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ABSTRACT. The least deviant path was defined by Kloster-
meyer [1] as the path between two vertices u and v that mini-
mizes the difference between the largest and smallest weights on
the path. This paper presents an O(E log E) time algorithm for
this problem in undirected graphs, improving upon the previ-
ously given O(E'"™%) time algorithm. The same algorithm can
also be used to solve the problem in O(VE) time in directed
graphs.

1 Introduction

The least deviant path in a graph was defined by Klostermeyer [1] to be a
path between vertices u and v that minimizes the difference between the
largest edge weight and the smallest edge weight on the path. For example,
if there exists a path (regardless of length) between % and v that has all edge
weights equal, that path has deviation zero and is optimal by definition. An
algorithm was given in [1] that runs in time O(E log E + Em®™3) where m
is the number of distinct edge weights in the graph. In the worst case, this
running time is O(E!3). That algorithm applies to both directed and
undirected graphs and is based on a type of two-dimensional binary search.
In this paper we give an O(Elog E) time algorithm for undirected graphs
that uses a property shown by a simple lemma to prune the search space
and the dynamic tree data structure of Sleator and Tarjan [2]. The same

JCMCC 29 (1999), pp. 33-40



algorithm is also shown to solve the problem in O(VE) time in directed
graphs, using a different data structure.

2 The Algorithm

Let G = (V, E) be the input graph; for now we focus on undirected graphs;
in Section 3 we shall consider directed graphs. Let u be the source vertex
and v the destination vertex. That is, we wish to find the least deviant
path from u to v. The algorithm consists of three phases. In Phase 1, the
edges are sorted in increasing order of weight, which requires O(Elog E)
time in general.

2.1 Queuing Phase

Phase 2 is called the queuing phase. In the queuing phase, edges are pro-
cessed in increasing order of weight. Iteratively, all edges of a given weight
are added to the graph until a path exists from  to v, at which point the
last weight which was added is recorded in a queue, Q. The graph is then
emptied, and the process continues with the next highest edge weight. Let
m denote the number of distinct edge weights. We refer to the ith smallest
distinct edge weight as w[z]. Formally:

Phase 2.
Q@ = empty queue
G' = (V, empty edge set)

best := o0
lo == wfl]
fori:=1tom

add all edges of weight w(i] to G’
if there is a path in G’ from u to v then
enqueue(w(i])
best := min(best, wli] - lo)
let G’ := (V, empty edge set)
lo := wli +1]
end
if G’ contains any edges then enqueue(w[m])

Let us call the edge weights contained in Q the queued weights, except
possibly for w[m] which is called the leftover edge weight if it was enqueued
outside the “for” loop. w[m] is called a queued weight if it was enqueued
inside the “for” loop.

In order to determine whether or not a path exists between » and v at a
given point in time, we use the dynamic tree data structure of Sleator and
Tarjan [2]. This data structure, which is actually a forest of vertex disjoint
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trees, enables add edge, delete edge, and find_component operations to be
done in O(log V) time each. We note that these structures are trees; prior
to the adding of any individual edge, we test if the two end-vertices are
in the same (connected) component of G’ already, and if so, we do not
add the new edge. That is, the vertices in a tree will be those vertices
in a component of G’. We also note that some of the tree operations of
[2] require that a certain vertex either be the root or a non-root vertex.
However, this constraint is easily satisfied, as Sleator and Tarjan provide
an evert(z) operation, done in O(log V) time, that makes vertex z the root
of its tree. Using these operations, it is easy to see that Phase 2 requires
O(Elog V) time, since each edge in E is added and deleted from G’ exactly
one time.

We now prove two lemmas.

Lemma 1. Let the edge weights on a least deviant path from u to v have
weights in the range [a..b]. Then there is at most one queued edge weight
in the range [a..b].

Proof: Let y and 2z be two queued edge weights. Also denote edges of those
weights by ¥ and z. Suppose by way of contradiction that a least deviant
path P contains both y and z weight edges. Without loss of generality,
assume y > z. Then the deviation of P is at least y — z. By definition, in
Phase 2, a path from u to v was formed in G’ causing y to be enqueued
- since the leftover edge weight (if it exists) is not a queued weight. Then
when y was enqueued, the resulting path between u and v had deviation at
most y—t where ¢ was the first edge weight, denoted by lo in the algorithm,
to G’ added since G’ was previously emptied. But it must be that ¢ > z,
hence P cannot be a least deviant path. 0

Lemma 2. Let the edge weights on a least deviant path from u to v have
weights in the range [a..b]. Then there is at least one queued edge weight
or leftover edge weight in the range [a..b].

Proof: Suppose no queued/leftover weights fall in the range of the weights
in a least deviant path P. There must be at least one queued weight in Q if
a path exists in G between u and v. If there exists only one queued/leftover
edge weight in Q, then that weight must be w[m] - in which case it is clear
that any least deviant path must contain w[m]. Now suppose there are at
least two queued/leftover edge weights. Suppose P contains edge weights
in the range [c..d]. Let y be the largest queued weight less than ¢ and 2
the smallest queued/leftover weight greater than d. Let 3/ be the first edge
weight added to G’ after y was enqueued. Then no path was formed in G’
until z was added. Since d < ¢, it must be that P is not a path from u to
v. 0
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2.2 Path Testing Phase

Phase 3 of the algorithm uses the queued/leftover weights from Phase 2 to
build and test paths. Lemmas 1 and 2 allow us to restrict our search for
a least deviant path to paths that contain a queued/leftover weight. The
idea of Phase 3 is to start with an empty graph and add all edges having
weight equal to the current weight, w, where w is an edge weight from Q.
We then add edge weights that are larger than w until a path from » to
v is formed or until the deviation is larger than the best known deviation.
We then remove these “large” weights one at a time (largest first) and add
small edge weights one weight at a time — weights less than w (again, largest
first), comparing the deviation each time with the best known deviation,
provided a uw path exists. Formally:

for each w in Q do
let G’ = (V, empty edge set)
/* denote the index of w’s weight in the sorted order by wfi] */
dev:=10
hi:=1
while (u and v not in same component of G’) and (dev < best) do
add all edges of weight w[hi] to G’
if 2 and v in same component of G then
best := min(best, w[hi] — w)
else hi:= hi+1
end while
/* denote the index of the next lowest weight in @ by Q[prev] and assume
Qlprev] =1 for the first weight in Q */
lo:=1-1
while (w — w[lo] < best) and (lo > Q[prev]) and (hi > i) do (1)
/* Delete the largest edges in G’ until u and v in different components of
GI ‘/
while (u and v in same component of G’) do 2)
remove edges from G’ of weight hi
hi:=ht—1
end while
/* Now add small edges */
add all edges of weight lo to G’
if u and v in same component of G then
best := min(best, w[hi] — w(lo])
else lo:=1lo—1
end while
remove w from Q
end for
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Another way of thinking about Phase 3 that we have a narrow range
surrounding each weight w in Q and look for a least deviant path within
that range. The narrowness of the range is bounded by the deviation of
the best path found so far and the weights of the next highest and lowest
weights in Q.

We need to specify some additional details about when edges are added
and deleted from the dynamic tree structure. The key to the correctness of
the algorithm is ensuring that the acyclic dynamic tree structure correctly
models the components of G’. An obstacle occurs when we add an edge
(z,y) to G’ if  and y are already in the same component of G’ (and hence
the same tree). Recall that w denotes the weight of the current edge from
Q. There are two scenarios. First, if the weight (z,y) > w, we disregard
the edge - it is not added to the dynamic tree structure. Edge (z,y) is
then “marked” so that subsequently, when (z,y) is deleted from G/, no tree
operation is performed. On the other hand, if weight (z,3) < w, we do the
following. In the tree containing z and y, find the largest weight edge that
is an “ancestor” of z or y. That is, the ancestor edge lies on the path from
z (y) to the nearest common ancestor vertex of z and y. Call this edge the
heavy edge. See Figure 1 for an example. This can be done in O(log V)
time by a simple modification of the findcost operation of [2]. Delete the
heavy edge from the tree and add edge (z,y) - this is called replacing an
edge in the tree.

Heavy edge

Tree when (z,y) is added to graph
Figure 1. Replacing a heavy edge

We now need to prove a lemma.

