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Abstract
A transitive orientation of a partial triple system (S,7T) of index 2\
is a partial transitive triple system formed by replacing each triple
t € T with a transitive triple defined on the same vertex set as ¢ in
such a way that each ordered pair occurs in at most A of the resulting
transitive triples. A transitive orientation (S;,Ti) of (S,T) is said
to be balanced if for all {u,v} C S, if {u,v} occurs in £ triples in
T then [£/2] and [£/2] transitive triples in T} contain the arc (u,v)
and (v, u) respectively. In this paper it is shown that every partial
triple system has a balanced transitive orientation. This result is
then used to prove the existence of certain transitive group divisible

designs.

1 Introduction

A (partial) triple system of order n and indez A (p)T'S(n,A) is an ordered
pair (S,T) where S is a set of size n, the elements of which are called
symbols, and T is a collection of 3-element subsets of S, the elements of
which are called triples, such that each pair of symbols in S occurs in

exactly (at most) A triples in T". The existence of T'S(n, A)s was settled by
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Hanani [6). However many special partial TS(n, A)s are also of particular
interest. For example, a group divisible design GDD(n,m; A1, A2) is an
ordered triple (V, G, B) where V is a set of size nm, G is a partition of V
into m sets of size n, the elements of which are called groups, and B is a
collection of triples of V' such that each pair of symbols that occur in the
same group (in different groups) occur together in exactly A; (exactly Az)
triples in B. Recently, the existence problem for GDD(n, m; A, A2)s was
solved by Fu, Rodger and Sarvate [4, 5].

Theorem 1.1 ([4, 5]) Let n,m,A2 > 1 and A\; > 0. There ezxists a
GDD(n,m; A1, A2) if and only if

(1) 2 divides Ay(n — 1) + A2(m — 1)n,

(2) 3 divides \ymn(n — 1) + Aam(m — 1)n?,
(8) if m =2 then A\, > Aan/2(n - 1), and
(4) if n=2 then Ay < (m — ).

Also, Hoffman [8] has considered a (d, v, A1, A2)-triple system; that is,
an ordered triple (D,V,B) where DNV =0, |D| =d, |V| = v, and B is
a collection of triples of DU V such that each pair p C D UV occurs in
exactly 0, Ay or A triples in B if [DNp|is 0,1 or 2 respectively.

Theorem 1.2 ([8]) There exists a (d,v, A1, A2)-triple system if and only
if

(1) ifv#0 then 2 divides \d,

(2) if d # 0 then 2 divides Aa(d — 1) — A\,

(3) 3 divides d(A2(d — 1) — A\yv), and

(4) if d # 0 then Ayv < Ao(d — 1), with equality holding if d = 2.
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It is well known that a (partial) triple system of order n and index A
can also be defined as an edge-disjoint decomposition of (a subgraph of)
AK,, into copies of K3. Then it is of no surprise to see that the following
directed analogues of triple systems have also been well studied.

Let AD, be the complete directed graph (V, A) of index A (so |V| =
n, and for all u, v € V, A contains A arcs joining v to v, and A arcs
joining v to u). A (ransitive triple is a tournament on 3 vertices that is
not a directed cycle. Denote the transitive triple ¢ with arc set A(t) =
{(a,b), (a,c), (b,c)} by [a,b,¢c]. A (partial) transitive triple system of order
n and index A (p)TTS(n,]A) is an ordered pair (S,T), where S is a set of
size n, and T is a collection of transitive triples whose arcs form a partition
of (a subset of) the arc set of AD, with vertex set S.

There is an obvious connection between transitive triple systems and
triple systems: if each transitive triple [a,b,c] in a TTS(n,\) is replaced
by a triple {a, b, ¢} then the result is a T'S(n,2)), known as the underlying
TS(n,2)). It turns out that the reverse is also possible; namely, each triple
{a,b,c} in a TS(n,2]) can be replaced by a transitive triple with vertex set
{a,b, c} such that the result is a TT'S(n, A). (This reverse statement is not
true if decompositions of AD,, into directed 3-cycles are considered instead
of into transitive triples.) This was first proved by Colbourn and Harms [3]
(see [2] when X = 1), but a simpler proof was recently found [9]. This new
simpler algorithm also easily allows the study of directing the triples in a
pT'S(n,2)), and it is these results which we present here. In particular, we
obtain analogues of Theorems 1.1 and 1.2 for transitive triple systems (see
Theorems 3.1 and 3.2).

A transitive orientation of a partial T'S(n, 2))(S, T) is a partial TT'S(n, A)
formed by replacing each triple {a,b,c} in T with some transitive triple
with vertex set {a,b,c}. We say a transitive orientation (S;,T}) of a par-

tial TS(n,2)) (S,T) is balanced if for all {u,v} C S, if {u,v} occurs in £
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triples in T then |£/2] and [£/2] transitive triples in 77 contain the arc
(u,v) and (v, u) respectively.

