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ABSTRACT. It is well-known that the set of all circulations of a
connected digraph G on p vertices with g edges forms a ternary
linear code C = Cg(G) with parameters [q,g —p+1, g], where
g is the girth of G. Such codes were first studied by Hakimi
and Bredeson [8] in 1969 who were concerned with the prob-
lems of augmenting C to a larger (g, k, g]-code and of efficiently
decoding such codes; their treatment is similar to their previous
work on binary codes {4, 7]. Recently, we have obtained consid-
erable progress in the binary case by generalizing Hakimi’s and
Bredeson’s construction method to obtain better augmenting
codes and by giving a much more efficient decoding algorithm.
In the present paper, we shall investigate how far our methods
can be adapted to obtain corresponding progress in the ternary
case. In particular, we will correct an oversight in a graph the-
oretic lemma of Bredeson and Hakimi which also affects their
decoding algorithms and discuss the possibility of alternative
decoding procedures based on a connection to an apparently
difficult optimization problem.
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1 Introduction

In this paper we explore the relationship between directed graphs and
ternary codes. A considerable amount of work on the connections between
graph theory and coding theory has been done previously, cf. [9, 6, 4, 7,
8, 1, 2, 20, 21, 23-26, 13, 12, 14, 16, 17]. Most previous work concerns the
binary case: As is well-known, the set of all even subgraphs of a connected
graph G on p vertices with q edges forms a binary linear code C = Cg(G)
with parameters [g,q — p + 1, g}, where g is the girth of G; here an even
subgreph of G is a spanning subgraph in which each vertex has even degree.
1 We shall hereafter refer to Cg(G) as the even graphical code of G; these
codes have first been systematically studied by Bredeson and Hakimi [6, 4,
7). These authors focused on two main questions, namely the possibility
of augmenting an even graphical code to a code of larger dimension while
keeping the minimum distance unchanged and of efficiently decoding both
the original and the augmented codes. Subsequently, Hakimi and Bredeson
[8] did a similar study of the ternary case, replacing G by a connected
(but not necessarily strongly connected) digraph and the even subgraphs
of G by the (ternary) circulations on that digraph. Recently, we [17] have
obtained considerable progress in the binary case by generalizing Hakimi’s
and Bredeson’s construction method to obtain better augmenting codes
and by giving a much more efficient decoding algorithm. In the present
paper, we shall investigate how far our methods can be adapted to obtain
corresponding progress in the ternary case. This turns out to work quite
nicely for the augmentation problem, but seems to be rather difficult as far
as decoding the circulation code is concerned, where we will only be able to
obtain a connection to an apparently difficult optimization problem. De-
coding augmented codes then turns out to be easy again, given a decoder
for the circulation codes. Finally, we will also point out an oversight in a
graph theoretic lemma of Bredeson and Hakimi [4] which also affects their
decoding algorithms given in [7, 8] and present corrected versions of their
lemma and their decoding procedure for the ternary case.

The basic result on ternary graphical codes [8] is as follows. Here we
denote the ternary vector space of all circulations of a digraph G = (V, E)
by C(G); alternatively, after choosing a fixed labelling of the arcs of G
and identifying functions f: E — Z3 with ternary vectors correspondingly,
C(G) may be viewed as the kernel of the incidence matrix M of G, i.e., as
the orthogonal complement of the row space of M; see, for instance, [3].
For notational convenience, we will write the elements of Z3 as 0, 1 and —1.
We shall also use the notation |G} for the underlying graph of G, which is

1For background and definition from graph theory and combinatorial optimization,
the reader is referred to Bondy and Murty [3], Harary [10], Jungnickel {11], Lovdsz and
Plummer [18] and Papadimitriou and Steiglitz [22], and for coding theory to MacWilliams
and Sloane [19] and van Lint [27].
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obtained by ignoring the direction of the arcs of G.