Lemma 3. Vertices z and y are in the same tree if and only if = and Y
are in the same component of G’, for all vertex pairs, z,y.
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Proof: “—” This direction is simple, since we only “link” disjoint trees
when an edge is added to G’ whose endvertices are in different trees. Fur-
thermore, if two vertices become “disconnected” in the graph (lie in different
components), the corresponding edges in the tree must have been deleted
as well, thereby partitioning the tree.

“—» In Phase 3, edges are first added in increasing order of weight; if
an edge induces a cycle in a tree, it is not added to the tree. Once a path
from u to v is found (or the edge weights become too large), edges are
deleted in decreasing order of weight as new edges (those with weight less
than w) are added in decreasing order of weight. Suppose z and y are in
the same component of G, but are not in the same dynamic tree. Assume
without loss of generality that x and y are the first such pair of vertices this
happened to in the course of the algorithm. Therefore we can assume that
z and y were in the same tree, T, at some point, but were later placed in
different trees when an edge(s) was deleted. This partitioning occurs only
if an edge in the path between them in T was deleted. Let (a,b) be this
edge. Thus in G’, there exists a path(s) between z and y not using (a,b).
But from our rules for replacing edges, it must be that at least one edge
on this path(s) is of weight greater than or equal to (a,b), which implies z
and y are not in the same component of G'. o

The correctness of the algorithm follows from the three lemmas, since
we are essentially testing each possible deviation that contains exactly one
edge weight from Q (provided the deviation of the path is not too large)
and since the data structure accurately models G’.

It is easy to see that each edge in G is added/deleted from G’ only a con-
stant number of times, since each edge can be considered during at most
three iterations of the “for each w in Q” loop. In fact, an edge can only be
considered in three iterations if there is a leftover edge weight; otherwise
each edge is considered in at most two iterations. Each edge add/delete
requires at most two find_component operations and two findcost opera-
tions, plus at most one add and at most one delete tree operation. Hence
Phase 3 runs in O(E log V) time, which means the entire algorithm runs in
O(FElog E) time.

3 Directed Graphs

We show how to make the algorithm presented in Section 2 run in O(VE)
time in directed graphs, an improvement over the O(E*-73) algorithm from
[1] for digraphs that are not “sparse.” As above, let u be the source vertex
and v the destination. We use the following simple data structure. As
edges are added in Phase 3 of the algorithm (remember, we start with
queued weight edges and keep adding and deleting edges of certain weights,
checking for a uv path), we maintain a (directed) tree T with w as the root.
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T contains all vertices reachable from u using edges that have been added
during the phase (and not deleted). In addition, the path from u to z in
T will be a path in G. For practical considerations, it is necessary for each
vertex in T to have a pointer to its parent. Whenever v is added to the
tree we proceed to the next step in the algorithm: systematically deleting
edges until v is no longer in the tree. Each vertex z in T also has a value
field that records that largest edge weight on the path from » to z in the
tree.

Some details are now given. When considering an edge (a,b) in Phase 3
of the algorithm, we add it to T if (1) a is in T and b is not in T'; or (2) if
bis in T and value(b) > max(value(a), weight(a,b)). In the latter case, we
disconnect b from its parent in T and connect it as a child of vertex e with
an updated value field. If vertex a is not in T (which can be determined in
O(1) time, by maintaining an extra pointer or bit), we buffer edge (a, b) as
follows: an array FROM[1..V] has pointers to linked lists maintained for
each vertex y in Gj the list for vertex y contains edges of the form (y, z)
and the weight of those edges. Of course, the linked lists only contain edges
that have been “added” so far (and which are not in T'). After edge (a, b) is
added to T, we do the following. Traverse the FROM [b] linked list adding
to T each edge whose weight is within the current range under consideration
by the algorithm, using the rules for adding edges to T given above. Edges
whose weights exceed the current range may be removed permanently from
the linked list. We then do the same for each of b’s neighbors that were
just added to the tree.

When edge (a,b) is deleted by the algorithm we remove b from T and
buffer all edges in the subtree rooted at b; this can be done in O(V) time.
By buffering, we mean insert each “orphan” edge (z,y) to the end of the
appropriate linked list, FROM [z], which can be done in O(1) time for each
edge buffered. In this way it is easy to detect when v is deleted from the
tree. Thus over the life of the algorithm, we spend O(V E) time doing
deletes. In addition, we spend O(E + V') time in total doing edge additions
if we only count the first time any edge is added. But an edge may be
added, deleted and added again many times in the course of considering
a particular queued weight. However, each edge (a,b) can only be added
O(V) times over the life of the algorithm, since vertex a has degree at most
V — 1. Therefore the total cost of adding all edges will be O(V E) over the
life of the algorithm.

Given the simplicity of this data structure, we speculate that it is possible
to find a faster algorithm for the case of directed graphs, perhaps one that
runs in O(E*-5) time.
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CYCLES IN 2-FACTORIZATIONS
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ABSTRACT. For odd v, we determine (apart from cight unresolved cases)
the total number of cycles that may occur in a 2-factorization of K,.

1. INTRODUCTION

Recent papers by Billington and Bryant [1] and by Dejter, Franek,
Mendelsohn and Rosa [4] have addressed questions about counting cycles
in decompositions of the complete graph K,. The former paper establishes
the number of cycles achievable while the latter determines, for v = 1 or 3
(mod 6), the number of triangles achievable in those decompositions which
form a 2-factorization of K,. In this paper we determine, for odd values of
v, the number of cycles achievable in a 2-factorization of X, (apart from
eight unresolved cases). All our results come from direct constructions.

A 2-factor of a graph G is a subgraph of G which contains all the vertices
of G and is regular of degree 2. A 2-factorization of G is a partition of the
edges of G into 2-factors. We use the notation F = {F, F,,.. . Fi} to
denote a 2-factorization F with 2-factors F, Fs, ..., Fy. Clearly, for G to
possess a 2-factorization it must be regular of even degree.

If v is an odd integer then the complete graph K, can be decomposed
(2-factored) into (v — 1)/2 Hamiltonian cycles. When v = 3 (mod 6) there
exists a Kirkman triple system of order v, KTS(v), and such a system
provides an alternative 2-factorization of K, in which each 2-factor is itself
composed entirely of triangles (i.e. cycles of length 3). In the Hamiltonian
case the total number of cycles in the 2-factorization is (v — 1)/2 while in
the Kirkman triple system case the total is v(v — 1)/6.
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It is easy to see that the total number of cycles in a 2-factorization of K,
(v odd) must Lie in the interval I(v) = [(v—1)/2, M,], where M, = 231 |%].
In other words, if C(v) = {c: there exists a 2-factorization of K, with
exactly c cycles} then C(v) C I(v). We refer to C(v) as the cycle spectrum
of v. The purpose of this paper is to prove that for v > 41, C(v) = I(v).
(Throughout this paper an interval [a, b] will be regarded as a set of integers,
so that I(v) only contains integers.) We will also show that for v in the
interval [23,39] there is at most one element of I(¥) which does not lie
in C(v) and that for v € [11,21], C(v) = I(v). We believe that, in fact,
C(v) = I(v) for all v > 11.

Throughout this paper v will denote an odd integer. We deal with
v > 41 using two basic constructions, one of which is design-theoretical and
establishes that the upper part of I(v) lies in C(v). The other construction
is graph-theoretical and establishes that the lower part of I(v) lies in C(v).
For v > 41 the upper and lower parts overlap. For v < 39 we use the two
basic constructions together with a variety of ad-hoc methods.

We now give definitions of the designs used in our basic construction.
If v, X are positive integers and K is a subset of positive integers, then a
(v, K, A)-PBD (Pairwise Balanced Design) is a pair (V,B) where V is a
v-element set and B is a collection of subsets of V, called blocks, with the
following properties:

a) If B € B then |B| € K.
b) Each 2-element subset of V' is contained in precisely A blocks.

In the case when K = {k}, k < v, the design is called a (v,k, A)-BIBD
(Balanced Incomplete Block Design). We will only be concerned with the
case A = 1 in this paper. A KTS(v) is a (v,3,1)-BIBD with the additional
property that the blocks may be partitioned into (v — 1)/2 parallel classes
in such a way that within each class the v/3 blocks are mutually disjoint
(i.e. are parallel). Such a design exists if and only if v = 3 (mod 6).

