Remarks on a Generalization of Radon's Theorem

Jerzy Wojciechowski *
Department of Mathematics
PO Box 6310
West Virginia University
Morgantown, WV 26506-6310
email: jerzy@math.wvu.edu

ABSTRACT. Let S^n be the *n*-dimensional sphere and K be the simplicial complex consisting of all faces of some (n+1)-dimensional simplex. We present an explicit construction of a function $g: S^n \to |K|$ such that for every $x \in S^n$ the supports of g(x) and g(-x) are disjoint. This construction provides a new proof of the following result of Bajmóczy and Bárány [1] that is a generalization of a theorem of Radon [4]: If $f: |K| \to \mathbb{R}^n$ is a continuous map, then there are two disjoint faces Δ_1, Δ_2 of Δ such that $f(\Delta_1) \cap f(\Delta_2) \neq \emptyset$.

1 Introduction.

If x_0, x_1, \ldots, x_k are points in \mathbb{R}^m such that $\{x_1 - x_0, x_2 - x_0, \ldots, x_k - x_0\}$ is a linearly independent set of k vectors in \mathbb{R}^m , then we say that these points are affinely independent. Let $0 \le k \le m$, and x_0, x_1, \ldots, x_k be affinely independent points in \mathbb{R}^m . The (open) k-simplex $\Delta = (x_0, x_1, \ldots, x_k)$ is the following subset of \mathbb{R}^m :

$$\left\{x = \sum_{i=0}^{k} \mu_i x_i : \sum_{i=0}^{k} \mu_i = 1, \ \mu_i > 0 \text{ for } i = 0, \dots, k\right\}. \tag{1}$$

Since the points x_0, x_1, \ldots, x_k are affinely independent, the reals $\mu_i, 0 \le i \le k$, are uniquely determined by x and x_0, x_1, \ldots, x_k . We shall call the sum

^{*}This work is a part of the author's Ph.D. thesis [5] written at the University of Cambridge under the direction of Dr. Béla Bollobás. I would like to thank him for drawing my attention to the problem studied in this note and for his continued help and encouragement.

in (1) the barycentric representation of x with respect to (x_0, x_1, \ldots, x_k) . The points x_0, \ldots, x_k are the vertices of Δ , and k is the dimension of Δ . A simplex Δ_1 is a face (proper face) of a simplex Δ_2 if the vertex-set of Δ_1 is a subset (proper subset) of the vertex-set of Δ_2 .

A (geometric) simplicial complex K is a finite set of disjoint simplices such that every face of every simplex of K is also a simplex of K. The polyhedron |K| of the simplicial complex K is the union of all its simplices; the complex K is then also called a simplicial decomposition of |K|.

If $\{x_1, x_2, \ldots, x_k\}$ is the set of vertices of the simplicial complex K and $x \in |K|$, then there are unique reals $\mu_1, \mu_2, \ldots, \mu_k$ such that

$$x = \sum_{i=1}^{k} \mu_i x_i, \tag{2}$$

where $\mu_i \geq 0$ for every $i = 1, 2, \dots, k$,

$$\sum_{i=1}^k \mu_i = 1,$$

and the set $\{x_i : \mu_i > 0\}$ is the vertex-set of a simplex Δ_x of K. We call the simplex Δ_x the support of x, and we say that the sum in (2) is the barycentric representation of x with respect to K, or just the barycentric representation of x if the complex is clear from the context.

The simplicial complex K' is a subset of the simplicial complex K if the set of simplices of K' is a subset of the set of simplices of K, in particular the set of vertices of K' is a subset of the set of vertices of K.

The well-known theorem of Radon [4] says that, for any $A \subset \mathbb{R}^n$ satisfying $|A| \geq n+2$, there are disjoint subsets B and C of A such that their convex hulls have nonempty intersection. Since, for any $A \subset \mathbb{R}^n$ satisfying |A| = n+2 the convex hull of A is the image of the closure of an (n+1)-dimensional simplex under a linear map, Radon's theorem is an immediate corollary to the following theorem.