Proposition 1.1. Let G be a connected digraph with q edges on p vertices,
and let g be the girth of |G|. Then C(G) is a ternary [q, q—p+1, g]-code. O

We note that the assertion on the dimension of C(G) is well-known; the

simple proof concerning the minimum weight can be found in [8]. We shall
call this code the circulation code of G, since its elements may be most
naturally viewed as “circulations”. Of course, one needs to bear in mind
that we do consider ternary functions so that a circulation in our code is,
in general, not a circulation when considered as an integral function. To
give the reader some feeling for this situation, we will now give a direct
proof for the following simple result concerning the relationship between
the circulation code C(G) and the binary code Cg(|G|) of the underlying
graph.
Lemma 1.2. Let G be an arbitrary digraph. Then any element of the
binary code Cg(|G|) can be obtained from a suitable circulation ¢ in the
ternary code C(G) by ignoring signs, i.e., by replacing ¢ with its support
le| in |G].

Proof: Consider any element of Cg(|G|), viewed as an even subgraph H
of |G|; hence H splits into the disjoint union of Eulerian subgraphs on its
connected components. It suffices to consider one such component and to
show that — viewed as a binary vector — it may be obtained as the image
lc| of some circulation c; to simplify notation, we may as well assume that
H is itself connected. Let us choose a Eulerian cycle C for H and orient it
arbitrarily. Now a standard argument gives the desired circulation ¢ on G:
Put c(e) = 1 if the orientation of an arc e € C agrees with the orientation
of e in G, and c(e) = —1 otherwise (and, of course, c(e) = 0 for all arcs e
not occurring in C). O

The reader should note that any integral circulation has as its support a
Eulerian subgraph,; in this case, taking supports would just map the integral
circulation space of G on the even graphical code of |G|. This is, however,
no longer true in the ternary case: Assume, for instance, that G contains
two vertices s and ¢ which may are joined by three edge-disjoint paths; then
we can easily define a circulation on the support of these three paths which
clearly is not an even subgraph of |G|. Nevertheless, one may in a certain
sense think of C(G) as obtained by suitably “orienting” Cg(|G|). To be
more precise, let us fix a spanning tree T for |G|; as is well-known, each
edge e ¢ T defines a unique cycle of |G|. The (characteristic vectors of)
these ¢ — p + 1 cycles form a basis for the cycle space of |G|. Recording
them as the rows of a matrix B(]|G|) thus gives a generator matrix for the
code Cg(|G|) which is called the fundamental circuit matriz of G in [7).
Associating with each of these fundamental cycles of |G| a circulation as
described in the proof of Lemma 1.2 then gives us a generator matrix B(G)
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for the ternary code C(G) which may be thought of as an orientation of
B(|G|). This explains how the binary code Cg(|G|) gives rise to a large
number of ternary codes with the same parameters, corresponding to the
possible orientations of G to a digraph. Note, however, that these codes
are not essentially different, since they are all monomially equivalent.

2 Augmenting Circulation Codes

In this section we will consider the problem of augmenting the circulation
code of a connected digraph G = (V, E). This turns out to be similar to
the study of the possible augmentations of the binary code Cg(|G|) of the
underlying graph by adjoining further subgraphs as discussed in our paper
[17). Note that studying the “odd degree patterns” of subgraphs (which
was crucial in the binary case) is no longer useful, since the odd degree
pattern of the sum of two ternary vectors is in general different from the
binary sum of the odd degree patterns of the two underlying subgraphs
involved. Accordingly, augmentation requires ternary codes as auxiliary
codes instead of even binary codes, and the proofs need a different line of
argumentation. For the convenience of the reader, we will first summarize
what can be done in the binary case.

Result 2.1: Consider an even graphical code C = Cg(|G|) with param-
eters [q,g — p + 1, g] based on the connected graph |G|. Then C may be
extended to a graphical code C* with parameters [g,q — p + 1 + k, g] pro-
vided that there exists an even binary [p, k,2g]-code O. One may obtain
such a code C* by adjoining to C any k linearly independent subgraphs
Si, ..., Sk of |G| with odd degree patterns forming a basis for O as further
generators. a

Result 2.2: Consider an even graphical code C = Cg(|G|) with param-
eters [g,q — p + 1, g] based on the connected graph |G|, and assume that
Wi,..., Ve is a partition of the vertex set V into independent sets with car-
dinalities py, .. .,p., respectively. Then C may be extended to a graphical
code C* with parameters [g, (g—p+1)+(k1+- - -+k¢), g] provided that there
exist even binary [p;, ki, g}-codes O; for i =1,...,c. One may obtain such
a code C* by adjoining to C (for i = 1,...,c) arbitrary sets of k; linearly
independent subgraphs s§‘), .. ,S,(:‘_) of |G| with odd degree patterns con-
tained in V; and forming a basis for O; (when considered as binary vectors
of length p; indexed with the vertices in V;) as further generators. 0

