Theorem 6 once again. Intuitively, this
theorem describes how the graphs H, and H, reject their (k—1)-colourings
through X; however, it is quite conceivable to think about cases for which
different (k — 1)—colourings are rejected through different subsets of ver-
tices. This is the main idea of the next part of this section which can be
considered as our second step to the generalization of Theorem 3.

In this direction we, first, introduce a generalization of our previous def-
inition for graphs of types £ and M. To do this, we need to define the
concept of a colouring property with respect to a colouring o and a list
F € N x P(V(QG)), however, a precise definition of this concept needs
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Figure 5: A class of 5—critical graphs with 2n -+ 1 copies of K, (n > 0).

some more preliminaries from logic. Therefore, we try to define the con-
cept as precise as it is possible at this stage and we provide some concrete
examples to clarify it. These examples are essentially the most important
colouring properties which will be used in the sequel.

Definition 3. Let G be a graph. Then a colouring property on G is a
(logical) statement P(o, ) which contains a colouring ¢ and elements of
a list 7 C N x P(V(G)) as variables along with some constants called
parameters and (possibly) some quantifiers. We show the truth values of
this colouring property as P(o, (i, W)) for different elements of F.

Two colouring properties are said to be of the same type if they have the
same logical statements possibly with different parameters. O

Example 5. Let G be a graph, ¥ C N x P(V(G)) a list and consider
¢ : F — N. Then P, (o, F) which is defined as

VEW)eF |o(W)| < (G W)

is a colouring property with parameter ¢. We show this colouring property
by P, (note that we always trivially have 0 < |o(W)| for all (i, W) € F).
On the other hand, we may also strengthen this property to obtain the
colouring property ’P; which is defined as,

VEW),GW,)eF lo(W)l<o((LW)) & o(W,)#a(W;) (i#)).

Note that in some cases, this new property can also be described by upper
and lower bounds on the number of colours. For instance, if ¢ is constant
and equal to 1, the property is equivalent to conditions

V(EW),GW)eF [e(W)I<1 & 2<a(W, UW)) (i#7).

We will use these properties in forthcoming examples. Also, note that
negating a colouring property produces a new colouring property. <
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Definition 4. Let G be a graph. Consider a list # C N x P(V(G)) and
assume that k£ > 1. Also let P(o, F) be a colouring property. Then, we call
G to be of type L(F, k,P) if

L1) G is k~colourable.
L2) For any k-colouring of G such as o, P(0, F) is true.

L3) For any edge e € E(G) there is a k-colouring of G — e such as o*
such that =P(o*, F) is true.

L) If X = U W then for any k-colouring o of G[X] for which
(e, W)er

P(co, F) is true, there is a k—colouring o* of G such that the restriction
of ¢* to X is 0.

Also, we call G to be of type M(F,k,P) if and only if it is of type
L(F,k,=P); ie.,

M1) G is k-colourable.
M2) For any k—colouring of G such as o, =P(c, F) is true.

M3) For any edge ¢ € E(G) there is a k—colouring of G — e such as ¢*
such that P(o*, F) is true.

M4) If X = U W then for any k-colouring ¢ of G[X] for which
(s, W)erFr
=P(o,F) is true, there is a k—colouring o* of G such that the re-
striction of o* to X is 0.

o

Example 6. Consider the colouring property P,(a, (i, W)) of Example 5
and first, note that if # = {(1,X)} and ¢((1, X)) = « then we have our
previous local definition (Definition 2).

On the other hand, it is easy to see that a critical k.~-UCG along with F
which consists of its k colour—classes is a graph of type £(F, k,P,) in which
¢ is constant and equal to 1. As a special case, consider an m-UCG, U,
with m > 1 colour—classes each of size n, (i = 1,...,m) and then construct
a new graph by joining a K,_, to this graph in which each vertex of K,_,
is connected to all vertices of the m—UCG. Now, it is clear that this graph
is a (t+m — 1)-UCG of type L(F,t+m —1,P,) in which, F consists of
the colour—classes of the m-UCG and ¢ is constant and equal to 1. This
graph will be denoted by U” (n,,...,n,). o
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Example 7. If we look more carefully at the structure of the graph
U” (n,,...,n,) of the previous example we find out that not only each
colour—classes take a fixed colour but also each two colour—classes take dif-
ferent colours. In order to formulate this stronger property, consider the
colouring property 'P; of Example 5. Hence, the graph U : Any,.oon) s
also of type L(F,t+m — 1,’P;) where F consists of the colour—classes of
the m-UCG and ¢ is constant and equal to 1.

Also, consider the graph K‘m of Example 4 with m vertices X = {z, | i =
1,...,m}. If we split each z, to n, new vertices {y},...,3' }, we obtain a

new graph K| (n,,...,n,) which is of type M(F,t+m — 1,1’;) in which,
F={G{y|i=1,...,n})|i=1,...,m}, & ¢=1.

