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ABSTRACT. A critical set C in a latin square L is a partial
latin square which has a unique completion to L and for which
no subset of C has this property. In this paper I document
known results on the possible sizes of critical sets, and provide
a reference list for the existence of critical sets in latin squares
of order less than or equal to 10. Many of the results in this
list are new and where this is the case I exhibit a critical set of
the given size in the Appendix.

1 Introduction

A latin square L of order n is an n x n array with entries chosen from
a set N, of size n, such that each element of N occurs precisely once in
each row and column. A partial latin square P of order n is an n x n
array with entries chosen from a set N, of size n, such that each element
of N occurs at most once in each row and column. A partial latin square
C = {(5,5:k) | cell (4,7) contains k}, is said to have a unique completion
to the latin square L, if L is the only latin square of order n which has
element k in position (3, 5), for each (3,5; k) € C. A critical set, in a latin
square L of order n, is a set C = {(3, j; k) cell (4,5) contains k} such that,

1. C has a unique completion to L, and
2. no proper subset of C satisfies 1.

A critical set is a partial latin square which is contained in precisely one latin
square, of the same order, with the additional property that if one removes
any entry from the partial latin square, then what is left is contained in at
least two latin squares of the same order. A latin square L and a critical
set C in L are displayed below.
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The latin square and critical set are of order 7. The size of a critical set is
the number of non-empty cells in the partial latin square. The size of the
critical set given above is 13.

In this paper I discuss the existence of critical sets in latin squares of
order less than or equal to 10. In Section 2 of this paper, I document the
known results on the size of critical sets in latin squares. For latin squares
of order n, where 1 < n < 10, I will list the size of smallest known critical
set and the size of the largest known critical set. Then for all possible sizes
between these two bounds, with the exception of order 8, size 17 and order
10, sizes 26 and 28, I establish the existence of a critical set of the given
size. These results are summarised in a table, in Section 3. If the existence
of the critical set has been established using the results listed in Section
2, I note the appropriate theorem and reference the original work. In all
other cases (56 in total) the existence of the critical set is established for
the first time in this paper and examples of such critical sets are given in
the Appendix.

2 Known results

Critical sets were first discussed by Nelder [12] in 1977. Let lcs(n) denote
the size of the largest critical set in any latin square of order n and scs
denote the size of the smallest critical set in any latin square of order n.
It is easily shown that for latin squares, of order n, lcs(n) < n% —n and
scs(n) > n — 1. Nelder conjectured that lcs(n) = (n? —n)/2 and scs(n) =
[n?/4]. The bound for lcs was shown to be false in 1982. Stinson and van
Rees, [15], exhibited examples of critical sets for which les(n) > (n%—n)/2.
They also showed that if 6(n) = maz|C|/n?, taken over all critical sets of
L, then the limsup §(n), as n — oo, is 1.

As for scs, to date, there appears to be no evidence which suggests that
Nelder’s conjecture is false. In 1994, it was shown that scs(n) > n+1, [2],
and recently Fu, Fu and Rodger, [8], showed that scs(n) > [32] — 2.

An upper bound on scs(n) was established by Curran and van Rees [4]
in 1978 when they established the existence of critical sets of size n2/4,
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when n is even (see also Smetaniuk, [14]) and established the existence of
a uniquely completable set of size (n? —1)/4 when n is odd. Consequently,
scs(n) < n?/4 when n is even and scs(n) < (n? — 1)/4 when = is odd.

For particular values of n, Curran and van Rees [4] verified that when
n =1,2,3,4 and 5, scs(n) = 0,1,2,4 and 6 respectively. When n = 1,2
and 3, they verified that les(n) = 0,1 and 3 respectively. In 1982, Stinson
and van Rees [15] extended this work and found lower bounds for lcs(n)

when n = 2,...,10. Their results are summarised in the following table.
Order | Upper Lower Order | Upper Lower
bound bound bound bound
n on scs(n) | on les(n) n on scs(n) | on les(n)
1 0 0 2 1 1
3 2 3 4 4 7
5 6 10 6 9 18
7 12 24 8 16 37
9 20 39 10 25 55

I conclude this section with known results on the existence of critical sets
of a given size.