In order to obtain analogous results in the ternary case, one has to replace
the notion of the parity of a vertex in a subgraph with that of the “excess”
of a ternary function (or vector) at a vertex which we will now define in
analogy to a standard notion from the theory of network flows. Given an
arbitrary ternary vector x, we call the scalar product of the kth row of the
incidence matrix M of G with x the ezcess of x at the corresponding vertex
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vk. Thus x is a circulation if and only if it has excess 0 at each vertex of G.
Again, we stress that all computations are done modulo 3, and hence the
only possible non-zero excesses are 1. We first prove the following analog
of Result 2.2.

Theorem 2.3. Let G be a connected digraph of girth g with q edges on
p vertices and assume the existence of a ternary [p — 1,k,2g — 1]-code A.
Then the circulation code C = C(G) with parameters [q,q — p+ 1, g] may
be extended to a ternary [g,q —p+ 1+ k, g]-code C*.

Proof: We shall use the auxiliary code A to produce a ternary [g, k, gJ-code
C'’ such that C 4 C’ results in the desired code C*. To this end, we first
select a fixed vertex s of G and conduct a BFS-search on |G| with start
vertex s; let us denote the resulting spanning tree of |G| by T. Given any
vertex v in G, we have a unique path P, in T joining s with » which we
will consider as directed from s to ». With each such path, we associate a
ternary vector p, as follows: The e-coordinate p,(e) # 0 if and only if e
occurs is P,; moreover, p,(e) = +1 if e is a forward edge in P,, i.e. if the
orientation of e in P, agrees with that of e in G, and p,(e) = -1 ifeis a
backward edge in P,. Note that we may choose a bijection o between the
the set of vertices of G different from s and the coordinates of A; in this
way, we avoid the possibility of using the trivial path P, in what follows.
Given any non-zero vector a € A, consider the vertices v which correspond
to coordinates a(v) with a-entry a(v) # 0 and put ¢, = p, if a(v) =1
and ¢y a = —Ppy if a(v) = —1. Finally, denote by ca the sum of all the
vectors Cy,a just defined. In this way, any non-zero a € A gives rise to a
ternary vector c, of length ¢; we choose C’ as the vector space consisting
all these vectors c, together with co = 0. Intuitively, we may view each
element ¢, of C’' as an “oriented sum” of a system P, of w, paths in
T, where w, denotes the weight of a. In order to see that C* is indeed
a [q,q —p+ 1+ k, g}-code it therefore suffices to show that the distance
between any oriented sum of m paths in T and any circulation c always is
at least [m/2] and then to use the hypothesis that A has minimum weight
2g — 1. To see this, we use the notion of excess defined above. Note first
that each vector p, has excess X1 at both s and » and excess 0 for any
internal vertex. Since the excess of a linear combination of ternary vectors
at a vertex v obviously equals the corresponding linear combination of the
individual excesses at v, any oriented sum s of m paths P, in T has excess
+1 at each of the associated m end vertices v. Hence one needs to change
the values of at least [m/2] coordinates of s to make s into a circulation
which proves the assertion. o

We remark that it is indeed not possible to prove Theorem 2.3 by arguing
about the number of odd vertices of an oriented sum s of m paths in T
It is not difficult to find examples showing that the support of such a sum
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may have fewer than m vertices of odd degree. It is also easy to construct
examples where s has weight exactly [m/2], so that the construction given
in the proof of Theorem 3.3 is in general best possible. However, as in the
binary case, one may often do better if one has more information about the
structure of G, more precisely on its chromatic number. As the construction
is similar to the one given in Theorem 2.3, the details of the proof may be
left to the reader.

