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Abstract

It is well known that one can construct a family of 927"1 Miquelian

inversive planes on the same pointset such that any two share exactly the
blocks through a fixed point. Further, Ebert [10] has shown that this
family can be augmented for even g by adding some Suzuki-Tits inversive
planes. We wish to apply the method of Ebert combined with a technique
from Dover [7] to obtain a family of unitals which have the same property.

1 Introduction

Since the 1970’s, finding Steiner systems on a particular pointsetk which share
a fixed set of blocks has been an outstanding problem in the theory of designs.
Much work has been done on this sort of problem (see Rosa[12]), but has usually
focused on designs with small block size. Of particular interest to us is the
following problem: how many inversive planes (3 — (g% + 1,¢ + 1,1) designs)
can one have on a set of points such that any two of the inversive planes have
exactly the blocks through a fixed point in common? While there is much
folklore about this problem, the main results have been precisely formulated
and proved in Ebert[10].

In his presentation, Ebert gives a method for constructing such a family of
inversive planes by “projecting” Buekenhout-Metz unitals. While this method
duplicates some classical constructions concerning Miquelian inversive planes
which share only the blocks through a fixed point, it is also shown how some
Suzuki-Tits inversive planes can be added to this collection without disturbing
our intersection property.

We wish to give an extension of Ebert's method which gives us a family
of unitals (2 - (¢ + 1,4 + 1,1) designs) on a fixed pointset which have only
the blocks through a fixed point in common. Further, we will combine this
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construction technique with another technique by the author {7] to enlarge our
family significantly.

2 Some Preliminary Results

We would like to begin by giving the Bose-André model of PG(2,4?) using the
method of Bruck and Bose [4]. We then discuss Buekenhout's construction of
unitals in this model (see Buekenhout [5] for more details).

Let £ = PG(4,q) be modelled as a five-dimensional vector space over GF(q)
with homogeneous coordinates. Let £* be a hyperplane of L. Finally, let S
be a regular spread of lines of £*. Then we can model PG(2,¢%) by taking as
points the points of £\ £* together with the lines of S. The lines are the planes
of & which meet =* in a line of S together with S itself. Incidence is given by
containment. This model is called the Bose-André model for PG(2,¢?%), and is
denoted #(Z, X*,S).

An ovoid of PG(3,q) is a set of g% + 1 points such that no three are collinear.
The classical cxample of an ovoid is the set of points on an elliptic quadric; in
fact, these are the only ovoids when g is odd. However, if g is an odd power of
2, except 2 itself, there exists another type of ovoid, called the Tits ovoid, which
is strongly related to the Suzuki simple groups.

We can now give Buekenhout's construction of unitals. Let O be the point
cone over an ovoid which meets the hyperplane I* in exactly a line € of the
spread S. Then the g3 affine points of O* together with the line £ form the points
of a unital whose blocks are the intersections of O* with nontangent planes to
©O* which meet £* in a line of S. Again incidence is given by containment. Such
a unital is called a parabolic Buekenhout unital, or B-unital for short.

Let m(Z,2*,S) be the Bose-André model of PG(2,¢%), and let O* be an
ovoidal cone with base @ which meets £* in only the line ¢ of S. Finally, let
U be the B-unital determined by O*, and let the point of U represented by ¢
be called P. Associated with this unital, we can define an incidence structure
) as follows: the points of 2 are the blocks of U which pass through P. The
blocks of U are the distinct sets of blocks of U through P which are met by some
block of U not through P. The following result has been shown in Dover (7]
and independently in Barwick and O’Keefe [2]:

Theorem 2.1 Let ¥ = PG(4,q) with special hyperplane 5*. Let S be any
spread of *, and let O* be any ovoidal cone with base ovoid O which meets L*
in a line € of S. Finally let U be the unital represented by O°. Then the design
Q obtained from U as above is isomorphic to the point residual of the inversive
plane defined by O\ *. Further, this isomorphism maps the points of 2 onto
the points of O\L* as follows. A point of Q is a block of U which passes through
¢. This block is represented in ¥ by a plane which contains € and another line
n of O*. This line n meets O\ L* in a unique point, which is defined to be the
image of the point of Q! with which we started.
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We will call this design the local projection of U at P. It is clear that this
projection can be defined for any point P of any unital, but may not be of
interest if P is not the special point of the unital represented by £.