Theorem 1. (Curran and van Rees [4]) For the addition table of the
integers modulo n, where n is even, there exists critical sets of size

n2

4

Theorem 2. (Cooper, Donovan and Seberry [1]) For the addition table of
the integers modulo n, where n is odd, there exists critical sets of size
n? -1
Y

Theorem 3. (Donovan and Cooper [6]) For the addition table of the
integers modulo n, there exists critical sets of size

n? —3n

"4+ 3r—nr+2+ 2

where r is an integer such that 253 <r <n-2.

Howse and Sittampalam (with Keedwell) have obtained results relating
to the Dihedral group.
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Theorem 4. (Howse [9]) For the multiplication table of the Dihedral
group, of order n = 2m, there exists critical sets of the following sizes:

Tm? — 2m Tm? —2m —1

) , if m is even, or — if m is odd, and
2 _ 2 _
w, if m is even, or W, if m is odd.

Theorem 5. (Sittampalam (with Keedwell), [13]) For the multiplication
table of the Dihedral group, of order n = 2m, there exists a critical set of
size

2m? —3m + 3.

The following two results deal with to latin squares which are the direct
product of the addition table for the integers modulo 2 and the addition
table of the integers modulo m.

Theorem 6. (Stinson and van Rees, [15]) For the latin square representing
the direct product of Cs, the cyclic group of order 2, with Cp,, the cyclic
group of order m, where m is even, there exists a critical set of size

Tm?

4

Proof: This result can be obtained by applying Theorem 2.8 of Stinson
and van Rees’s paper to Theorem 1 of this paper. |

Theorem 7. (Cooper, Donovan and Gower [3]) For the latin square rep-
resenting the direct product of Cs, the cyclic group of order 2, with C,,,
the cyclic group of order m, where m is odd and greater than or equal to
3, there exists a critical set of size

52m? — 20
32

The next result establishes the existence of m — 1 critical sets, in latin
squares of order 2m. The critical set of size 2m? — 3m 4 3 corresponds to
that given by Sittampalam (with Keedwell) [13].

Theorem 8. (Donovan [7]) There exists critical sets of sizes
2m? -3m+3, ..., 2m®* —2m+1

in latin squares of order n = 2m.

In the next three results, for n large, the size of the critical set is greater
than 22=2  (the value Nelder original conjectured for lcs(n)).
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Theorem 9. (Donovan [7]) There exists a critical set of size

5m2 — 3m
2
in a latin square of order n = 2m.

Theorem 10. (Donovan [7]) There exists a critical set of size
%k"’ - gk +1

in a latin square of order n = 4k.

Theorem 11. (Donovan [7]) There exists a critical set of size
10k% — Tk + 2

in a latin square of order n = 4k.

Theorem 12. (Mortimer [11]) The following partial latin square is a
critical set of order 6 and size 10.

1
2 3
3 2 1
6 1
41 6

3 Critical sets in Latin squares of order less than or equal to 10

In this section I verify the existence of critical sets in latin squares of order
less than or equal to 10. These results are summarised in table form.

Here the numbers in column 1 represent, n, the order of the critical set
in question. Column 2 gives the size of the smallest critical set, of order
n, known to exist. So for n even it is n?/4 and for n odd it is (n? — 1)/4.
Column 3 lists the largest known critical set for any latin square of order n.
These numbers have been taken from the Stinson and van Rees paper [15].
Column 4 gives all possible values between the known bounds on scs and
lcs. Column 5 provides evidence of the existence of critical sets of the given
size. If the existence of the critical set has been established in the known
literature, then the appropriate theorem and original reference are given.
If the existence of the critical set is established for the first time in this
paper, the reader is referred to the appropriate example in the Appendix.
These examples have been found using programs written by Ian Mortimer
[11]. In the case of critical sets of order 8 and size 17 and order 10 and
sizes 26 and 28, the existence of such critical sets is still in doubt. In such
cases 7?7 appears in Column 5.
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Order, n | Bound on | Bound on | Size | Exists, see Refernece [x]
scs lcs
1 0 0
0 4]
2 1 1
1 4]
3 2 3
2 [4]
3 [4]
4 4 7
4 Theorem 1, [4]
5 [5]
6 5
7 See Lemma 3.2 of [15]
5 6 10
6 Theorem 1, [1]
7 [1]
8 See Appendix #1
9 See Appendix #2
10 | See Lemma 3.3 of [15]
6 9 18
9 Theorem 1, [4]
10 Theorem 12, [11]
11 Theorem 3, [6]
12 Theorem 5, [13]
13 Theorem 8, (7]
14 Theorem 7, [7]
15 Theorem 3, [6]
16 See Appendix #3
17 See Appendix #4
18 Lemma 3.4,[15]
see also Theorem 9, [7]
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Order, n | Bound on | Bound on | Size | Exists, see Refernece [x]
scs les