Theorem 2.4. Let G be a connected digraph of girth g with q edges on
p vertices, and assume that V;,...,V, is a partition of the vertex set V
into independent sets with cardinalities py,...,pe, respectively. Then the
circulation code C = C(G) with parameters [q, g—p+1, g] may be extended
to a ternary code C* with parameters [q,(q —p + 1) + (k1 + -+ - + kc), 9]
provided that there exist ternary [p;, ki, g]-codes A; fori=1,...,c—1 and
a ternary [p. — 1, kc, g]-code Ac.

Proof: Similar to the construction given in the proof of Theorem 2.3, we
choose a fixed vertex s € V. and construct a BFS-tree T for |G| with root s.
We now use the auxiliary codes A; exactly as in the proof of Theorem 2.3
to construct oriented sums of paths in T resulting in ternary (g, k:, g]-codes
Cifori=1,...,c; in the case i = ¢, we identify the coordinate positions of
A, with the p. — 1 vertices different from s in V, (again in order to avoid
the possibility of using the trivial path P,). Now define C* to be the code
C+C;+---4+C.. We again use the fact that any oriented sum s of m paths
P, in T has excess 31 at each of the associated m end vertices v. Note that
any circulation and any non-zero vector in one the codes C; have distance
at least g, since the corresponding end vertices v form an independent set;
hence changing their excesses to 0 requires at least g coordinate changes.
Any linear combination of non-zero vectors from at least two of the codes
C, is an oriented sum of at least 2¢ paths in T and thus also has distance
at least g from any circulation. ]

We have shown in [17], that Results 2.1 and 2.2 generalize the construc-
tion methods of Hakimi and Bredeson (7] for binary codes, even though
this is not immediately obvious. In a similar way, one can also show that
Theorem 2.4 generalizes the corresponding ternary construction given in
[8]; no ternary analog of Result 2.1 was stated there explicitly, though the
possibility of such a result was mentioned. In fact the results of 8] cover
exactly the special case of our constructions where the auxiliary ternary
codes all have to be chosen as circulation codes. Hence, as in the binary
case, we will in general be able to obtain far better augmenting codes. We
also note that Hakimi and Bredeson have not supplied any proof for their
constructions but just stated that an “appropriate modification of reason-
ing” for the binary case should be used. We feel that it is after all not
totally obvious that this appropriate modification consists in replacing the
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use of odd vertex patterns with that of “excess patterns” and that at least
some sort of a hint might have been provided to the reader.

3 Decoding Augmented Circulation Codes

In this section, we shall consider the problem of decoding a general graphical
code C* based on a graph G provided that we have an efficient decoding
algorithms for both the circulation code and also the auxiliary ternary
code(s) used in the constructions of Section 2. We shall now show that
the method proposed in [8] can be adapted to handle our more general
augmentations. Since we want to be able to correct up to ¢ errors using C*,
we must first recognize whether or not a received word r actually belongs to
a code word in C = C(G). In view of the proofs of Theorems 2.3 and 2.4,
it seems advisable to try and use the excess pattern of r. In what follows,
we shall denote the e-coordinate of a ternary vector x by z(e). We begin
with an algorithm decoding a code constructed as in Theorem 2.3.

Algorithm 3.1: Consider a ternary graphical code C* with parameters
l[9.9 ~p+1 + k, g] obtained by using the ternary [p — 1,k,2g — 1)-code A
as auxiliary code from the code C = C(G) with parameters [g,¢—p+1, g]
based on the connected digraph G, where g > 2t + 1. Let r be a word
received and assume that at most ¢ errors have occurred, i.e. r has the
form r = ¢+ c, + f for some arbitrary circulation ¢, some unknown vector
ca € C' associated with the auxiliary vector a € A and some unknown error
vector f with support |f| consisting of at most ¢ edges. In what follows, a
denotes the bijection introduced in the proof of Theorem 2.3.

(1) Compute the excess of r at all vertices.

(2) Define a ternary vector a’ by choosing a’(a(v)) as minus the excess
of r at v.

(3) Using the code A, decode a’ into a code word a = a’ + f’ € A and
compute the associated vector c, € C’.

(4) Put 8 =r — ¢, and decode s into a circulation c=s —f € C.
(5) Output x = ¢+ c,.
Theorem 3.2. Algorithm 3.1 correctly decodes the ternary graphical code

C* in O(q) + O(C) + O(A) steps, where O(X) denotes the complexity of
decoding X.