3 A First Construction

Let {Uy,...Uy} be a family of unitals on the same pointset. We say this family
has property I if there exists a point P such that each of the unitals U; share the
blocks through the point P but no two of the unitals share any other blocks.
So our goal is to construct a family of unitals which have property 1.

To this end, we first define a common pointset on which these unitals will
lie. Let g be any prime power, and define a three-dimensional vector space over
GF(q) via {(z,y)lz € GF(¢?),y € GF(q)}, i.e. GF(q?) x GF(g). This three-
dimensional vector space can be used to model a three-dimensional affine space
AG(3,q). Finally, define the set A to be AG(3,q) U {co}, where co is a new
point not in the affine space. Note that A has exactly ¢® + 1 elements.

Our first construction will focus on the Buekenhout-Metz unitals (B-unitals
in PG(2, ¢%) obtained from the cone over an elliptic quadric) which were studied
in Baker and Ebert (1] and Ebert [8]. Using the notation in these two papers,
we can actually work strictly in PG(2, ¢%) without referring to the Bose-André
model. Indeed, we can define the set Uy, via:

U = {(0, 1,0)} U {(Z’azz + b3q+l +, l)IZ € g}-(qz)»r € g}-(Q)} (1)

h .

where (b9 — b)? + 4a%t! is a nonsquare if q is odd/or (—;‘&-b'-)-, is an element of
trace 0 over GF(q) if q is even. It has been shown in these two papers that
under these conditions U, is a B-unital, and that the local projection of U, at
(0,1,0) is the point residual of a Miquelian inversive plane.

We'd like our unitals to lie on the pointset .A. So letting U/, be an arbitrary
Buekenhout-Metz unital, define the map ¢ : U,, — A via (0,1,0)¢ = co and
(2,a2% + b29% + 1,1)¢ = (2,7). It is easy to see that ¢ is a bijection from the
points of Uy, onto A.

We begin with a proposition which describes what the images of blocks
through the point (0, 1,0) are in .A.

Proposition 3.1 Let Usy be a Buekenhout-Metz unital in PG(2,q?), and let B
be a block of Uap through the point (0,1,0). Then the image of B under ¢ is of
the form:

B¢ = {oo} U {(z,7)Ir € GF(q)}
for some z € GF(q?). In particular, B¢ is an affine line together with the point
0o.

Proof: Let B be a block of U,y through point (0,1,0). Then for some
fixed z € GF(q?), B is the set of points of U,, which lie on the line with
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coordinates (1,0, ~2}. One can easily compute that this set of points is {(z,az2+
bz7*1 4 7, 1)|r € GF(q)} together with (0,1,0). Therefore, Bé = {(z,7)|r €
GF(q)} U {00} as claimed. w}

So, by taking the image under ¢ of all unitals of the form U,;, we obtain a
family of unitals on the pointset .A which have all of the blocks through the point
oo in common. However, these unitals may also have other blocks in common.
To control this, we want to consider the local projection of Uy, at (0,1,0) and
its image under ¢.

The key to obtaining our result is the following result from Ebert {10]; how-
ever, the terminology used there is slightly different than ours. For a fixed B-
unital U,p, they define the block £, as the set {(z,a2z2 +b9*! + 1, 1)|r € GF(q)}
together with the point (0, 1,0) for every z € GF(g?). They then define a design
Qb on the elements of GF(q?) whose blocks are the distinct sets of the form
{z € GF(¢®)|¢N ¢, # B} as £ varies over all the blocks of U, not containing
(0,1,0). 1t is clear that if one identifies the field elements z with the blocks £,
that Qg is simply the local projection of U,p at (0,1,0). With this notation,
we can now state:

Theorem 3.2 For any prime power q, there exist ﬂg{—lz distinct pairs (a;, b;)
such that the designs Q,,, are pairwise disjoint.

Before giving a family of unitals which have property I, we need the following
notation. Let Uy, be any Buekenhout-Metz unital. Then, U,p¢ is the design
whose points are the points of A, and whose blocks are the images of blocks
of Uy under ¢. Since we are merely exchanging pointsets, it is clear that
the resulting design U,y¢ is indeed a unital. Further, one can easily see that
the local projection of U,p¢ at oo is exactly the image of the local projection
of Uy at (0,1,0) under ¢. Using Proposition 3.1 and identifying the point
{(z,7)Ir € GF(q)} of this local projection with the field element z € GF(q?),
we again see that this local projection is exactly the design Qgp.