7 12 24
12 Theorem 2, (1]
13 Theorem 3, [6]
14 See Appendix #b5
15 See Appendix #6
16 Theorem 3, [6]
17 See Appendix #7
18 See Appendix #8
19 See Appendix #9
20 See Appendix #10
21 Theorem 3, [6]
22 See Appendix #11
23 See Appendix #12
24 | See Lemma 3.5 of [15]

8 16 37
16 Theorem 1, [4]
17 7
18 Theorem 3, [6]
19 See Appendix #13
20 See Appendix #14
21 See Appendix #15
22 Theorem 3, [6]
23 Theorem 5, [13]
24 Theorem 8, [7]
25 Theorem 8, [7]
26 Theorem 4, [9]
27 See Appendix #16
28 Theorem 6, [15]
29 See Appendix #17
30 See Appendix #18
31 See Appendix #19
32 See Appendix #20
33 See Appendix #21
34 Theorem 9, [7]
35 See Appendix #22
36 See Appendix #23
37 Lemma 3.2 of [15]

see also Theorem 9, [7]
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Order, n | Bound on | Bound on | Size | Exists, see Refernece [x]
scs les

9 20 39
20 Theorem 2, [1]
21 Theorem 3, [6]
22 See Appendix #24
23 See Appendix #25
24 Theorem 3, [6]
25 See Appendix #26
26 See Appendix #27
27 See Appendix #28
28 See Appendix #29
29 Theorem 3, [6]
30 See Appendix #30
31 See Appendix #31
32 See Appendix #32
33 See Appendix #33
M See Appendix #34
35 See Appendix #35
36 Theorem 3, (6]
37 See Appendix #36
38 See Appendix #37
39 | See Lemma 3.6 of [15]

10 25 55
25 Theorem 2, [1]
26 7?7
27 Theorem 3, [6]
28 7?
29 See Appendix #38
30 See Appendix #39
31 Theorem 3, [6]
32 See Appendix #40
33 See Appendix #41
K%} See Appendix #42
35 See Appendix #43
36 See Appendix #44
37 Theorem 3, [6]
33 Theorem 5, [13]
39 Theorem 8, [7]
40 Theorem 7, [3]
41 Theorem 4, [9]
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Order, n | Bound on | Bound on | Size | Exists, see Refernece [x]
scs les
10 cont. 42 See Appendix #45
43 See Appendix #46
44 See Appendix #47
45 Theorem 3, [6]
46 See Appendix #48
47 See Appendix #49
48 See Appendix #50
49 See Appendix #51
50 See Appendix #52
51 See Appendix #53
52 See Appendix #54
53 See Appendix #55
54 See Appendix #56
55 Lemma 3.7 of [15]
see also Theorem 9, [7]
Acknowledgement

This work was supported by a University of Queensland Enabling Grant.