Proof: We first show that the proposed decoding procedure is correct.
Note that the excess pattern of a vector x = ¢ 4 c, € C* can be used to
reconstruct the auxiliary vector a involved as follows: Any path p, in the
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BFS-tree T has excess —1 at v (and +1 at s), whereas the corresponding
“reversed” path —p, has excess +1 at v (and —1 at s). Hence the a(v)-
coordinate of a can be recovered (since v # s) as minus the excess of x at
v,

By hypothesis, the error pattern |f| consists of at most ¢ edges which
obviously can corrupt at most 2¢ excesses. Hence the received excess pattern
involves at most g — 1 vertices which have incorrect excess, i.e., their excess
for r is different from their excess for ¢ + ca. The previous arguments now
show that the vector a’ defined in Step (2) differs from the correct auxiliary
vector a in at most g — 1 coordinates. Since A is a (g — 1)-error correcting
code, we may indeed decode a’ correctly. Following this, we compute the
associated vector ca € C’ and subtract it from the received word r. Note
that s = r — ¢, = ¢ + f, and thus s belongs to a circulation ¢ corrupted
by an error vector of weight < t. By Proposition 1.1, we may decode s
uniquely, and thus Step (5) will give the correct result ¢+ c, =r —f.

The assertion on the complexity is clear, since we may compute the ex-
cesses of all vertices in O(q) steps if we use adjacency lists: The excess of
a vector u at v is the sum of the values u(e) over all arcs with tail v minus
the sum of the values u(e) over all arcs with head v. O

Of course, the quality of Algorithm 3.2 depends on both the quality of
the decoding algorithm available for decoding the auxiliary code A used
in constructing C* and also on the decoding algorithm for the circulation
code C itself. The latter problem will be discussed in Section 4. Regarding
the choice of A, we might for instance use a smaller circulation code or a
ternary BCH-code.

We now givc: an analogous procedure for decoding ternary codes con-
structed as in Theorem 2.4.

Algorithm 3.3: Consider a ternary graphical code C* (obtained as in
Theorem 2.4) with parameters [q,(q —p + 1) + (k1 + - - - + kc), g] by using
ternary [p;, ki, g]-codes A; fori = 1,...,c—1 and a ternary [p.—1, k., g]-code
A as auxiliary codes for the circulation code C = C(G) with parameters
l[g,9 —p+1, g] based on the connected digraph G. Put ¢t = (g —1)/2], let
r be a word received and assume that at most ¢ errors have occurred. Thus
r has the form
r=c+4cy +--+ca +f

for some arbitrary circulation ¢ on G, some unknown vectors c,; € C; as-
sociated with the auxiliary vector a; € A; (1 =1, ..., ¢) and some unknown
error vector f with support |f] consisting of at most ¢ edges.

(1) Compute the excess of r at all vertices.

(2) For i = 1,...,c define a ternary vector a{ by choosing aj(a(v)) as
minus the excess of rat v for all v € V;, v # s.
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(3) Using the code A;, decode aj into the correct auxiliary vector a; € A;
and compute the associated vectors c,, € C; (fori=1,...,¢).

(4) Put s = r — (ca, + --- + ¢ca,) and decode s into a circulation ¢ =
s—-feC.

(5) Output X =c+ca, + - + Ca,.

One then obtains the following result by arguing as in the proof of The-
orem 3.3; the details are left to the reader.

Theorem 3.4. Algorithm 3.4 correctly decodes the ternary graphical code
C* with complexity O(q) + O(C)+ O(Ai1) +---+ O(A¢). o

4 Decoding Circulation Codes

In this section we discuss the problem of efficiently decoding a circulation
code C = C(G) based on a connected digraph with p vertices, ¢ edges and
girth g. The only known efficient algorithm for this problem is given by
Bredeson and Hakimi [4] and rests on a lemma guaranteeing the existence
of certain collections of cutsets. As is clear from the inductive proof given
in [4] and the application in [8], the authors only allow fundamental cutsets,
i.e. cutsets of the form C = C(X,Y) which consist of all edges joining the
two parts X and Y of a partition V = X UY of the vertex set. As we
shall point out, their result is only partially correct. We shall now give the
following corrected version.