We can now prove the following:

Theorem 3.3 Let (a;,b;) be a set of m;—ll pairs such that the designs Q,,p,
are pairwise disjoint. Then the 9-(9;—11 unitals U, b, ¢ have property I

Proof: By Proposition 3.1, we know that these unitals all share the blocks
through oo, so all that remains to show is that no two of these unitals have any
other block in common. By way of contradiction, suppose there exist distinct
unitals Usp¢p and Uap¢ which share a block B not through co. Then the set of
blocks through oo which meet B is a block of the local projections of both U,,¢
and U,g¢ at co. This implies that the designs Qg and Qup have a common
block, which is a contradiction, since these designs are pairwise disjoint. Thus,
no pair of these unitals have a block not through oo in common, and therefore
this family of unitals has property . (m]
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4 An Extension

We would now like to give an extension of our family which involves the con-
struction method in [7]. Let m(Z,£",S) be a Bose-André model of PG(2,¢?),
and let O* be any ovoidal cone which meets £* in a line £ of S.

It can easily be shown that the ¢* lines of £* disjoint from ¢ can be par-
titioned into ¢ partial spreads of size ¢? each. In particular, we can append
¢ to each of these partial spreads to obtain g> spreads which pairwise meet in
the line . Call these spreads S,...,Sg2. It can further be shown that these
spreads may be assumed to be regular, so without loss of generality, we can
assume S; = S.

By Buekenhout’s construction, for any spread S containing ¢, we know that
if we take our points to be the points of O* \ £* together with the line ¢,
and our blocks to be the intersections of O* with nontangent planes to O*
containing a line of §, the resulting incidence structure is a unital. Performing
this construction for each of our spreads S; yields ¢ unitals on the pointset
O\ Z7U {¢}. It is shown in (7] that these g2 unitals share the blocks through
¢ and no other blocks, i.e. they form a family of unitals with property I.

We would like to prove the following result regarding local projections in
such a family of unitals.

Proposition 4.1 Let ¥ = PG(4,q) with special hyperplane L*. Let O* be an
ovoidal cone which meets £* in only the line ¢, and let S) and S, be any two
spreads of £* which contain €. Finally, let U, and U, be the two unitals on
O*\ Z* U {¢} determined by Sy and S, respectively. Then, the local projections
at £ of these two unitals are identical.

Proof: Let ¥ be a hyperplane of ¥ which meets O* in an ovoid O, and
note that O has a unique point @ lying on £*. Consider the local projection of
U, at £. By Theorem 2.1, this design is isomorphic to the point residual of the
inversive plane defined by O \ {Q}, with isomorphism ;. Similarly, the local
projection of Up at £ is isomorphic to this point residual with isomorphism 5.

Consider how 1 acts. Let B be a block of U; through &. Then B is
represented in ¥ by a plane m which meets O* in a pair of lines, one of which
is £. Let n be the other line of O* contained in 7. Then n meets O \ {Q} in a
unique point, which is the image of B under v¥,. 5 acts in exactly the same
way, since U, and U; share the blocks through £. So considered as a mapping
on points, ¥ and v, are identical. Thus 9,95 ! is an isomorphism from the
local projection of U; at £ to the local projection of U, at ¢. But ¢95 s the
identity on the common pointset of the two local projections, which forces these
local projections to have the same blocks. D

Let {U,.,li € {1,... 1(12_—12}} be the family of unitals with property I ob-
tained in Theorem 3.3. Let U; = Uy, for short. Since U; is a Buekenhout-Metz
unital, there exists a Bose-André model n(XZ, £*,S) for PG(2, ¢%) such that U;
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is represented by an ovoidal cone and (0,1,0) is represented by a line of S.
By the result in Dover (7], for each i € {1,”_9192‘_11} there exists a family of
unitals with property I, Uij ,J € {1,...¢%)} on the same pointset of U; such that
U; = U}. (Note that while the construction takes place in £, we can easily map
these blocks over to be subsets of PG(2.4?).)

We can now prove:

Theorem 4.2 Let Ug¢, ie{l,... ‘-'-(92;11}, 7 €{1,...,4%} be a family of unitals
on the pointset A. Then this family of unitals has property I.