We will also make use of Group Divisible Designs (GDDs). Suppose
k,s,ay,az, ...,a,,01,92,-..,gs are positive integers with g;,92,...,9, all
distinct, and, to avoid trivial cases, if s = 1 we require a¢; # 1. A k-GDD
of type g1%192%*...9,%" is a triple (V, G, B) where V is a set of cardinality
v = g1a1 +gaa2+- - -+ gsa,, G is a partition of V into a; sets of cardinality
g1, az sets of cardinality g3,...,a, sets of cardinality g, (the groups) and
B is a collection of subsets of V' (the blocks) with the following properties:
a) If B € B then |B| = k.

b) Every 2-element subset of V' is contained in precisely one group or one
block, but not both.

The reader is referred to [2] for further information about PBDs, BIBDs
and GDDs.
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2. THE DESIGN-THEORETIC CONSTRUCTION

A 2-factorization F of K, is said to be a 2*-factorization if there exists
a vertex z of K, which lies in a triangle in each F € F. Put C*(v) = {c:
there exists a 2*-factorization of K, with exactly ¢ cycles}. We refer to
C*(v) as the *-cycle spectrum of v. Clearly, C*(v) C C(v). Also, forv > 7,
a 2*-factorization of K, must contain at least 2-cycles per 2-factor (one of
which is a triangle). Hence C*(v) C [v — 1, M,].

Our construction (the "PBD-construction”) comes from [4]; it is itself
a modification of Wilson’s construction for resolvable designs [8].

Construction 2.1

Suppose (U, B) is a (u, L,1)-PBD, and for each k € L there exists a
2"-factori- zation of K3z41. Then there exists a 2*-factorization of Kay41
on U x {1,2}U {co}. Furthermore, if cg € C*(2|B| + 1) for a block B € B
then Tpes(cs — |B|) + v € C*(2u+ 1).

The proof is given essentially in [4]. We make two observations which
allow us to make slight modifications to the construction. Firstly, if B
contains a single 2-element block {z,y} then the construction cannot be
applied as described because there is no 2*-factorization of Ks. However,
we may omit this block from the construction and subsequently replace
the triangles (coz1z2) and (coy;y;) which are formed in the construction
from the other blocks containing z and y, by the pentagons (coz1z23;y2)
and (cozayaz1y1) which form a 2-factorization of K. We still obtain a
2-factorization of Kj,41, although not a 2*-factorization. Moreover, if
cp € C*(2|B| +1) for a block B € B then ©(cg — |B|) € C(2u+ 1), where
the summation now extends over all blocks B € B apart from the block
{z, 4}

Our second observation is that if By, Bs,..., B; are disjoint blocks of
cardinality k1, ks, . .., ki, respectively, then we may replace 2*-factorizations
of Kax,41 on B; x {1,2} U {oo} by any 2-factorization on the same set and
still obtain a 2-factorization of Kau41. Also, if cg € C*(2|B| + 1) for
B¢ {Bl, By,...,Bi}andcp € C(2|B' + 1) for Be {Bl, Ba,..., B{}, then
we have Zpegp(cp — |B|) +u € C(2u+1).

Both modifications may be made simultaneously provided that the sin-
gle 2-element block is disjoint from By, B,,...,B;. We will apply Con-
struction 2.1 (and the modified versions) to various PBDs. We need the
following results which are established in Section 4 below.
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c*(7) = {6}, C*(9) = {8,9,10,12},
{10,14,15} C C*(11),{12, 23,24} C C*(13)
{14, 34,35} C C*(15), {26,116, 117} C C*(27).

We will make extensive use of (u,{4,13},1)-PBDs which contain pre-
cisely one 13-block. These exist for u = 1 or 4 (mod 12) provided u > 40
[ef. [2), §1.13, p.187]. As is customary, we emphasize the fact that there
is a single 13-block by appending an asterisk *  and thus, we use the no-
tation (u,{4,13"},1)-PBD, and a similar notational device elsewhere. We
also use (u,{4,7*})-PBDs containing a single 7-block; these exist for u =
7 or 10 (mod 12) provided u > 22.

We commence the proofs of our results by examining the residue classes
of v modulo 24 (for sufficiently large v) and applying the PBD-construction.
We present the first case in some detail but leave the reader to check the
details in subsequent cases.

v=24s5+3 (v > 99)

Applying the PBD-construction to a (125 +1,{4,13"},1)-PBD (s > 4)
we can obtain a 2-factorization of Ka4,43 With the total number of cycles
equal to
Zpes(ce — |Bl) + (125 + 1).

The PBD contains (1252 + s — 13) 4-blocks plus the single 13-block.
For each 4-block B, cp can take any of the values in C*(9), so each term
(cB — |B]) can, independently, take the value 4, or 5, or 6, or 8. In the
case of the 13-block the term (cp — |B|) can certainly take the values 13,
or 103, or 104 (other values may be possible but we do not need them for
our purposes). The total number of cycles achievable by the construction
may therefore be any integer in the interval
[4(128% + s — 13) + 13 + (125 + 1), 8(12s% + s — 13) + 104 + (128 + 1)] =
[485% + 165 — 38,96s% + 20s + 1].

Note that M, = 96s2 +20s+ 1; thus the PBD-construction covers (roughly
speaking) the upper half of the interval I(v) in the case v = 24s+3 (s > 4).

v=24s5+9 (v > 81)

A (125 + 4,{4,13"},1)-PBD (s > 3) contains (125 + 7s — 12) 4-blocks
plus the single 13-block. The PBD-construction gives [48s%+40s~—31, 9657+
683 + 12] C C(v), and we note that 96s® + 68s + 12 = M,.

v =24s + 15 (v > 63)
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A (12s + 7,{4,7°},1)-PBD (s > 2) contains (125> + 13s) 4-blocks
plus the single 7-block. Noting that {14,34,35} C C*(15), the PBD-
construction gives [48s% + 64s + 14,965 + 116 + 35] C C(v), and we note
9652 + 1163 + 35 = M,,.

v = 24s 4 21 (v > 45)

A (12s+10,{4,7"},1)-PBD (s > 1) contains (12s* + 19s + 4) 4-blocks
plus the single 7-block. The PBD-construction gives [48s%+88s+33, 9652 +
1645 + 70] C C(v), and we note 96s% + 164s + 70 = M,.

For the next few residue classes of v modulo 24 we delete a point from
the earlier PBDs, selecting that point so that it does not lie in the single
large block. This process enables us to obtain (v, {3,4,13*},1)-PBDs and
(v, {3,4,7*},1)-PBDs.

v=24s+41 (v > 97)

A (12s,{3,4,13°},1)-PBD is formed (s > 4) with 4s 3-blocks, (1257 —
3s—13) 4-blocks and a single 13-block. The PBD-construction gives [483s%+
12s — 39,96s%] C C(v), and note 96s% = M,.

v=2454T (v > 79)

A (125 +3,{3,4,13"},1)-PBD is formed (s > 3) with (45 + 1) 3-blocks,
(125®+35—13) 4-blocks and a single 13-block. The PBD-construction gives
[48s® + 365 — 33,9642 + 485 + 6] C C(v), and note 9652 + 485 + 6 = M, .

v =245+ 138 (v > 61)

A (125 +6,{3,4,7°},1)-PBD is formed (s > 2) with (4s + 2) 3-blocks,
(125® + 95 — 2) 4-blocks and a single 7-block. The PBD-construction gives
[485% + 60s + 11, 963% + 965 + 24] C C(v), and note 9652 + 96s + 24 = M, .

v =245+ 19 (v > 43)

A (125 +9,{3,4,7"},1)-PBD is formed (s > 1) with (4s + 3) 3-blocks,
(1282 + 155 + 1) 4-blocks and a single 7-block. The PBD-construction gives
(485 + 845+ 29, 9652 + 1445+ 54] C C(v), and note 96s% + 1445+ 54 = M,.