Theorem 1. Let $\Delta \subset \mathbb{R}^{n+1}$ be an (n+1)-dimensional simplex and let K be the simplicial complex containing all faces of Δ . If $f:|K| \to \mathbb{R}^n$ is a linear map, then there are two disjoint faces Δ_1 , Δ_2 of Δ such that $f(\Delta_1) \cap f(\Delta_2) \neq \emptyset$.

Thus the following theorem of Bajmóczy and Bárány [1] can be thought of as a generalization of Radon's theorem.

Theorem 2. Let Δ and K be as in Theorem 1. If $f: |K| \to \mathbb{R}^n$ is a continuous map, then there are two disjoint faces Δ_1 , Δ_2 of Δ such that $f(\Delta_1) \cap f(\Delta_2) \neq \emptyset$.

Bajmóczy and Bárány use the following antipodal theorem of Borsuk and Ulam [3] in their proof.

Theorem 3. For any continuous map $h: S^n \to \mathbb{R}^n$, there exists $x \in S^n$ with h(x) = h(-x).

Theorem 2 follows immediately from Theorem 3 and the following theorem.

Theorem 4. Let Δ and K be as in Theorem 1. There exists a continuous map $g: S^n \to |K|$ such that for every $x \in S^n$ the supports of g(x) and g(-x) are disjoint.

In this brief note we are going to give a new very simple proof of Theorem 4. We present in it an explicit construction of the function g.

2 Proof of Theorem 4

Assume that $\Delta=(x_0,\ldots,x_{n+1})$. Let K_1 be the simplicial complex with $\{x_0,\ldots,x_{n+1}\}$ as its set of vertices and all proper faces of Δ as its simplices. Let K_2 be the barycentric subdivision of K_1 . Let $\omega:|K_2|\to|K_2|$ be the free Z_2 -action defined as follows. If $T\subset\{x_0,\ldots,x_{n+1}\}$ is the vertex-set of a simplex σ of K_1 and c_{σ} is the barycentre of σ , then let

$$\omega(c_{\sigma}) = c_{\sigma'},$$

where σ' is the simplex of K_1 whose vertex-set T' is the complement of T, that is

$$T'=\{x_0,\ldots,x_{n+1}\}\setminus T.$$

Thus we have defined ω on the vertices of K_2 . Let us extend ω linearly to $|K_2|$, that is for any $x \in (c_{\sigma_1}, \ldots, c_{\sigma_r}) \in K_2$ having the following barycentric representation

$$x = \sum_{i=1}^{r} \mu_i c_{\sigma_i},$$

let

$$\omega(x) = \sum_{i=1}^{r} \mu_i \omega(c_{\sigma_i}).$$

Clearly, ω is well defined and there is a homeomorphism $f: S^n \to |K_2|$ which is equivariant with respect to the antipodal map on S^n and ω on $|K_2|$, that is such that for every $x \in S^n$ the following equality holds:

$$f(-x) = \omega(f(x)).$$

Therefore, to prove our theorem, it is enough to show the existence of a continuous map $h: |K_2| \to |K|$ such that for every $x \in |K_2|$ the supports of h(x) and $h(\omega(x))$ are disjoint.

Let K_3 be the barycentric subdivision of K_2 . We shall define h on the vertices of K_3 first. Let d_A be the barycentre of the simplex $A = (c_{\sigma_1}, \ldots, c_{\sigma_r})$ of K_2 . Since A is a simplex of K_2 , we can assume that σ_i is a proper face of σ_{i+1} for $i = 1, \ldots, r-1$. Define

$$h(d_A)=c_{\sigma_1}.$$

Now let us extend h linearly to $|K_3| = |K_2|$, that is for $x \in (d_{A_1}, \ldots, d_{A_s}) \in K_3$ with the barycentric representation