Lemma 4.1. Let |G| be a connected graph with p vertices, q edges and
girth g, and let e be an edge of |G| which is contained in some cycle. Then
there exist g— 1 fundamental cutsets B\, ..., Bg_y which pairwise intersect
in e only. It is possible to test whether or not an edge e is contained in
a cycle and (in the positive case) to compute a collection of cutsets as
described above in O(q) steps.

Proof: Let u» and v denote the end vertices of e and consider the graph
H = |G|\e. As e is contained in a cycle, H is still connected. Since |G|
has girth g, we have d(u,v) > g—1in H. Fori=1,...,9 — 1, let A;
consist of all edges of H which join two vertices which have distances i — 1
and 7 from u in H, respectively. Thus A; is the fundamental cutset of H
belonging to the partition V = X; UY;, where X; consists of all vertices
at distance at most i — 1 from u. Clearly, the A; are pairwise disjoint.
Hence the sets B; = A; U {e} pairwise intersect in e only; as |G| has girth
g, each of these edge sets separates u from v in |G| and hence is a cutset
in |G| (in fact a fundamental cutset of |G|, belonging to the same partition
V = X; UY;). Moreover, these cutsets can be computed in O(q) steps by
conducting a BF'S in H with root vertex u. Finally, note that e is in a cycle
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of |G| if and only if H is still connected; thus it is easily possible to check
the hypothesis of the lemma while simultaneously attempting to construct
the desired fundamental cutsets. m]

Lemma 4.1 was claimed in [4] without the assumption that the edge e
under consideration is contained in some cycle. The argument given there
clearly is incomplete, since the case where the removal of e disconnects |G|
was not considered. In fact, it is in general even incorrect: For instance,
let |G| consist of a single cycle C of length g together with a pendant edge
e; then it is easily seen that the largest collection of fundamental cutsets
pairwise intersecting in e only has size |g/2] + 1. Also, our proof of the
corrected result is more constructive, since we explicitly exhibit the desired
collection of cut sets.

Using Lemma 4.1, Hakimi and Bredeson [4, 8] essentially obtained ma-
jority logic decoding algorithms for both the binary and ternary cases.
In view of the remarks above, their algorithms require some correction,
though. We now describe a corresponding decoding procedure for a circu-
lation code C = C(G). To this end, we need to associate a ternary vector
¢ with each fundamental cutset C = C(X,Y) of the underlying graph |G|
as follows. Note first that we may consider C as ordered by selecting an
ordering of the two parts X and Y; let us say that we consider the edges
of C to be oriented from X to Y. Now the e-coordinate c(e) # 0 if and
only if e occurs is C; moreover, c(e) = +1 if e is a forward edge in ¢, i.e., if
the orientation of e in C agrees with that of e in G, and c(e) = -1 ifeis a
backward edge in C.

Algorithm 4.2: Consider a circulation code C(G) with parameters [g,q—
p + 1, g] based on the connected digraph G, where g > 2t +1. Let x be a
word received and assume that at most ¢ errors have occurred, i.e. x is of
the form x = c+f for some unknown circulation ¢ on G and some unknown
error vector f with a support S consisting of at most ¢ edges.

For every arc e, perform the following steps:

(1) Determine whether or not e is contained in a cycle of |G| and (in the
positive case) compute a collection of fundamental cutsets Bi(e),.. .,
Bgy_1(e) of |G| pairwise intersecting in e only.

(2) If eis not contained in a cycle of |G|, put c(e) = 0; otherwise, perform
Steps (3) and (4).

(3) For i = 1,...,g — 1, choose the orientation of the cutset B;(e) such
that e is a forward arc in B;(e), let b;(e) be the associated ternary
vector and define a; to be the inner product of b;(e) with x.

(4) Let f(e) be the symbol occurring most often among the a;, and put
c(e) = z(e) — f(e). (In case of a tie, choose f(e) =0.)
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Theorem 4.3. Algorithm 4.2 correctly decodes C(G) in O(q?) steps.