For any undefined graph theoretic terminology see [1].

2 Balanced Transitive Orientations

A k-edge-coloring of a graph G is said to be equitable if |c;(v) — ¢;j(v)| < 1
for 1 <i < j <k and for all v € V(G), where c;(v) is the number of edges
in G incident with v colored i. An easy proof of the following result can be

found in [9].

Theorem 2.1 ([10]) For all k > 1, every bipartite graph has an equitable

k-edge-coloring.

The proof of the following theorem is essentially the transitive orienta-
tion algorithm in [9]. (This result may also be obtained by redefining the

“next” function in the algorithm of Harms and Colbourn in [7).)

Theorem 2.2 Every partial TS(n,2)) has a balanced transitive orienta-

tion.

Proof: Let (Z,,T) be a partial T'S(n,2)) with T = {t1,...,tr}. For
each triple t; = {a,b,c} € T, let E(t;) = {{a, b}, {a,c}, {b,c}} be the edges
in ¢;, and with a < b < ¢ let p(t;) = {a,c}. Let £({a,b}) be the number of
triples in T that contain {a,b}.

Form a simple bipartite graph B with bipartition X = {t3,..., ¢}
and Y = E(T) = {{a,} | £({a,b}) > 1} by joining t} to {u,v} € E(T) if
and only if {u,v} € E(t;)\p(t;). Clearly dp(t;) =2 for 1 < i < |T}, and
dp(e) < £(e) < 2X for all e € E(T).

Using Theorem 2.1, give B an equitable 2-edge-coloring with colours 1
and 2. Then,
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(i) for 1 <i < |T, ¢} is incident with one edge of each color, and

(ii) for each e € E(T), e is incident with at most [¢(e)/2] < A edges of

each color.

To obtain a balanced transitive orientation of (Z,,T), proceed as fol-
lows. For each edge joining t; and e = {a,b} with a < b that is colored 1
or is colored 2 in B, replace the edge {a, b} in T with the arc (a,b) or (b,a)
respectively. Then by (i), each triple t; = {a,b,c¢} € T with a < b < ¢ now
has the edges {a,b} and {b,c} replaced with arcs (a,b) and (c,b) or with
arcs (b, ¢) and (b, ¢). So, regardless of how the edge p(t;) is oriented, ¢; will
be replaced by a transitive triple. Also, by (ii), for each u, v € Z, there
are at most [€(e)/2] arcs joining v and v in each direction. Therefore the
arcs p(t;) for 1 < 7 < |T'| can be oriented greedily, ensuring that [£(e)/2]

or [£(e)/2] arcs join u and v in each direction. a

3 Some Consequences

With Theorem 2.2 in hand, many existence results for special partial triple
systems can now immediately be used to prove existence results for cor-
responding partial transitive triple systems. We give two such examples
here.

Define a transitive group divisible design TG DD(n,m; A1, A2) to be an
ordered triple (V, G, B), where V is a set of size nm, G is a partition of V
into m sets of size n, each element of G being called a group, and B is a
collection of transitive triples defined on V' such that each ordered pair of
symbols occurring in the same (different) groups occur together in exactly

A1 (exactly Ap) triples in B.

Theorem 3.1 Letn,m,As > 1 and Ay > 0. There exists a TGDD(n, m; A1, A2)
if and only if
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(1) 3 divides \ymn(n — 1) + Aam(m — 1)n?
(2) if m =2 then Ay > Xanf2(n — 1), and
(3) if n =2 then \y < (m—1))s.
Proof: By Theorem 2.2, there exists a TGDD(n,m; A1, A2) if and only if

there exists a

GDD(n,m;2A1,2X2). The result therefore follows from Theorem 1.1. 0O

Define a (d,v, A1, Az)-transitive triple system to be an ordered triple
(D,V,B) where DNV =6, |D| = d, |V|] = v, and B is a collection of
transitive triples such that each ordered pair of symbols in DUV occurs in

exactly 0, A\ or As triples in B if [DNp| is 0,1 or 2 respectively.

Theorem 3.2 There ezists a (d,v, A1, A2)-transitive triple system if and
only if
(1) 3 divides d(Aa(d — 1) — Mv), and

(2) if d # 0 then \yv < Ao(d — 1), with equality holding ifd=2.

Proof: By Theorem 2.2 there exists a (d, v, A1, A2)-transitive triple system
if and only if there exists a (d, v, 21, 2A2)-partial triple system, so the result

follows from Theorem 1.2. o
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