The final four residue classes of v modulo 24 are treated by deleting
two points from our earlier PBDs; the two points are selected so that they
do not lie in the single large block. This process enables us to obtain
(u,{2%,3,4,13*},1)-PBDs and (x, {2%, 3,4, 7*},1)-PBDs. We use the mod-
ified PBD-construction which permits the occurrence of a single 2-block.

v=24s5s -1 (v > 95)

45



A (125 — 1,{2",3,4,13"},1)-PBD is formed (s > 4) with one 2-block,
(8s — 2) 3-blocks, (125 — 7s — 12) 4-blocks and one 13-block. The PBD-
construction gives [48s% + 85 — 42,96s? — 205 + 1] C C(v), and note 9632 —
208+ 1= M,.

v=24s+5 (v 2> 77)

A (125+2,{2*,3,4,13*},1)-PBDis formed (s > 3) with one 2-block, 8s
3-blocks, (12s% — s — 13) 4-blocks and one 13-block. The PBD-construction
gives [485%+325— 37,9652 +285+2] C C(v), and note 9652 +28s+2 = M,,.

v = 24s + 11 (v > 59)

A (12s +5,{2%,3,4,7'},1)-PBD is formed (s > 2) with one 2-block,
(8 + 2) 3-blocks, (125 + 5s — 3) 4-blocks and one 7-block. The PBD-
construction gives [483% 4 563 +6,963% + 763+ 15] C C(v), and note 9652 +
768+ 15 = M,.

v =245+ 17 (v > 41)

A (12s + 8,{2%,3,4,7"},1)-PBD is formed (s > 1) with one 2-block,
(8 + 4) 3-blocks, (1252 + 11s — 1) 4-blocks and one 7-block. The PBD-
construction gives [48s? + 80s + 23,9652 + 124s 4 40] C C(v), and note
9652 + 124s + 40 = M,.

The twelve cases treated above deal with the upper part of C(v) for
v > 41 apart from v = 47, 49, 51, 53, 55, 57, 71, 73, and 75. We now deal
with these special cases.

v="T5

Take a 4-GDD of type 68 [cf. [2], §1.27, p.190] and extend every group
by a new point co. Take the existing blocks and the extended groups to
form the blocks of a (37, {4,7},1)-PBD. This design has 90 4-blocks and
six 7-blocks. The PBD-construction gives [439,925] C C(75), and note
Mqg = 925.

v="T3

Take a 4-GDD of type 6% as above and take its blocks and groups to
form the blocks of a (36, {4, 6}, 1)-PBD. This design has 90 4-blocks and six
6-blocks. Noting that {12,23,24} C C*(13), the PBD-construction gives
(432, 864] C C(73), and note M73 = 864.

v="T1
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Take a 4-GDD of type 6° as above and delete a single point. Take
the resulting blocks and groups to form the blocks of a (35, {3, 4, 5%, 6}, 1)-
PBD. The design has ten 3-blocks, 80 4-blocks, one 5-block and five 6-
blocks. Noting that {10,14,15} C C*(11), the PBD-construction gives
[420, 805] C C(71), and we have M, = 805,

v =057

Take a 4-GDD of type 7* (i.e., a transversal design TD(4,7), cf. [2],
§1.27, p.190) and take its blocks and groups as blocks of a (28, {4,7},1)-
PBD. This design has 49 4-blocks and four 7-blocks. The PBD-construction
gives [252,532] C C(57), and we note that Mgy = 532.

v =055

Take a 4-GDD of type 7* as above and delete a single point. Take
the resulting blocks and groups to form the blocks of a (27, {3, 4, 6*, 7}, 1)-
PBD with seven 3-blocks, 42 4-blocks, one 6-block and three 7-blocks. The
PBD-construction gives [243,486] C C(55), and we note that Mgs = 486.

v=>53

Take a 4-GDD of type 7* as above and delete two points from the
same group. Take the resulting blocks and groups as the blocks of a
(26,{3,4,5*,7},1)-PBD with 14 3-blocks, 35 4-blocks, one 5-block and
three 7-blocks. The PBD-construction gives [234,442] C C(53), and we
note M53 = 442,

v =251

Take a 4-GDD of type 3462 [cf. [2], §1.32, p.191] and extend every group
by a new point co. Take the existing blocks and the extended groups as
blocks of a (25,{4,7},1)-PBD with 43 4-blocks and two 7-blocks. The
PBD-construction gives [211,425] C C(51), and we note that My, = 425.

v=49

Take a 4-GDD of type 362 as above, and take its blocks and groups
as the blocks of a (24, {3,4,6},1)-PBD. This design has four 3-blocks, 39
4-blocks and two 6-blocks. The PBD-construction gives [204, 384) C C(49),
and note M49 = 384.

v=47

Take a 4-GDD of type 3*6? as above and delete a point from a group
of cardinality three. Take the resulting blocks and groups as blocks of a
(23,{2%,3,4,6},1)-PBD. This design has one 2-block, ten 3-blocks, 32 4-
blocks and two 6-blocks. The modified PBD-construction (which permits
a single 2-block) gives [193,345] C C(47), and note My7 = 345.

This completes constructions for the upper part of C(v) for v > 41.
The next section develops graph-theoretic methods to deal with the lower
part of C(v).
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3. GRAPH THEORETIC CONSTRUCTIONS

We deal first with the case v = 1 (mod 4); the case v = 3 (mod 4) is
similar but the details are more complex. Both cases rely on the following
2-factorization of Kzy41.

Represent K344 on the vertex set Zz, U {oo} and take Fy to be the

Hamiltonian cycle
(0012u—122u—-23...u+2u—-1u+1lu)
Let F, + i be the Hamiltonian cycle obtained from F, by adding i to each
element of F, with the convention that co + i = oo, and the arithmetic
otherwise being modulo 2u. Then the set F = {F, +i:i=0,...,u—1}
forms a 2-factorization of Kay+1.

Piotrowski [6] observed that when u is even, say, u = 2t, then the graph
formed by the edges of Fy; + 0 and Fy, + ¢ is isomorphic to the graph S;
shown below (Fig.1).

g 1T z 2t=2  2t-1
w W o ® M
0 1 2 2t-2 2t-1
(The two end-vertices are identified.)
Fig.1
A proof of the isomorphism is given in [3]. An obvious consequence is
that for each i = 0, ...,t — 1 the graph formed by the pair of cycles Fy; + 1

and Fy; +1+1 is also isomorphic to S;. Thus K441 can be partitioned into
t copies of S;. To avoid trivialities we assume subsequently that ¢ > 2.

Lemma 8.1. For each k satisfying 1 < k < t, the graph S; can be parti-
tioned into two 2-factors together containing precisely 2k cycles.

Proof. The case k = 1 simply reflects the original pair of Hamilton-
ian cycles. We obtain the result for ¥ > 2 from the partition into the
two 2-factors G and H given below. The first and last cycles of G have
length 4 and 4(¢ — k) + 5, respectively, while those of H have lengths 3 and
4(t — k) + 6. If k = 2, only the first and last cycles are present in both G
and H. If k > 2, the remaining cycles in both G and H are of length 4.
G:(0010)(23271)...(2k—42k—32%k—42E—5)(2k—3 2k —
22k—12k2k+1...2t—12t—-12t-22t—3...2k—12k-2);
H:(001)(2321)...(2k—42k—3 2k—4 2k —5)(2k — 3 2k — 2 2k —
1..26—1o02t—12(—2...2k—-2). O
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Lemma 38.2. For each l satisfying t <1 < 1 there is a 2-factorization of
K441 into 2-factors together containing precisely 21 cycles, and hence
{2t,2t+2,...,2t2} C C(4t +1).

Proof. The result follows immediately by decomposing K441 into £
copies of S; and using Lemma 3.1 to partition each S; independently in an
appropriate manner to achieve the desired value of 21. O

Lemma 8.8. The graph formed by the edges of Fay + 0 and Fz; + 1 can be
partitioned into two 2-factors together containing precisely three cycles.

Proof. The result is obtained by the partition into the two 2-factors:
G: (012)(344—254t-4748—6...20—3204+42t—-124+22t+
1co202t+32t—22t4+52t—4...4—-344—-1);

H: (0col14t—1246—-2441—-46...20—-22t+2202t+12t-12t+
320—32t+5...54t—33). 0

Lemma 8.4. For each 1 satisfyingt < 1 < t® — 2t + 2 there is a 2-
factorization of Ky 4, into 2-factors together containing precisely 21 + 1
cycles, and hence

{2t +1,2t+3,...,2t2 -4t + 5} C C(4t +1).

Proof. We decompose Kypyy into Fap + 0, Fappq, Fay + 1, Fap + (1 4+ )
plus ¢ — 2 copies of S;. We use Lemma 3.4 to partition the graph formed
by F3; + 0 and Fa; + 1 into three cycles, and Lemma 3.1 to partition the
t —2 copies of S; into a total of 2m cycles (m € [t —2,t(t —2)]). The factors
Fa +t and Fa; + (1 + t) are left unaltered. The total number of cycles
in the resulting 2-factorization is 2m + 5, and taking m = | — 2 gives the
result. O

Theorem 3.5. Ift > 2 then [2¢,2t — 4t + 6] C C(4t + 1).