Appendix
NUMBER 1 NUMBER 2
ORDER: 5 SIZE: 8 ORDER: 5 SIZE: 9
112 1]12(3
2 4 2134
4 4
4 3 4
3 3
NUMBER 3 NUMBER 4
ORDER: 6 SIZE: 16 ORDER: 6 SIZE: 17
214 ]15](6 3124|516
1 614 316 5
5164 5|16]|4
615 213 6 213
6 2 46 2
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NUMBER 5 NUMBER 6
ORDER: 7 SIZE: 14 ORDER.: 7 SIZE: 15
1(2 4 11213 5
2 4 213 5
4 3 5
4 3 5
3 5 4
3 5
3 5|6 4 6
NUMBER 7 NUMBER 8
ORDER: 7 SIZE: 17 ORDER: 7 SIZE: 18
213 5 1{2]3
213 5 211
3 5 3 6|7
5 1 516|7 1
5 4 7
1 4 1 5
1 4 6 6
NUMBER 9 NUMBER 10
ORDER: 7 SIZE: 19 ORDER: 7 SIZE: 20
1 314]5(6 1{2|3[4](5
3]4([(5]6 213|4]5]6
314 2 314|516
4156 415(6
5|6 6
6 6
2
NUMBER 11 NUMBER 12
ORDER: 7 SIZE: 22 ORDER: 7 SIZE: 23
211 513 1(6 4 3
1137 13 2
411 5 1 5
7 1[5 214 7 115 4
5 2 7 5 2
3|2 4 1 312|5(4 1
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NUMBER 13 NUMBER 14
ORDER: 8 SIZE: 19 ORDER: 8 SIZE: 20
112]3 1(2 415
213 2 415
3 415
7 415 3
7 4 5 3
7 415 3
7 415]6 3 6
4156 3 617
NUMBER 15 NUMBER 16
ORDER: 8 SIZE: 21 ORDER: 8 SIZE: 27
21314 1(2|13[4]5]|6
2134 213|4([5]|6]7
3|4 7 314|5]|6]|7
4 7 41567
7 5167
1 5 7
7 516 7
1 516 6
NUMBER 17 NUMBER 18
ORDER: 8 SIZE: 29 ORDER: 8 SIZE: 30
312(5]16]7 112 45 7
318|567 211143
71856 3 1 7 516
4 6|17|8]|5 615
716 2134 5 71811 3
7 213 8|7
2 7 5 314]1
8 413
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NUMBER 19 NUMBER 20

ORDER: 8 SIZE: 31 ORDER: 8 SIZE: 32
312({5|6]|7|8 1(2(3]4]5]6
3(8|5|6]|7 2 4|3
71815]6 4112 8
4 617 5 413 1 6
81716 2134 51617 1(2]3
8|7 213 6|5 211
8 2 7 5 3 1
NUMBER 21 NUMBER 22
ORDER: 8 SIZE: 33 ORDER: 8 SIZE: 35
312(5(6|7]8 112]|3|4]5]6
4 8|5|6|7 2 413|6
4|7(8]5]|6 31411127 5
3 61785 4131211
81716 2134 5167 11213
817 213 615 2|1
8 2 7 5 3 1
NUMBER 23 NUMBER 24
ORDER: 8 SIZE: 36 ORDER: 9 SIZE: 22
413(2]|5|6|7]8 ; g 3 5 5
413|6|5]|8]|7 3 5
41718|5]|6 5
817615 3
6|17|8 2314
817 413
4 6
8 6 4 2 I 7
4 6
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NUMBER 25 NUMBER 26
ORDER: 9 SIZE: 23 ORDER: 9 SIZE: 25
112(3|4 6 1123 516
2134 6 213 516
314 6 3 516
4 6 516
6 5|6 4
6 6
4
5 4 7
5 4 8
NUMBER 27 NUMBER 28
ORDER: 9 SIZE: 26 ORDER: 9 SIZE: 27
1{2])3[4]5 7 1123 5 7
213(4|5 7 3 5 7
31415 7 3 5 7
415 7 5 7
5 7 5 7 4
7 7
7 7 4 6
4
6 4 6 8
NUMBER 29 NUMBER 30
ORDER: 9 SIZE: 28 ORDER: 9 SIZE: 30
112|134 617 1123 5167
2134 6|7 213 5|16|7
314 67 3 516|7
4 6|7 5167
6|7 5167 4
6|7 6|7
7 7 4
5 4
5 4 8
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NUMBER 31 NUMBER 32
ORDER: 9 SIZE: 31 ORDER: 9 SIZE: 32
112]13]4|5 7 1123|4516
2131415 7 2131415617
31415 718 314 617
415 718 4 61718
5 718 718
718 718
8 6 8 5
8 6 8 516
67 5(6}7
NUMBER 33 NUMBER 34
ORDER: 9 SIZE: 33 ORDER: 9 SIZE: 34
1{2[(3|4]5]6 112]|3[4]5]6]7
2131415678 21314]5]|6]|7
314 6|7 3[4]5]6[7]8
4 6178 4516718
6|7]38 5 718
6[7]8 718
8 5 8
8 5 8 6
5 7 6|7
NUMBER 35 NUMBER 36
ORDER: 9 SIZE: 35 ORDER: 9 SIZE: 37
1213145617 11213415 718
21314516718 21311(5 8
3|14]5(6|7]8 3|1
4|15]6]|7]|8 415 7 112
516|718 5 2
61718 8
8 718 112 415]|6
8 8 2 5614
7 6|14]5
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NUMBER 37 NUMBER 38
ORDER: 9 SIZE: 38 ORDER: 10 SIZE: 29
TT373 516
T334 g N s
21311 3 516
3112 5 o
a3 718 )
2 ! 516 7
3
7
718 T3 516
8 3 54 4 7
115 4 8
7] 7 9
NUMBER 39 NUMBER. 40
ORDER: 10 SIZE: 30 ORDER: 10 SIZE: 32
1T2] T4]576 3745
21 [435(% AR
(56 3143
21576 713 9
516 5 9
3 5 1
3 9 1 3
3 7 1 517
3 g g ARAE
3 9 1 ARE
NUMBER 41 NUMBER 42
ORDER: 10 SIZE: 33 ORDER: 10 SIZE: 34
1213 151617 11213147576
2131 [5[6]7 513456
3T [5(6]7 NG 5
A K NG 3
A 7y 516 5
517 5
7 9 3
1 5 3
4 8 9 7
7 9 3 718
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NUMBER 43 NUMBER 44
ORDER: 10 SIZE: 35 ORDER: 10 SIZE: 36
1[2]3[4]5 78 1 3 5
2345 718 3 5
3]415 708 3 5 2
4[5 7|8 5 9 2
5 7|8 5 2 4
78 9 2 1
718 2 4 6
8 9 2 4 617
6 9 2 4 6|7[8
6 2 4 6]7]8
NUMBER 45 NUMBER 46
ORDER: 10 SIZE: 42 ORDER: 10 SIZE: 43
1 314715 7]8 1[2]3]4[5[6]7]8
3|45 7]8]9 2|3]4a|5[6]|7]8
3145 708 3|4[5[6[7|8]°9
4|5 718](9 4|5[6|7[8]09
5 7|89 2 5|6|7]|8]9
7|8]9 2 6 8|9
7|8 89
8|9 819
9 2 6 9 7
2 6 7
NUMBER 47 NUMBER 48
ORDER: 10 SIZE: 44 ORDER: 10 SIZE: 46
1[2[3[4[5]6][7]8 3[2[6]7]8 0
2|3[4|5][6|7|8]9 5 3|0[6|7]|8
3[4[5]|6]7[8]9 5 9 6|78
4|5(6|7[8]09 1 5/8[9]0[6]7
5|6[7[8]9 4 7|8|9]0]®6
617(8]9 8|7 2 415
71819 0 8 2 4
9 0 2
9 9 0]3
9 3
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NUMBER 50
ORDER: 10