Proof: All of these unitals lie on the pointset A. Also for each i €
{1,...%72;'2}, the unitals U7, j € {1,...,4%} all share the blocks through
(0,1,0). Therefore when applying ¢ to each of these unitals, their images will
share the blocks through co. Then since the unitals Ulg, 1 € { 1,...319-2'—'2}
share the blocks through co, we have that all of our unitals share the blocks
through oo. )

Now suppose two unitals U]¢ and U"¢ share a block not through co. If
i = k, this immediately contradicts that the family UZ?, z € {1,...¢?} has
property I. So we can assume i # k.

Let B be this shared block. Then B meets g + 1 of the blocks through co.
This set of blocks is then a block of the local projections of both U7 ¢ and U"¢
at co. But by Proposition 4.1, Uij ¢ and U;¢ have the same local projection at
o0, and U*¢ and Ux¢ have the same local projection at co. Thus the local
projections of U;¢ and Ux¢ at co share a block, which is a contradiction as in
the proof of Theorem 3.3. Therefore, no such shared block can exist, and our
family must have property I. 0

Corollary 4.3 Let q be a prime power. Then there ezists a family of ﬂ"z—"l
unitals of order g which have property I.

5 Some Additions for ¢ Even

In this section, we would like to explore the possibility of enlarging our family
of unitals, at least for ¢ = 22¢~! for some e > 0, by considering Buekenhout
unitals of PG(2, %) which can be obtained from a cone over a Tits ovoid. We
follow the presentation in Ebert[9).

As in the previous section, let © = PG(4,q) with a special hyperplane =,
where ¢ = 22¢~! for some e > 0. Let S be any regular spread of ©* which
contains the line ¢ = ((0,0,1,0,0),(0,0,0,1,0)). Define o to be 2°, and note
that raising to the o power is a field automorphism, and denote the expression
s7*2 4 t9 + st as (s, t).

We define the ovoidal cone U {(s, ¢, 7, {(s,t), 1)|s,t,7 € GF(q)}. That this is
the cone over a Tits ovoid with vertex (0,0, 1,0,0) follows from Dembowski [6]).
Using Buekenhout’s construction, we obtain a unital T from this ovoidal cone.
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Consider GF(g?) as a two-dimensional vector space over GF (g), and let 8 be
a primitive element of GF(g?). Then we can write every element of GF(q?) as
a + b for unique elements a,b € GF(g). With this convention, we define a map
¢ from the points of T to A via €¢; = oo and (s,t,7,(s,t),1) = (s + tB,7).
Since (1,8} is a basis for GF(g?) this map is an isomorphism from the points
of T to A.

It is easy to check that the blocks of T through ¢ are of the form {¢} U
{(a,b,7,(a,b},1) : 7 € GF(q)} as a and b vary over GF(q). So under ¢;, these
blocks map to the sets {(2,7) : 7 € GF(q)} as z varies over GF(q?).

We would like to construct the local projection € of the unital T at £. Using
Lemma 2.1, we know that this design is isomorphic to the point residual of
the Tits ovoid O = {(s,t,0,(s,t),1)|s,t € GF(q)}. (Note that (0,0,0,1,0) is
the point removed.) Further, we know that this isomorphism maps the point
{(z,y,7,(z,¥),1) : r € GF} U {€} of Q onto the point (z,y,0, (z,3),1) of O.
From Dembowski, any block of the point residual of the Tits ovoid has the
form {(z,y,0,(z,v),1){{z,y) = Az + By + C}, where A,B,C € GF(q) and
C # (B, A).

As we did before, we can use this local projection to obtain the local projec-
tion of T¢; at co. The points of the local projection of T'¢; at co are the sets
of the form {(s + t8,7)|r € GF(q)} U {oo} for all s,t € GF(q). If we identify
this block with s + t8 € GF(q?) as before, we get that the blocks of this local
projection are the sets of the form {z + yf|(z,y,) = Az + By + C}, where
A,B,C € GF(q) and C # (B, A). Call this design Q.

We would now like to see how this unital T'¢; fits in with our family U7,
ie(l,... 917{—11}, 7 € {1,...¢%} of unitals with property I that was constructed
in Theorem 4.2. We know that T'; is a unital with pointset .4 and that it shares
the blocks through co with the unitals U] . By way of contradiction, suppose
T, shares a block not through oo with a unital U, and call such a block
B. Then the set of ¢ + 1 blocks through co met by B is a block of the local
projections of both U,-’qb and T'¢,. Identifying blocks through co with elements
of GF(g?) as usual, this forces the designs Q,,, and Qr to have a common
block. This was shown to be impossible in Ebert [10]. So T'¢; can be added to
our family without disturbing property I.