Proof. This follows immediately from Lemmas 3.2 and 3.4. Note also
that if v =4t + 1 then (v—1)/2=2t. O

It is now easy to establish that for v > 41 and v = 1 (mod 4) we have
C(v) = I(v). This is obtained from Theorem 3.5 and the results of Section
2. All that is needed is to check that the upper endpoint (2t2 — 4t + 6)
of the interval in Theorem 3.5 exceeds the lower endpoints of the intervals
established in Section 2. We leave this to the reader and proceed to the
case v = 3 (mod 4).
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When v = 4t + 3 (t > 2) we form the cycle Fy, as before on Z3 U
{o0}. We then remove the edges {i1,i3} and {j1,72} having |i; — i3] =
|71 — ja] = t + 1 (mod 4¢). A Hamiltonian cycle may then be formed
on Z4 U {oo,a,b}, where a,b are two new points, by adding the edges
{{a,41}, {a, i3}, {b, 71}, {b, 72}}. Denote this cycle by Fj,. A different
Hamiltonian cycle, F;, is obtained by instead adding the edges
{{a,i1}, {a, 71}, {b, 32}, {b, j2}}. The following three lemmas are established
in [3].

Lemma 8.6. The 2t Hamilionian cycles {F3,+i:i=0,...,t} and {F,+

i:i=1t+1,...,2t — 1} are pairwise edge-disjoint (arithmetic modulo 4t
with a + i = a for a = 00,a,b).

Lemma 8.7. a) The graph formed by the edges of F3, + 0 and Fj, +1 is
isomorphic to the graph A, shown below (Fig.2);

b) The graph formed by the edges of F3,+1 and F3;+1t+1 is isomorphic to
the graph B, shown below (Fig.2). Consequently, the graph formed by the
edges of Fy, +1i and Fj, +1+1 is also isomorphic to By fori=1,...,1 - 1.

The graph B, (the two end-vertices are identified)
Fig.2
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Lemma 8.8. Ift > 2 then Ky 43 can be partitioned into (t + 1) regular
subgraphs G, Ga,...,Giy1 where Gy is isomorphic to A;, G2,Gs,...,Gt
are all isomorphic to B, and Gy41 is @ 2-regular subgraph containing the
triangle (ooab) together with the cycles induced by the difference t +1 in
Zas.

Lemma 8.9. For each k satisfying 1 < k < 1+ 1, the graph B; can be
partitioned into two 2-factors together containing precisely 2k cycles.

Proof. The case k = 1 simply reflects the original pair of Hamiltonian
cycles, so we now consider k > 2. If t = 2 the following 2-factorizations of
B, generate four and six cycles, respectively:

a) (four cycles)

G : (012150)(23003a);

H : (0000121a)(33b2).

b) (six cycles)

G’ : (0124)(012b)(0c033);
H': (123a)(123b)(90000).

For t > 3 and ¢ odd the following 2-factorization of B; achieves four
cycles:
G":(001...t—2at+17{t—-1t2—-1bt—-21-3...0)(t+1¢t+
21+31+4...2t—22t—-12t—-12t-2...1+4t+31+2);
H":(00123...t—2t—1att+1btt—-11—-2t-31—4...I)(t+
1t+2t+3...2t—1002t—12t—-2...t+2).

When ¢ > 4 and ¢ is even, we may achieve four cycles by replacing the
second cycle of G” by
F+1t+2T+3t+4...201—1 2t—-12t-22t-3...T+4t+31+2),
and the first cycle of H” by
(00123...t—3t-2t—-1fbt+1tat-1t—-2t-3t—4...0).

For t > 3 and t odd, the following 2-factorization of B, achieves six

cycles:
G*:(0012...t—371—-2t—-1%t-3...0)(t—-2t—-1{i—1bt+1ta)(t+
1t4+21+3t4+41+5...28—-12-12t-22{—3...1+2);
H*:(01234...t-3t—-21—-3t—4t-5...0)(¢t~-1tt-1t-2bit+
la)(t+2t+3¢t+4...20—10028—12t—2...2+1).

When ¢ > 4 and ¢ is even, we may achieve six cycles by replacing the
last cycle of G* by
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(t+1t+28+3t4+48+5...20—12t—12t—22t—3...1+2) and the
first cycle of H* by
(01234...1-3t—-2t-3t—-4t-5...0).

For ¢ > 3 the central section of B, (spanning ten vertices) may be
partitioned into the following edge-disjoint pairs of cycles:
C:(t—2t—-1a)tt+1bit—1);

Cy:(t—-21—1b)(ft+1att—1).

The two ”ends” of B; are each isomorphic to the following graph D,

(Fig.3).

) 1 2 Jc+1 2c+2 2c+3 -2
0 1 2 2¢c+l  2c¢c+2 2c+3 -2

Fig.3. The graph D,

For ¢t > 3, D; may be decomposed into two edge-disjoint cycles:

E :(0123...t—-3t—21-3...0);
E;:(00123...t-3t-27—3t—471—5...0) (t odd)
or (000123...t—2t~-3t—-4t—5%—6...0) ( even).

Hence B; may be resolved into two 2-factors comprising firstly Cy, E;
and a copy of E3; and secondly C., E; and a copy of E;. These 2-factors
together contain precisely eight cycles.

If t is odd and ¢t > 5, then for any value of ¢ € [0, ( — 5)/2], D¢ may
be resolved into two sets of edge-disjoint cycles having a combined total of
2¢ + 4 cycles:

Ey(c) : (001)(1232)(3454)...2c—12c2c+1 2¢)(2c+1 2c+
22c+32c+42c+5...t-21-31—-4t-5...2¢+2);

Eac) : (00 010)(2321)(4543)...(2c2c+12c2c—1)(2c+2 2c+
3..1—27-31—4...2cF+1).

(If ¢ = 0 only the first and last cycles are present in each of Ej(c) and
Ez(c).)

Hence, for any pair of values ¢, ¢’ € [0, (¢t—5)/2], B; may be resolved into
two 2-factors comprising firstly Cy, E;(c) and a copy of Ea(c'); and secondly
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C,, E3(c) and a copy of Ej(c'). Furthermore, the collections Ey(c) and
E;(c) may be simultaneously replaced by the cycles E; and E; described
immediately above. We thus obtain 2-factorizations of B, (t odd and ¢ > 5)
having any even number of cycles from 10 to 2¢ + 2 inclusive.

If t is even and ¢ > 6, then for any value of ¢ € [0, (¢t — 6)/2], D; may
be resolved into two sets of edge-disjoint cycles having a combined total of
2¢+4 cycles by taking E(c) as before and replacing the last cycle of Fy(c)
by
(2¢+12+22c+32+42c+5...1—3t-2t—-31—-4t—-5...2c+2)
to form Ej(c).

Hence, for any pair of values ¢,¢’ € [0, (t — 6)/2], B, may be resolved
into two 2-factors comprising firstly Ci, E{(c) and a copy of E3(c’); and
secondly, C3, E3(c) and a copy of Ej(c'). Furthermore, the collections
Ej(c) and E3(c) may be simultaneously replaced by the cycles F, and E;
described above. We thus obtain 2-factorizations of B; (t even and ¢ > 6)
having any even number of cycles from 10 to 2¢ inclusive.

To complete the proof we show that if £ is even and ¢ > 4 then B,
has a 2-factorization with precisely 2t + 2 cycles. This is achieved by the
following two 2-factors:

G* :(000)(1212)(3434)...(t—-3t-2t-3t=-2)(t—-11¢t+
la)f—Ttt+1b)(t+2t+3T+21+3)(t+4t+51+47+5)...(2—
22t-12t-22t-1);
H*:(0101)(2323)...(t—4t-31—-41—3)(t—2t—1ta)f—-21-1%b)
(t+1t42TF 1T+ 2)(t+3t+41+ 31+ 4)...(2t—32t—22 — 32t — 2)(2t~
12t -1 oo).

Lemma 8.10. Ift > 2 then the graph A; can be partitioned into two
2-factors containing a total of three cycles.

Proof. If ¢ is even, the following 2-factorization may be used.
G:(0010123234545..1—4t—-3t—-2at+17t-
1T —2bt—1tt+1t+2t+3t+2T+31+4¢+58441+5...2t—220—1);
H:(t-1ta)(c00012123434...t—3t-21-3t—-2f—-1ibt+1t+
2t+17+2T+3¢+4t+31+41+5¢+6¢+51+6...2{—22¢—12t—1).
[If t = 2, G reduces to (c00a32106123) and H to (12a)(c00012533).]