It is worth noting that if we add one edge between each two elements of F
in K:"(n,, ...,n,), then the new graph is also of type M(F,t+m—1,P,)
with ¢ = 1. o

Definition 5. Let H, and H, be two graphs of types M(F,,k — 1,P,)
and L(F,,k — 1,P,) respectively; where P, and P, are of the same type
but possibly with different parameters, and let

X;= |J W ad x,= |J W

G.w)er, Giw)er,

Then we call H, and H, to be repellingif there exists a bijection ¢* : X, —
X, with |X,| = |X,| > 1 which induces a natural bijection ¢ : F, — F,
such that considering this correspondence P, is equivalent to P,. %

Intuitively, the above definition means that we can identify the vertices of
X, and X, through ¢* which locally identifies F, and F, such that each
of their subsets W plays the role of X in Definition 2 for some (k — 1)-
colourings. For instance, note that if P, = P,, and P, = P,, then P, is
equivalent to P, via ¢ means that ¢, = ¢, o ¢.
Now we can generalize Theorem 6 as follows.

Theorem 7. Let k > 2 and let H, and H, be two repelling graphs of types
M(F, k= 1,P,) and L(F,, k — 1,P,) respectively, where P, and P, are
of the same type bul possibly with different parameters. Then the graph
obtained by identifying F, and F, is k—critical.

1 2

Proof. First, note that for any (k — 1)-colouring o of H,, by M2,
=-P,(0,F,) is true. And for any (k — 1)-colouring ¢ of H,, by L2, P,(s, F,)
is true. But since these graphs are repelling, P, and P, behave identically
on F, and F, through an identification ¢ : 7, — F,; and, therefore, these
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Figure 6: A graph of type K(5,9) ( F ={(1, {v,,2,}), (2, {v;,v,})} ).

properties are contradictory. This implies that the chromatic number of
the new graph is greater than or equal to k.

On the other hand, assume that e € E(H,). Then by M3 there is a (k-1)-
colouring of H, —e such as o™ such that P, (o*, F,) is true; and consequently,
we may extend this (k — 1)-colouring to H, by L4 and the identification :.
The same kind of reasoning, using L3 and M4, shows that for any edge
e € E(H,) we have a (k — 1)-colouring of the new graph too; and this
shows that the new graph is k-critical. a

Example 8. From our previous examples we know that a (f + m ~ 1)-
UCG along with m colour—classes as F is a graph which is both of types
L(F,t+m~1,P,)and L(F,t+m—1,P)).

Also, K" (n,,...,n,) is of type M(F,t+m — 1,P,) in which,

f:{(i,{yf|l=1,...,ni})|‘i=1,...,m}, & ¢=1.

Now if we choose the (¢ + m — 1)-UCG such that the size of the m colour-
classes are in one to one correspondence with numbers n, to n_, then we
can apply Theorem 7 to obtain a (¢ + m)-critical graph.

It should be noted that we could also, use property P ,, however, in that
case we should add the necessary edges between each two classes of F for
K:" (n,,...,n,) in order to make sure that the graph is of type M(F,t +
m — 1,P,). But this is possible since the other graph is a UCG and there
is at least one edge between each two colour-classes of it. Therefore, we
can add edges identically to obtain a well defined identiﬁcation.2

As an example of the above construction consider the graph K. (2,2) and
U: (2,2) of Example 7 where U = K, and the UCG is a path on four vertices
{v:,v,,v;,v,}. Then applying Theorem 7 we obtain the graph of Figure 6
which is a A-critical graph with A = 5 (F = {(1, {v,,v,}),(2, {v,,v,})}
(3]). o
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Figure 7: Graphs of type D: (see Propositions 1 and 2).

The construction of Examples 7 and 8 using UCG’s and most of the ideas
of this paper reveals some links between critical graphs and UCG’s. Also,
we wish to note that almost all graphs of Beutelspacher and Hering can be
constructed using Theorem 7. For more on this subject, other examples
and related topics see [11] and the last section.

3 Some More Constructions

In this section we use a combination of ideas introduced so far to construct
A-—critical graphs. To begin, consider the general pattern depicted in Figure
7, in which G, is constructed from joining two vertices u;, and v, to all
vertices of a (k — 2)-clique. Also , u, and v, in G, are connected to G|,
such that their neighbourhoods in G,,, form a partition of its (k — 2)-
clique. Any graph of this type is called to be of type D:. Also, if we add

a new vertex w to a graph of type Di and join it to all vertices of the
(k - 2)—clique in G, then we obtain a new graph which will be called to be
of type D:(w).

Proposition 1. In any (k — 1)-colouring of a graph G of type D: all
verlices of type u, and v, take the same colour. Also, if X C V(G) is such
that

a) At least one of u, orv, isin X.

b) u, and v, are in X.