NUMBER 49
ORDER: 10

SIZE: 48

SIZE: 47

8

819[(0]6]7

413]0|6]7[8]9

413]2]|6]7[8]9]0

0]9[8]7

NUMBER 52
ORDER: 10

4

3

6|17]8]9

8[19|0|6(7

3

419]0[6]7]8

9

413|2]6[7]|8]9]0

0]9]8)7

NUMBER 51
ORDER: 10

SIZE: 50

SIZE: 49

oj6]7]8

7181910

4

S5]8|9jols6|7

5

5]4|3]0]6]7]8

5|]a4]3]2|6]7]|8]9]0

NUMBER 54
ORDER: 10

3

819067

4]13]0]j6]7]8]9

413]2]6]7][8]9]0

0j]9o]|8]|7

NUMBER 53
ORDER: 10

SIZE: 52

SIZE: 51

3

2

910]6]7]8

7181906

3|]o]6]7]8]9

312]6]7|8]9]0

5

09817

NUMBER 56
ORDER: 10

6|17]8]9]0

2131415

819]0])6]7

2

4190|678

3

413J0o]J6]7})8]9

4

019187

NUMBER 55
ORDER: 10

SIZE: 54

SIZE: 53

2345

7]18]9]0}]6

413]2]6]7]18]9]0
5]4[3]0]|]6]7]8]9

0]9]|8]7

2|314]5

5]18|]9]0]|s6]7

7

S5l4]9]0}6]7]8

8

514]3[0]6]7]8

Sl14]3]2]6]7]8]9]0
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