If t is odd, we may use
G:(00012123433...t—-47—3t—-2at+1{t—17—2bT—1tI+1t+
2T+3T+2t+3t+47T+51F4t+5.. t—12t—1),

H: (t—lta)(00010123234545 1-41—-31—-2t—-31t—
2t—1tbt+1t+2t+1t+2t+3_47t+4t+5t+ t+5t+
6...2t—22t—1).
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Theorem 8.11. Fort > 2, [2t+ 1,2t + 3] C C(4t + 3).

Proof. From Lemmas 3.8, 3.9 and 3.10 we can find 2-factorizations of
t-1

Kaeys (t > 2) containing precisely a + 2Zﬂ; + 7 + 1 cycles, where a =

2 or 3, each B; may be chosen independe;ﬁ;lly in the interval [1,% + 1] and
v¢ is the number of cycles induced by the difference ¢ + 1 in Z4;. Hence
(2t +1+7,22+ 2+ 7] C C(4t+3).

It is easy to see that 4, = 1,2,1,or 4 depending as ¢ = 0, 1, 2, or
3(mod 4). Thus we certainly have [2t + 5,2t2 + 3] C C(4¢ + 3). To deal
with the remaining cases we recall that K43 may be decomposed into the
Hamiltonian cycles {Fas4y + i : 4 =0,...,2t}. This decomposition itself
achieves 2t + 1 cycles.

If t > 3 we see that there are at least three disjoint consecutive pairs

{Fat4+1+1, Fae41+(i+1)}. The graph formed by the edges of the consecutive
pair Fa;41+0 and Fy,41+1 has a 2-factorization into three cycles as follows:
FO:(012)(34t4+144t—-16...204+52t2t+32t+2002t+12t+42—
12t46...5 4t);
Fl:(00014t+124t44t-26...204+42t2t4+22t+12t+32t—-12t+
5...54t—13).
Replacing Fa:41 + 0 and Fyiyq + 1 by FO and F! gives a 2-factorization
with 2t 4 2 cycles. Repeating the process for Fy;qy + 2 and Fypqy + 3 gives
2t + 3 cycles, and a final repetition for Faey1 + 4 and Faeqq + 5 gives 2t + 4
cycles.

For the remaining case of ¢t = 2, note 7;=1. This establishes [2¢+2, 2¢>+
3] C C(4t + 3). The Hamiltonian decomposition completes the proof. [

Noting that if v = 4¢ + 3 then (v — 1)/2 = 2t + 1, it is now easy to
establish that, for v > 43 and v = 3 (mod 4), we have C(v) = I(v). This is
obtained from Theorem 3.11 and the results of Section 2. We again leave
the reader to verify that the upper endpoint (2t? + 3) of the interval in
Theorem 3.11 exceeds the lower endpoints of the intervals established in
Section 2. Combining this with the earlier result for v = 1 (mod 4) we can
now state the following theorem.

Theorem 38.12. Ifv > 41 is odd then C(v) = I(v).
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4. SMALL VALUES OF v

In this section we determine C(v) for all odd v < 39 with the exception
of a small number of values which remain open (at most one undetermined
case for each v). We also establish those values in C*(v) which were needed
in Section 2. Trivially, we have C(3) = {1} and C(5) = {2}.

v=T The decomposition of K7 into Hamiltonian cycles establishes 3 €
C(7). For a proof that 4 € C(7) and 5 ¢ C(7), see Lemma 2.1 of [4].
The 2-factorization generated by F + i (mod 6) for ¢ = 0,1,2 where
F : (0014)(0235) establishes that 6 € C*(7). Thus C(7) = {3,4,6} and
c*(7) = {6}.

v=9 Theorem 3.5 gives {4, 5,6} C C(9). The 2-factorization on Zp:

(123)(058476); (014657382); (078)(152436); (0354)(17268) proves 7 € C(9).
The 2-factorization on ZgU{co} generated by F +i (mod 8) fori =0,1,2,3
where F : (0015)(063427) establishes that 8 € C*(9). The 2-factorization
on Zg:
(018)(235)(467); (027)(143865); (036)(124857); (045)(137826) gives 9 €
C*(9). The 2-factorization on Zp: (078)(123)(456); (036)(147)(258);
(015)(248376); (168)(027534) gives 10 € C*(9). Lemma 2.2 of [4] estab-
lishes 11 ¢ C(9). Finally, the existence of a Kirkman triple system of order
9 yields 12 € C*(9).

Thus C(9) = {4,5,6,7,8,9, 10,12} and C*(9) = {8,9,10,12}.

v=11 Theorem 3.11 establishes [5,11] C C(11). The 2-factorization on
Zs x {0,1} U {0} generated by F + i (mod 5) for i = 0,...,4 where F:
(00007)(1432'1'3'24') establishes 10 € C*(11). [Note: Here and elsewhere
we write z and 2’ for (z, 0) and (=z, 1), respectively, with modular arithmetic
being performed on the first component and oo fixed.] If we replace the
2-factors F + 0 and F + 2 in this 2-factorization by
Fo : (00007)(132'1'4)(23'4"); and
Fy : (0022')(014')(340'3'1")
then we obtain 12 € C(11). Repeating this process for the factors F + 1
and F + 3 (whose union is isomorphic to that of F + 0 and F + 2) gives
14 € C*(11).

Lemma 2.3 of [4] establishes 13 € C(11) (using Gy, G3, Gs, G¥, G§).
Finally, the 2-factorization on Z5 x {0,1} U {co} generated by G + i (mod
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5) for i = 0,...,4 where G : (c000')(141'4')(232'3') proves 15 € C*(11).
Hence C(11) = [5, 15] = I(11) and {10, 14,15} C C*(11).

v=18 Following Theorem 2.5 of [4], consider the 2-factorization Q =
{Q1,... ,Qe} of K13 on Zy3 given by Q; = {zy : d(zy) = i} where d(zy) =
min{|e — y|, 13 — |z — y|}. Let G, be the 4-regular subgraph of K3 with
edge-set {zy : d(xy) = a or b} (so that G, is formed by the edges of Q,
and Q). The graphs G, 3, G3,6, and G4 5 are isomorphic, and, as shown in
[4], each can be independently decomposed into two 2-factors containing a
total of j cycles for each j € {2, 3,4, 5}. Hence [6, 15] C C(13). Our earlier
Lemma 3.2 also gives 16,18 € C(13). The 2-factorization on Z;3 below
gives 17 € C(13):

Fy:(1710)(2 6 11)(4 5 9)(0 3 8 12);
Fy:(1411)(2 3 9)(5 8 10)(0 6 12 7);
F3:(135)(468)(0210121179);
Fy:(0410)(169)(2512)(3 7 8 11);
Fs:(0112911576103428);
Fs:(05631247218910 11).
Replacing Fs and Fg by
F!:(0128)(3412911576 10) and
Fi:(247)(0563121891011)
gives 19 € C(13). Replacing F5 and Fg by
FY:(0128)(567)(34129 11 10) and
FY:(0511)(247)(18910 6 3 12)
gives 21 € C(13).

Lemma 2.4 of [4] gives a 2-factorization Hy', Hy', H3, Hy, Hs, Hg which
proves 20 € C(13). Similarly, H{, Hy, HY, H}, H}, H} establishes 22 €
C(13) while Hy, Hj, Hy, Hy, H}, H} establishes 23 € C*(13). To complete
the case of v = 13 we must prove that 12,24 € C*(13). However, both of
these cases are dealt with by the proof of Lemma 5.1 of [4].