Then for any edge e € E(G) there is a (k — 1)-colouring of G — e such as
o such that |o(X)| = 2.

Proof. Assume that we have a (k — 1)-colouring of this graph (n > 0).
Then, the (k—2)-clique of G, takes all coloursin {1, ..., k—2} while u, and
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v, in G, are forced to take the colour k& — 1. This forces the (k — 2)-clique
of G, to take its colours from {1, ..., k—2}; and since it is a (k — 2)-UCG,
u, and v, in G, are forced to take the colour k£ — 1. This reasoning for each
G, (i=1,...,n) proves the first part.

For the second part, first note that for n = 1 we are done by Example 4.
Otherwise, let 1 < j < n be fixed. Then we consider three cases.

e e€ E(K,_,) C E(G,).
First, assume that j # 1, and as in the first part, assume that »; and
v, have taken the colour k£ — 1 and K,_, < G, has taken its colours
from {1,...,k—2} for all i < j. Then for K,_, —e < G, we can use
the colours {1,...,k — 3}.
Now if j = n we can use the colour k — 2 for either of u_ or v, which
is in X. Otherwise, we let u, take the colour k — 1 and v; take the
colour k — 2. But since Ny (v;) # ® we can let one of the vertices
in this neighbourhood take the colour k¥ — 1 and we can use the rest
of colours in {1,...,k — 3} for the K, , < G,,,. Hence, u; and v,
can take the colour k —2for j+1<i < n.
For the case j = 1 we can use the same technique but we let either
of u, or v, which is in X take the colour k£ — 1.

e ¢ € E(G,) and e is connected to u; or v;.
In this case we can use exactly the same technique as in the previous
case assuming that the other end of e in K,_, < G, has taken the
colour k£ — 2.

e ¢ ¢ E(G,;) and e is connected to u; or v;.
In this case, again, assume that u, and v, have taken the colour
k—1and K,_, < G, has taken its colours from {1,...,k — 2} for all
i < j. Then we can assume that the vertex at the other end of e in
K,_, < G,,, takes the colour k — 1; and the rest of vertices in the
(k — 2)-clique take their colour from {1,...,k — 3}. Then, as before,
all vertices u, and v, are forced to take the colour k—2 for j <i < n.

(]

Note that we can also prove the following counterpart of Proposition 1
using the same kind of reasoning.

Proposition 2. In any (k — 1)-colouring of a graph G of type D:(w) all
vertices of type u, and v, and w take the same colour. Also, if X C V(G)
is such that

a) wisin X.

b) u, and v, arein X.
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Figure 8: See Theorem 8.

Then for any edge e € E(G) there is a (k — 1)-colouring of G — e such as
o such that |o(X)| = 2.

We define the minimum ezcess function as follows.

Definition 6.The minimum ezcess function is defined as

k
n(k,p) = Jnin e «(G),
in which K(k,p) is the class of all k—colour—critical graphs on p vertices
with A = k. Also, naturally, we define 5(k,p) = +oo if K(k,p) = 0. ¢

Theorem 8.

a) n(4,3m+1)<m-1 (m>2).
b) n(4,4m) < 2m -2 (m>2).
¢c) n4,4m+1)<2m-1 (m>3).
d n4,4m+2)<2m  (m>2).
e) n(4,4m+3)<2m-1 (m>1).
) nE5smy<im—1  (m>9)
9) n(5,5m+1)<4m (m2>7).
h) n(5,5m+2)<4m-2 (m>5).
i) n(55m+3)<4m (m >3).
7)) n(5,5m+4)<4m -2 (m>1).
k) n(6,6m)<6(m—1) (m>2).

Proof. For (a) consider the graphs T: of Example 2 (Figure 3). For (b)
and (d) apply Corollary 1 with H, a graph of type D' (w)and H, = K, or
H =C, respectwely, and 31mllarly, for (c) and (e) apply Corollary 1 wnth
H, a graph of type D and A, = C, or H, = K| respectively (Flgure 8).

For (f), (g9) and (z) apply Corollary 1 with H, a graph of type D’ .(w) and
H =K, ,H = T or H, T , respectively; and, snmllarly, for (k) and (3)

apply Corollary 1 with H, a graph of type D and H, T and H, = K,
respectively (Figure 9).
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Figure 9: See Theorem 8.

Also, for (k) apply Corollary 1 with H, a graph of type D: (w), in which
each u, or v, is connected to two vertices in G,,,, and H, = K, (Figure
10). o

It is interesting to note that in our construction of D: graphs for k£ = 4, 5,
the number of vertices with degree less than k£ which take the same colour
in any (k — 1)-colouring, is a function of n. Hence, in these cases we can
use any (k — 1)-critical graph H with A(H) = k —1 and Propositions 1 and
2 to construct critical graphs with x = A, since by choosing n large enough
we can have an arbitrary large number of these vertices with degree k — 1.
Also, note that instead of G, in our construction of D: graphs, we could
use any (k — 1)—critical graph with the properties of H, in Corollary 1. For
instance, as an interesting example of such a graph for k¥ = 5 consider the
graph of Figure 2 with X = {b,,5,,b,} (7, 9, 11].