Proof: If an arc e is not contained in a cycle of |G|, it obviously cannot
occur in the support of any circulation associated with a fundamental cycle
of |G|. As noted at the end of Section 1, C = C(G) has a basis consisting
of such circulations, and therefore e cannot be in the support of any word
in C. This shows that the corresponding coordinate is correctly decoded
to ¢(e) = 0 in Step (2). Now consider any arc e which is contained in
a cycle of |G|; then the cutsets in Step (1) exist by Lemma 4.1. It is
well-known that (the ternary vector associated with) any oriented cutset
is orthogonal to each element of C; in other words, the circulation space
C of G is the orthogonal complement of the bond space generated by the
ternary vectors associated with the fundamental cuts, see e.g. [3]. Hence
the inner product ai defined in Step (3) is really just the inner product of
b;(e) with the error vector f. Assume first that the e-coordinate is correct.
Since at most ¢ errors have occurred, the corresponding arcs involve at most
t of the cutsets B;(e), and thus f can have inner product # 0 with at most
t of the vectors b;(e). Hence f is orthogonal to at least g —1 —¢ > ¢ of
these vectors, and thus we correctly put f(e) = 0 in Step (4). Finally, let
the e-coordinate be incorrect. Then there are at most £ — 1 further errors,
and the corresponding arcs can involve at most ¢ — 1 of the cutsets B;(e).
For these cutsets, the inner product of b;(e) with f might turn out to be
0; but for the remaining cutsets, the single error in the e-component will
result in the inner product a; = f(e) # 0, since the e-coordinate of each
of the vectors b;(e) is +1, because the orientation of B;(e) was chosen to
agree with that of e. Again, we see that the definition of c(e) in Step (4) is
correct, since a; = f(e) occurs at least (g —1) — (¢t —1) > ¢t + 1 times. This
proves the correctness of Algorithm 4.2, and it only remains to consider
the complexity. According to Lemma 4.1, for a given edge e, Step (1) can
be performed in O(q) steps. Using adjacency lists, the inner products in
Step (3) can also be computed in O(q) steps, and the same clearly holds
for Steps (2) and (4). Since we have q edges, we get an overall complexity
of O(q?). (n]

We remark that Algorithm 4.2 obviously may be performed in parallel
in linear time with a linear number of processors. In the binary case, it
turned out to be possible to find a considerably more efficient (sequential)
decoding algorithm via techniques from combinatorial optimization. This
approach was first suggested by Ntafos and Hakimi [20] and later also by
Solé [23]; the following explicit algorithm was given in [17]. Here it is always
assumed that C is a t-error correcting code, i.e. t > (g —1)/2.

Algorithm 4.4: Consider an even graphical code Cg(|G|) with parameters
[g,9 — p+1, g] based on the connected graph |G|, where g > 2t +1. Let X
be a word received and assume that at most ¢ errors have occurred, i.e. X
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is subgraph of |G| of the form X = C'+ S for some unknown even subgraph
C of |G| and some unknown subgraph S consisting of at most ¢ edges.

(1) Find the odd degree pattern W of X by computing the degrees of all
vertices in X; write |W| = 2w.

(2) Compute the distance d(z,y) between z and y in |G| for every pair
{z,y} of vertices in W.

(3) Form the complete graph K on W.

(4) Find a minimum weight perfect matching M = {z;y;: i =1,...,w}
of K with respect to the weight function d computed in (2).

(5) Determine a path P; of length d(z:,:) between z; and y; in |G| for
i=1,...,w.

(6) Let S be the symmetric difference of the paths Py, ..., P, computed
in (5).

(7) Output C= X + S.

Tt is not difficult to show that the preceding algorithm correctly decodes
Cz(|G)) in O(tq + t3) steps. Note that the crucial stage in this decoding
algorithm uses the odd degree pattern W of the subgraph X received to
find the error subgraph E, which just is the spanning forest of least weight
in |G| which has the same vertices of odd degree as X. In combinatorial
optimization, the problem of finding a spanning forest of least weight with
2t prescribed vertices of odd degree is usually called the t-join problem
[18]; solving this problem via an application of the CPP is in fact the
standard approach. Note also that in our case the necessary w-join is
uniquely determined from the 2w vertices of odd degree in W.

The preceding remarks suggest to try and use a combinatorial optimiza-
tion approach also in the ternary case. As we shall now explain, this seems
to be a quite difficult problem. In what follows, we shall denote the e-
coordinate of a ternary vector x by z(e). As noted before, odd degree
patterns in the binary case are replaced by excess patterns in the ternary
case. Indeed, we have seen in Section 3 that the excess pattern is funda-
mental for decoding augmented circulation codes.