$$x = \sum_{i=1}^{s} \mu_i d_{A_i},$$

let

$$h(x) = \sum_{i=1}^{s} \mu_i h\left(d_{A_i}\right).$$

Now we shall show that for every $x \in |K_2|$ the supports of h(x) and $h(\omega(x))$ in K are disjoint. Note first that if d_A is the barycentre of a simplex $A = (c_{\sigma_1}, \ldots, c_{\sigma_r})$, then

$$\omega(d_A) = \omega\left(\frac{1}{r}\sum_{i=1}^r c_{\sigma_i}\right) = \frac{1}{r}\sum_{i=1}^r \omega(c_{\sigma_i}) = d_B$$

where

$$B=(\omega(c_{\sigma_1}),\ldots,\omega(c_{\sigma_r})).$$

For $x \in |K_2|$, let

$$\{A_1,\ldots,A_r\}$$

be the support of x in K_3 and

$$\{B_1,\ldots,B_r\}$$

the support of $\omega(x)$ in K_3 , where $B_i = \omega(A_i)$ for $i = 1, \ldots, r$. Let

$$\{\sigma_{i,1},\ldots,\sigma_{i,s_i}\}$$

be the vertex-set of A_i for $i=1,\ldots,r$, where $\sigma_{i,j}$ is a proper face of $\sigma_{i,j+1}$ for $j=1,\ldots,s_i-1$. Now let

$$\left\{\sigma_{i,1}',\ldots,\sigma_{i,s_i}'\right\}$$

be the vertex-set of B_i for $i=1,\ldots,r$. Since the vertex-set of $\sigma'_{i,j}$ is the complement of the vertex-set of $\sigma_{i,j}$, the simplex $\sigma'_{i,j+1}$ is a proper face of $\sigma'_{i,j}$, for all $i=1,\ldots,r$ and $j=1,\ldots,s_i-1$.

Since $h(A_i) = \sigma_{i,1}$ for i = 1, ..., r, the support of h(x) in K_2 is the set

$$\left\{\sigma_{1,1},\sigma_{2,1},\ldots,\sigma_{r,1}\right\},\,$$

and since $h(B_i) = \sigma'_{i,s_i}$ for i = 1, ..., r, the support of $h(\omega(x))$ in K_2 is the set

$$\left\{\sigma'_{1,s_1},\sigma'_{2,s_2},\ldots,\sigma'_{r,s_r}\right\}$$
.

We can assume that A_i is a proper face of A_{i+1} for $i=1,\ldots,r$. Then $\sigma_{i+1,1}$ is a (not necessarily proper) face of $\sigma_{i,1}$ for $i=1,\ldots,r$, and thus the support of h(x) in Δ^{n+1} is the vertex-set of $\sigma_{1,1}$. Since A_i is a proper face of A_{i+1} , the simplex B_i is a proper face of A_{i+1} for $i=1,\ldots,r$. Therefore, $\sigma'_{i+1,s_{i+1}}$ is a face of σ'_{i,s_i} for $i=1,\ldots,r$, and thus the support of $h(\omega(x))$ in K is the vertex-set of σ'_{1,s_1} . Now recall that the vertex-set of σ'_{1,s_1} is the complement of the vertex-set of σ_{1,s_1} . But the vertex-set of $\sigma_{1,1}$ is contained in the vertex-set of σ_{1,s_1} so the supports of h(x) and $h(\omega(x))$ in K are disjoint, and the theorem is proved.

References

- E.G. Bajmóczy, I. Bárány, On a common generalization of Borsuk's and Radon's theorem, Acta Math. Acad. Sci. Hungar. (3-4) 34 (1979), 347-350.
- [2] I. Bárány, S.B. Shlosman, A. Szücs, On a topological generalization of a theorem of Tveberg, J. London Math. Soc. (2) 23 (1981), 158-164.
- [3] K. Borsuk, Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math. 20 (1933), 177-190.
- [4] B. Grünbaum, Convex Polytopes, Interscience, London 1967.
- [5] J. Wojciechowski, Long Induced Cycles in the Hypercube and Colourings of Graphs, Ph.D. thesis, Cambridge University, England (1990).