Hence, finally, C(13) = [6, 24] = I(13) and {12, 23, 24} C C*(13).

v=15 From the proof of Theorem 3.11, noting vz = 4, we have [7,24] C
C(15). From the proof of Theorem 4.1 of [4] we obtain
{25, 26,27, 28, 29, 31, 32,33} C C(15). From the factorization No.28 of [5]
we obtain 34 € C*(15) and the existence of a Kirkman triple system of
order 15 establishes 35 € C*(15). The 2-factorization on Z7 x {0,1} U {oo}
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generated by F + ¢ (mod 7) for ¢ = 0,...,6 where
F : (0000')(14'23'6'1'2'45365')
gives 14 € C*(15). All that remains is to prove 30 € C(15). To do this,
take factorization No.11 of [5] which has 32 cycles and replace the first two
lines of its tabulation (which comprise its second and third 2-factors) by
(0 3 6)(2 9 12)(8 11 14)(1 4 7 5 10 13); and
(0 4 9)(2 3 11)(6 10 12)(1 7 14 5 13 8).
Hence, finally, C(15) = [7, 35] = I(15) and {14, 34, 35} C C*(15).

v=17 Lemmas 3.2 and 3.4 above give [8,22] U {24, 26, 28, 30,32} C
C(17). Next consider the 2-factorization of K17 on Z7 x {0,1} U {a, b, c}
given by F +i (mod 7) for ¢ = 0,...,6 where
F : (a00’)(b16')(c45')(1'3'4')(2352'6)
(with the convention that a+i = a for a = @, b, or ¢) and by the additional
2-factor
F : (abc)(02'35'61'24'50'1346").
This 2-factorization gives 37 € C(17). Replacing F + 0 and F by
(200’)(516')(2352'65'c43'4'1’); and
(abc)(02'35'46)(10'54'261'3")
gives 36 € C(17). Similarly replacing F + 0 and F by
(b16')(1'3'4')(0ac45'3262'50'), and
(02'354'21'65'cba0'13'46')
gives 34 € C(17). We may also replace F + 1 and F + 2 by
(820')(c56')(211'3463/04'5'2"), and
(c60")(3'5'6")(a22'4'14503b1").
Isomorphic and independent replacements may also be applied to the pair
F+3 and F +4, and to the pair F+5 and F +6. Thus we may also obtain
33,29,25 € C(17).

Now consider the 2-factorization of K17 on Z7 x {0,1} U {a, b, ¢} given
by G+i(mod 7) fori = 0,...,6 where
G : (a35")(b53')(c66')(0421'0'2'14"),
and by the additional 2-factor
G : (abc)(0123456)(0'3'6'2'5'1'4").
This 2-factorization gives 31 € C(17). Replacing G + 0 and G by
(abc6'3'0'4'1'5'2'1065423), and
(b53')(ac66'2'0'1'214'0435")
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gives 27 € C(17). We may also replace the pair G+ 1,G + 3 by
(a46'b4'6)(c00')(1532'1'3'25"),
(a1'6b16')(c22')(3054'3'5'40")
and then independently replace the pair G + 2,G + 4 in an isomorphic
manner. This gives 23 € C(17).

Next take the 2-factorization of K17 on Z7 x {0,1} U {a, b, ¢} given by
H+i(mod 7) for i=0,...,6 where
H : (a36')(663')(c55')(0101')(242'4"),
and by the additional 2-factor
H : (abc)(0362514)(0'3'6'2'5'1'4").
This 2-factorization gives 38 € C(17). We may replace H + 0 and H by
(663")(c55')(3010'14'242'6"), and
(abc)(04152636'3'0'4'2'5'1"),
This gives 35 € C(17).

The following 2-factorization of K7 shows 39 € C(17):
(X 1237Y)(410 14)(5 8 13)(6 9 15)(7 11 12),
(154 Y)(11 6 13 X)(2 12 14)(3 9 10)(7 8 15),
(6 17Y)(12 3 15 X)(2 8 10)(4 9 13)(5 11 14),
(275 X)(13 3 14 Y)(1 8 9)(4 11 15)(6 10 12),
(21315 Y)(9 7 14 X)(1 10 11)(3 5 6)(4 8 12),
(347 X)(9211Y)(1 12 13)(5 10 15)(6 8 14),
(426 X)(59 12 Y)(1 14 15)(3 8 11)(7 10 13),
(13764)(8 X 10Y)(25 12 15)(9 11 13 14).

To prove 40 € C(17) take the 2-factorization of K17 on Zy6U{oo} given
by I + i (mod 16) for i = 0,...,7 where
I: (o0 08)(131013)(25 9 11)(6 7 12)(4 14 15).
We have now established C(17) = [8,40] = I(17).

v=19 From Theorem 3.11 we have [9, 35] C C(19). Applying the PBD-
construction to the Steiner triple system of order 9 gives 45 € C(19); ap-
plying the modified version in which three disjoint blocks of the system
are used to generate 2-factorizations of K7y which are not necessarily 2*-
factorizations, we also obtain [36,43] C C(19).

Next consider the 2-factorization of Kjp on Zg x {0,1} U {co} given by
F +4 (mod 9) for ¢ =0,...,8 where
F : (00506')(15'2')(204')(346)(71'3') (87'8").
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This 2-factorization gives 54 € C(19). We may replace the pair F+0, F +1
by the pair

(00506')(17'8'0'24'82'5')(36473'1'), and

(00612'4008'87')(26'3')(34571'5')

which gives 48 € C(19). We can also replace the same pair by
(00506')(17'8'82'57)(20'4')(364731'), and
(00612'4'87)(00'8')(26'3)(34571'5")

which gives 50 € C(19). If we apply the penultimate replacement to F +
0, F + 1 and an isomorphic copy of the last replacement to F + 2, F + 3,
we obtain 44 € C(19); if we apply the last replacement to F +0, F+1 and
an isomorphic copy of it to F + 2, F + 3, we obtain 46 € C(19). Still using
the same basic 2-factorization, we may replace the pair F + 0, F + 3 by
(c0506')(15'2'20'4') (346)(71'3')(87'8"),
(c0830')(48'5')(53'7")(670)(12'1'24'¢")

which gives 52 € C(19).

Next consider the 2-factorization of Ko on Zg x {0,1} U {a, b, c} given
by G+ i (mod 8) for i = 0,...,7 where
G : (a2'3)(b3'6)(c06')(124)(4'5'7')(50'71’)
and by the additional 2-factor
G : (abc)(044'0")(155'1')(266'2')(377'3").

This 2-factorization gives 53 € C(19). The pair G + 0,G + 1 may be re-
placed by the pair

(a32'6b3')(c06')(124)(4'5'7')(50'71"),

(a43'61'02')(c17')(235)(5'6'0') (b4'7)

which gives 51 € C(19). We may additionally replace G + 2, G + 3 isomor-
phically to G + 0,G + 1 to obtain 49 € C(19). A further replacement of
G +4,G + 5 gives 47 € C(19). Thus C(19) = [9, 54] = I(19).

v = 21 Lemmas 3.2 and 3.4 give [10, 36] U {38, 40, 42, 44, 46,48, 50} C
C(21). We may apply the PBD-construction to the (10, {3,4},1)-PBD
given in [2] (§4.20, p.216). This has nine 3-blocks and three 4-blocks. Note
also that we may select three mutually disjoint 3-blocks. Applying the
extended PBD-construction gives [40,61]\ {60} C C(21).

Following Theorem 2.5 of [4], consider the 2-factorization Q@ =
{Q1,.-.,Q10} of K31 on Z, given by Q; = {zy : d(zy) = i} where
d(zy) = min(|lz — y|,21 — |z — y|}. Let G, be the 4-regular subgraph
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of K3, with edge-set {zy: d(zy) = a or b} (so that G, is formed by the
edges of Q, and Q;). The graph Gy ; may be resolved into 2-factors either
as
(0 12)(3 4 5)(6 7 8)(9 10 11)(12 13 14)(15 16 17)(18 19 20), and
(020132465798101211131514 161817 19)
or as
(0 12)(3 4 5)(6 7 8)(9 10 11)(12 13 14)(15 16 18 20 19 17), and
(02013246579810121113 1514 16 17 18 19).
The graphs G4 and Gs 10 are isomorphic to G1,2 and may be resolved
similarly and independently. The 2-factors Q3, Qs and Qg each contain
three cycles while Q~ contains seven cycles. Thus we can obtain 7+ 7+ 7+
34+3434+7=37T€C(21)aswellas 8+8+7+3+3+3+7 =39 € C(21).
Lemma 5.2 of [4] establishes {60, 62, 63, 64, 66, 68,69} C C(21) and the
existence of a Kirkman triple system of order 21 establishes 70 € C(21). It
only remains to prove 65,67 € C(21). To deal with these values, take the
last 2-factorization in Lemma 5.2 of [4] (which establishes 69 € C(21)) and
replace the first two 2-factors by
(1241116 5)(3 10 17)(6 9 18)(7 14 21)(8 12 13)(15 19 20),
(1418 11 5 6)(2 8 20)(3 12 16)(7 10 19)(9 13 14)(15 17 21);
we obtain 67 € C(21). If we replace the same pair of 2-factors by
(1241116 5)(3 10 19 20 15 17)(6 9 18)(7 14 21)(8 12 13),
(1418115 6)(7 10 17 21 15 19)(2 8 20)(3 12 16)(9 13 14),
we obtain 65 € C(21). It now follows that C(21) = [10,70] = I(21).
v=23 From the proof of Theorem 3.11, noting 95 = 2, we have
[11,54] C C(23). Starting with the (13,4,1)-BIBD we may delete two points
to obtain an (11, {2*, 3,4}, 1)-PBD having one 2-block, six 3-blocks, and
six 4-blocks. Applying the PBD-construction (allowing a single 2-block)
gives [53,77) \ {76} C C(23), and note Ma3 = 77. Whether 76 € C(23)
remains open.
v=25 From Lemmas 3.2 and 3.4 we obtain [12,54JU
{56,58,60,...,72} C C(25). Starting with the (13,4,1)-BIBD we may
delete one point to obtain a (12,{3,4},1)-PBD having four 3-blocks and
nine 4-blocks. Applying the PBD-construction gives (60, 96])\ {95} C C(25),
and note Mys = 96. Noting that the four 3-blocks are pairwise disjoint
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we may obtain, from the extended PBD-construction, that {55,57,59} C
C(25). Whether 95 € C(25) remains open.