Thus let x be once more a word received and assume that at most ¢
errors have occurred, i.e. x is of the form x = ¢ + f for some unknown
circulation ¢ on G and some unknown error vector f with a support S
consisting of at most ¢ edges, where g > 2t + 1. We first point out that it
suffices to determine the support S of f: Note that S is a forest and that
all leafs of this forest have excess # 0. Choose a leave u and let e be the
unique arc incident with . Then there is a unique way of correcting the
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e-coordinate of x such that the excess in u becomes 0, removing e from the
error subgraph S. Of course, we also have to adjust the excess of the other
end vertex v of e accordingly. Continuing in this way, we can inductively
correct x to the associated circulation c.

We are left with the problem of determining the error forest S. In the

binary case, this was simple to do via the CPP-approach described in Al-
gorithm 4.4, since S just was the w-join of the 2w vertices of odd degree.
Unfortunately, things are not as simple in the ternary case. We again have
an even number, say 2w, of vertices with excess # 0, but they now split
into w vertices with excess +1 and w vertices with excess —1, since the sum
of all excesses is easily seen to be 0 for any ternary vector x. Note that
any error edge e contributes +1 to the excess at one of its end vertices,
say u, and —1 to the excess at the other vertex v. If u is a leaf and we
correct z(e) accordingly (to obtain excess 0 in u), we add +1 to the excess
at v. Thus correcting edges along a path P in S starting at a leaf “moves”
excess from its start vertex to its end vertex. Of course, the positive excess
at a “plus-leaf” has to end up to neutralize a negative excess somewhere,
if we want to correct x to a circulation. The problems stem from the fact,
that there are two fundamentally different ways in which this may happen:
Either the path P taking care of the plus-leaf u© ends at some minus-leaf
v, or it ends at an interior vertex z of S where it comes together with two
other paths starting at plus-leafs, in which case these three excesses 1
cancel to excess 0, since we consider ternary functions. Thus our forest S
contains 2w vertices, half of which have sign +, while the other have sign
—, in such a way that the discrepancy between the number of plus-vertices
and the number of minus-vertices in each component tree of S is a multiple
of 3. Moreover, since the error pattern is unique in view of the assumption
g > 2t + 1, we require the smallest forest with these properties. Hence
we could also decode the circulation code C(G) if we had an efficient al-
gorithm for the following apparently difficult problem from combinatorial
optimization.
Problem 4.5 (“signed Steiner forest”): Let G be a connected digraph
with girth g and consider a set of 2w vertices half of which have sign +,
while the other have sign —. Find a forest S of smallest cardinality such
that the discrepancy between the number of plus-vertices and the number
of minus-vertices in each component tree of S is a multiple of 3.

Problem 4.5 combines features that are on one hand reminiscent of the
Steiner network problem (finding a smallest forest joining up given vertices)
and on the other hand of a variation of bipartite matching (either matching
plus-vertices with minus-vertices, or “killing” vertices with the same sign in
groups of three). To our knowledge, this problem has not been considered
before; this is not surprising, as the divisibility condition involved does
not seem to be a “natural” condition in optimization. We expect Problem
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4.5 to be difficult, since the Steiner network problem is known to be NP-
complete [5] and since the divisibility condition destroys the pure bipartite
matching structure one might hope for. For our purposes, it would of course
be sufficient to solve Problem 4.5 for digraphs which have large girth in
comparison to w, since we have the restriction g > 2w + 1; if necessary, we
could even add the hypothesis that a forest with the required properties
and cardinality at most (g —1)/2 exists. Of course, under these very severe
restrictions, Algorithm 4.2 provides an efficient way of solving Problem 4.5.
Nevertheless, we hope that there is a simpler, more direct optimization
approach to Problem 4.5 at least under the assumption that g > 2w + 1.
Unfortunately, we have not been able up to now to find such an approach.

We finally note that one may also consider g-ary codes associated with
digraphs, as was first noted by Bobrow and Hakimi [2]; we shall use our
techniques to deal with this problem in a forthcoming note [15].
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