4 Concluding Remarks

The existence of sparse k~chromatic graphs (with large girth) is a classic
in graph theory [4, 12, 15, 20, 23, 28]; however, if we focus on eztremal
k—chromatic graphs which do not contain k—cliques, then the problem is
something else. Actually, this problem can be considered from different
angles.

First, note that the absence of k—cliques and extremality imply that not
only the chromatic number of the graph is not obtained trivially through
a direct forcing on a k—clique, but also it is a direct consequence of the
whole (internal) structure of the graph. This guarantees that these graphs
contain the most basic nontrivial k—chromatic structures.

On the other hand, the extremality condition can be applied in many dif-
ferent ways, from which criticalness and uniqueness of the colouring can
be considered as the most basic ones. In other words, it is not surprising
if we suspect that the structure of minimal k—uniquely-colourable graphs

201



A/

Figure 10: See Theorem 8.

should be similar to those of minimal (k + 1)-critical graphs, when the
minimality condition is applied either on the number of edges or on the
-number of vertices; since the structure of a minimal uniquely-colourable
graph is so saturated that the chromatic number can be increased by just
adding a small number of edges (propetly). Actually, it is quite natural to
think of graphs whose chromatic number is large because they contain some
uniquely—colourable subgraphs or some subgraphs with a restricted number
of colourings. This phenomenon is called a type 1 forcing in [9, 11, 7] while
we used a simple form of it in the construction of D: graphs in Section 3.
As such a graph with a small (restricted) number of colourings, consider the
graph of figure 2 which has only two different 4-colourings (see the para-
graph proceeding Theorem 5) in which {b,,5,,b,} is a fixed colour—class.
Then if we add the edge e = b,b, we obtain a minimal 5-critical graph
which does not contain a 5-clique. Note that this graph is the unique
graph in K,(5,9) which appears in the list of Beutelspacher and Hering (3].
As one other aspect of this approach we also should note that it is quite
probable that these special (chromatic) structures can be characterized if
we add some other eziremalily conditions. For instance, one can men-
tion a result of T. Gallai and B. Toft which states that a k—critical graph,
which has a separating set of edges of size k — 1, can be constructed using
the classical r—type construction of Toft [26]. Therefore, generalizing this
approach, toward characterization of k—chromatic structures, can be con-
sidered as one of the main sequels to the methods of construction appeared
in Section 2.

The distribution of edges can also be considered as a constraint and in this
case we face the same phenomena, because on one hand we want to keep
the number of edges as small as possible and on the other hand we have to
use all of the power of each edge in order to increase the chromatic number.
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In other words, we do not expect a large ezcess and on the other hand we
want to keep the chromatic number high (which intuitively needs a large
number of edges). This explains why these conditions and x = A are more
or less contradictory.

These interactions motivates the study of minimal ezcess function of k-
critical and A-critical graphs [2, 16, 18] and the conjecture of Borodin and
Kostochka (Conjecture 1 and [5]). As one of the main problems in this
direction we have,

Problem 1. Determine n(k,p) for all A-critical graphs with 4 < A < 8.

which seems to be quite hard to answer. However, we may formulate some
simpler problems in this regard as follows.

Problem 2. If 0 < a < 6 is fized then, does there exist an infinite family
of 6-critical graphs with A = 6 and ccl > 0 such that the number of vertices
of these graphs are always of the form 6n + «?

Problem 3.
o Is the number of A—critical graphs finite for any fized 7T < A < 8%

o If the answer to the previous problem is “yes” then characterize all
A -critical graphs when 7T < A < 8.

Also, one may expect to formulate the same kind of problem for uniquely—
colourable graphs and in this direction we face the following conjecture of

S.J. Xu [25],
Conjecture 2.[25] If G is a UCG and A(G) = 0 then ccl(G) = 0; where

AG) = B~ V@)= 1)+ (3)

(Note that for any k-uniquely-vertex—colourable graph G we have A(G) >
0 [6, 25, 27]). It is also interesting to note that both conjectures are quite
hard to verify (7, 11, 24].

At the end, we wish to refer to some results of B. Toft concerning universal
vertices of k—critical graphs recalled in Theorem 4; and to mention the
structure of graphs of types M(F,k,P) and L(F,k,P). Needless to say,
it is quite interesting to develop methods of construction for such graphs
and trying to characterize conditions under which a k—critical graph can
be constructed by Theorem 7 and a specific type of colouring property P.
This approach may help to characterize A—critical graphs for small A.
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