v=27 From Theorem 3.11 we have [13,75] C C(27). Applying the
PBD-construction to the (13,4,1)-BIBD which has 13 4-blocks we obtain
[65,117] \ {116} C C(27) (in fact, 117 € C*(27)), and note M,7 = 117.
The last 2-factorization of K7 given in the proof of Theorem 4.2 of [4]
establishes 116 € C*(27). The 2-factorization of K37 on Z;3 x {0,1}U {0}
given by F + ¢ (mod 13) for i = 0,...,12 where
F:(c000)(185'71169101211'2'3'1'4'12'6'57 48'39'210')
gives 26 € C*(27). Thus C(27) = (13,117] = I(27) and {26,116,117} C
c*(27).

v=29 From Lemmas 3.2 and 3.4 we obtain [14,76]U
{78,80,82,...,98} C C(29). Starting with the (16,4,1)-BIBD, we may
delete two points to obtain a (14, {2%, 3,4}, 1)-PBD with one 2-block, eight
3-blocks and eleven 4-blocks. Applying the PBD-construction (that allows
for a single 2-block) gives [82,126]\ {125} C C(29), and note Mo = 126.
Noting that there are at least four 3-blocks that are mutually disjoint and
disjoint from the 2-block we may use the extended construction to obtain
{77,79,81} C C(29). Whether 125 € C(29) remains open.

v=381 From Theorem 3.11 we have [15,101] C C(31). Starting with
the (16,4,1)-BIBD we may delete one point to obtain a (15, {3, 4},1)-PBD
with five 3-blocks and 15 4-blocks. Applying the PBD-construction gives
[90, 150] \ {149} C C(31), and note Ms; = 150. Whether 149 € C(31)
remains open.

v=383 From Lemma 3.2 we have [16,102] C C(33). Applying the
PBD-con- struction to the (16,4,1)-BIBD which has 20 4-blocks, we ob-
tain [96,176]\ {175} C C(33), and note M3z = 176. Whether 175 € C(33)
remains open.

v=35 From Theorem 3.11 we have [17,131] C C(35). Take the (16,4,1)-
BIBD and add a new point to each of the blocks in a parallel class to form
a (17,{4,5}, 1)-PBD which has 16 4-blocks and four 5-blocks. Applying
the PBD-construction gives [101, 185] C C(35). However, Mgs = 187. To
prove 187 € C(35), consider the 2-factorization of K35 on Z16 x {0, 1}U{oo}
given by F + i (mod 17) for ¢ = 0,...,16 where
F: (00 00')(171514)(3 510 13)(1’ 6' 12)(2' 8' 9)(3' 10’ 6)(4’ 12' 16)(5' T’ 4)
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(9' 13’ 11)(11' 14’ 2)(15’ 16’ 8).
Whether 186 € C(35) remains open.

v=87 From Lemma 3.2 we have [18,132] C C(37). Take a 4-GDD of
type 5% [cf. [2], §1.32, p.191) and delete two points from a single group. Take
the resulting blocks and groups to form the blocks of an (18,{3,4,5},1)-
PBD having eleven 3-blocks, 15 4-blocks and three 5-blocks, and apply
the PBD-construction. This gives [126,201] C C(37). However, M3y =
216. To deal with the outstanding values (except 215) we apply a frame
construction.

Take a 3-frame of type 6%, i.e. a 3-GDD of type 6° with the following
properties:
a) the blocks can be partitioned into partial parallel classes each containing
ten triples (and hence 30 points),
b) the 18 partial parallel classes can be partitioned into six sets each con-
taining three partial parallel classes so that, within each set, the blocks are
disjoint from precisely one of the six groups of the GDD.
Such an object exists [cf. [2], §6.13, p.225 and [7]]. Now take a new point,
say oo, and for each of the groups G; (i = 1,...,6) form a 2-factorizxation
of Ky on G;U{oo}. Put the three 2-factors of K7 corresponding to G; with
the three partial parallel classes which are disjoint from G; to form three
2-factors of K37. The resulting 18 2-factors of K37 form a 2-factorization
of K37. Moreover, the six 2-factorizations of K7 may be chosen (indepen-
dently) to have three, four or six cycles, while each partial parallel class,
having ten triples, generates ten cycles. Thus the 2-factorization of K37
may be selected to have 180 4+ 3a + 4b + 6¢ cycles for any nonnegative in-
tegers a, b, ¢ satisfying a + b+ ¢ = 6. This gives [198, 216]\ {215} C C(37).
Whether 215 € C(37) remains open.

v=39 From Theorem 3.11 we have [19,165] C C(39). Take a 4-GDD
of type 5% and delete a point. Take the resulting blocks and groups to form
the blocks of a (19, {3,4, 5}, 1)-PBD having five 3-blocks, 21 4-blocks and
three 5-blocks. Applying the PBD-construction gives [133,232] C C(39).
However, M3g = 247.

To deal with the outstanding values (except 246), take the 3-frame of
type 6® previously described. Take three new points, say, a,b,c, and for
each group G; form a 2-factorization of Ky on G; U {a,b,c} which contains
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the triangle (abc). Leaving aside for a moment the 2-factor which contains
(abc), put the remaining three 2-factors of Ky corresponding to G; with the
three partial parallel classes which are disjoint from G;, thereby forming
three 2-factors of Kj9. Repeating this for ¢ = 1,...,6 gives 18 2-factors
of K3g. These may be completed to a 2-factorization of K39 by taking
an additional 2-factor formed by those 2-factors of G; U {a,b,c} which
contained the triangle (abc).

The six 2-factorizations of Ky may be chosen independently. A 2-
factorization of Kg whose 2-factors contain respectively »,,n2, n3, n4 cycles
will be said to be of type {ni,n3,ns, n4}. For a 2-factorization containing
a distinguished triangle (abc) we will identify the 2-factor containing (abc)
by partitioning the appropriate n; thus: {«,8,+,6 + 1}. For our purposes
it will suffice to observe that there are 2-factorizations of Ky (containing a
distinguished triangle) of types
a) {3,3,3,2+ 1}

b) {3,3,2,1+ 1}, and
c) {3,2,2,1+1}.
(For verification, see Lemma 2.2 of [4] and our investigation of C(9) above.)

The partial parallel classes of the frame generate a total of 180 cycles.
The total number of cycles in the 2-factorization of K3 may be selected
to be any number of the form 180 + 8d + 9e + 11f + 1, where d, e, f are
nonnegative integers satisfying d + e + f = 6. It follows that [229, 247] \
{246} C C(39). Whether 246 € C(39) remains open.

5. CONCLUSION

The results of the previous sections may be summarized in the following
theorem.

Theorem 5.1. For v > 11, C(v) = I(v), apart from eight possible ezcep-
tions listed below.

The eight values which remain in doubt are all of the form M, — 1 and
are given in the table below.

v 23 25 29 31 33 35 37 39
M,—1 76 95 125 149 175 186 215 246
Values outstanding

It is our belief that, in fact, C(v) = I(v) for all v > 11.
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