Further, using the method of the previous section, we can actually construct
a family of ¢2 unitals 77, j € {1,...,¢%} such that the unitals 79¢, share the
local projection Qr with T¢;. An argument identical to that of Theorem 4.2
shows that these unitals can also be added to our family.

To extend our family still further, we wish to construct unitals which have a
different Suzuki-Tits point residual as local projection. We recall the following
result from Ebert [10):

Theorem 5.1 Let Iy be the point residual of a Suzuki- Tits inversive plane with
points {(z,y)lz,y € GF(q)} and blocks of the form {(z,y)|Az+ By+C = (z,y)}
with A, B,C € GF(q), C # (B, A). Then, the q* — q point residuals with points
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{(z,¥)|z,y € GF(q)} and blocks {(fz + g, fy)lAz + By + C = (z,y}}, with
A,B,C € GF(q) and C # (B, A), as f and g vary over GF(q) with f # 0 share
no blocks. Further, none of these designs share a block with any of the designs
Qa.,-

With this result in mind, we define the mapping My, : A — A via
oMy, = oo and (z + yB,r)My, = ((fz + g) + fyB,7), which is clearly a
bijection. We can now define the unitals T;'g with f,g € GF(q), f # 0 and
je{l,...¢*} via T} , = (T7¢1)My,q.

Let us construct the local projection of T}.y at co. A block of this design
will be the image of a block of the local projection of T7¢; under My ,. With
our usual identification of blocks through co with field elements, we can see that
the blocks of the local projection of T‘} at oo, which we call Qr, , have the
form {fz+ g+ fyBl(z,y) = Az+ By+C}, where A, B,C € GF(q), C # (B, A).
This allows us to prove:

Theorem 5.2 Let ¢ = 2**~! with e > 0. Consider the family of unitals Uig
constructed in Theorem 4.2, and adjoin the unitals T}' g 08 defined above. Then

this family of 3—71(;’;’2 unitals has property I.

Proof: It is clear that all of our unitals are defined on the same pointset.
We know that all of the unitals U ¢ share the blocks {(z,7) : r € GF(q)} U{co}
through oo, and we know that each of the unitals T3¢, contains these blocks as
well. Finally, My, permutes the blocks of Ti¢$, amongst themselves, so all of
the unitals Tj, o also contain these blocks.

It remains to show that these unitals share no other blocks. Suppose first
that U}¢ and T}"g share a block B not through co. Then the set of blocks

through co met by B form a block of the local projections of both U,.j and
T}‘, g at oo This forces Q4,5 and 7, to share a block, which contradicts
Theorem 5.1.

The proof that T;. o and T;  share no block not through oo is similar, and
thus omitted. o

6 Conclusion

We have used essentially two techniques here. The first is derived from Ebert’s
solution of the corresponding problem for inversive planes, while the second
comes from the author’s hyperspace method. In some sense, these two methods
are complementary; the first gives us a large number of local projections from
which to choose, while the second allows us to stack unitals with a fixed local
projection. The local projection technique essentially bounds the number of
Buekenhout unitals that can be stacked in this manner. In particular, we believe
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that the only way a Buekenhout unital can be appended to this family would
be if we could add an inversive plane to the family of Ebert.

On the other hand, we do not conjecture that our results are the best pos-
sible. There are many types of unitals which do not arise from Buekenhout’s
construction, and it is quite possible that some of these could be added to our
family while retaining property I. In particular, it may very well be possible to
add Ree unitals for ¢ = 32¢*!, ¢ > 0 to our family (see Liineberg [11}).

Another potential application comes from the theory of translation planes.
The set A we used to carry our unitals is intimately tied to the three-dimensional
circle geometries of Bruck [3]; in particular, A can be considered as the pointset
of this design, and various subsets are its blocks. Perhaps the blocks of some
of our unitals are blocks of the circle geometry as well. If so, this could have
interesting implications for the theory of three-dimensional translation planes, as
these circle geometries are isomorphic to the planes and reguli of regular spreads
of PG(5,q); perhaps some interesting sort of derivation can be obtained.
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