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ABSTRACT. A symmetric design (U, A) is a strong subdesign of
a symmetric design (V,B) if U C V and A is the set of non-
empty intersections BNU, where B € B. We demonstrate three
constructions of symmetric designs, where this notion is useful,
and produce two new infinite families of symmetric designs with
parameters v = (73™*! — 64)/9, k = 73™, A = 9-73™"! and
v=1+2(+1)((g+1)" ~ 1)/(g+2), k= (g + 1>, A =
(g+1)*™"1(g+2)/2, where m is a positive integer and g = 2P -1
is & Mersenne prime. The main tools in these constructions
are generalized Hadamard matrices and balanced generalized
weighing matrices.

1 Introduction

The CRC Handbook of Combinatorial Designs, the most comprehensive
source of information on combinatorial designs, combines all known sym-
metric designs in twelve infinite families and several sporadic designs [5,
1.5.6]. One more infinite family has been discovered by Fanning [9]. Pa-
rameters k and A in Families 10 and 11 from [5] and the family of de-
signs complementary to Fanning’s are, respectively, g™ and ¢™~!, ¢™ and
¢™ (g —1)/2, 16™ and 10-16™"!, where m is a positive integer and q is
a prime power. One of the goals of this paper is to show that these fami-
lies share the following property: every but the first design in each family
contains a multiple of a smaller symmetric design from the same family.
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Symmetric designs containing smaller symmetric designs were considered
by Haemers and M. Shrikhande [10], Baartmans and M. Shrikhande [1],
and Jungnickel [13]. They defined a symmetric design (U, A) to be a sub-
design of a symmetric design (V,B) if U C V and there is By C B such
that A = {BNU: B € Byp}. In this paper we will need a more restrictive
notion. We will call a symmetric design (U,.A) a strong subdesign of a
symmetric design (V,B) if U C V and A is the set of non-empty intersec-
tions BN U, where B € B. It is easy to show (Proposition 2.5) that if a
symmetric 2-(v/, k’, \') design has a strong symmetric 2-(v, k, A) subdesign
with v > 1, then there is a positive integer q such that k' = gk and X’ = g\.
Another necessary condition is that k must divide g\ (Corollary 2.8). If
(U, A) is a strong symmetric subdesign of a symmetric design (V, B), then
the structure induced by the larger design on the point-set V'\ U represents
an affine resolvable pairwise balanced design (ARPBD). These designs were
analyzed by Ionin and M. Shrikhande in [11] and by Bekker, Ionin and M.
Shrikhande in [2].

The notions of strong symmetric subdesigns and ARPBDs lead to the
following strategy for constructing symmetric designs. If we suspect that a
given symmetric design is a strong subdesign of a larger symmetric design,
we try to construct a respective ARPBD that when combined with the
given design produces the larger symmetric design. The main tools in con-
structing these ARPBDs are generalized Hadamard matrices and balanced
generalized weighing matrices. Definitions and necessary existence results
for these matrices are given in Section 2.

In Sections 3 and 4, we show that each design in Families 10 and 11 from
[5, 1.5.6] is indeed a strong subdesign of the next design from the same
family. Also in Section 3, we use a generalized Hadamard matrix GH(73, 8)
found by de Launey and Dawson [7] to obtain a new family of symmetric
designs with parameters v = (73™+! — 64)/9, k = 73™, and A = 9-73™~L,

In Section 5, we generalize an idea from Fanning [9] to discover another
new family of symmetric designs with parameters v = 1+ 2(q + 1)((q +
1)2™+2 —1)/(g+2), k = (¢+1)>™*2, and A = (g+1)*>™+!(g+2)/2, where
¢ =2P — 1 is a Mersenne prime.

2 Preliminaries

For basic properties of balanced incomplete block-designs (BIBD) see [3] or
[5]-

Definition 2.1 A symmetric design € = (U, A) is said to be a strong
subdesign of a symmetric design ® = (V,B) if U C V and A= {Bn
U:B e Band BNU # 0}. We will write (v,k,\) C (v, k', \') if there
ezists a symmeiric 2-(v', k', X') design having a strong symmetric 2-(v, k, X)
subdesign.
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Example 2.2 Clearly, (1,1,u) C (v,k, ) for any symmetric 2-(v,k, \)
design. Note that p does not have to be an integer.

Example 2.3 It follows from the standard procedure of doubling Hadamard
matrices that (4n — 1,2n,n) C (8n — 1,4n,2n) whenever there exists a
Hadamard matriz of order 4n.

Example 2.4 PG(n,q)¢ C PG(n + 1,q)°, where the superscript ¢ stands
for the complement.

Proposition 2.5 and Corollary 2.8 give necessary conditions for the param-
eters of a symmetric design and its non-trivial strong symmetric subdesign.

Proposition 2.5 If (v,k,A) C (v,K,X’) and v > 1, then there ezists a
positive integer q such that k' = gk and X' = gA.

Proof: Let ¢ = (U, A) be a strong symmetric 2-(v,k,A) subdesign of
a symmetric 2-(v/, k', X') design © = (V,B) and let A* be the multiset
{BNU: Be€Band BNU # 0}. Then ¢* = (U, A*) is a quasi-symmetric
2-(v,k, X’) design with replication number k' and intersection numbers k
and A. Therefore €* is a multiple of € and there exists a positive integer ¢
such that ¥’ = gk and X' = gA. (u]

If € = (U, A) is a strong symmetric subdesign of a symmetric design
D = (V, B), then the incidence structure induced by © on the set V \ U
represents an affine resolvable pairwise balanced design [11].

Definition 2.6 Let A\ be a posilive integer. An affine resolvable pairwise
balanced design (ARPBD) of indez X is a triple P = (X,C, R), where X is
a non-empty finite set (of points), C is a collection of subsets of X (blocks),
and R is a partition of C (resolution), satisfying the following conditions:

(i) any two points occur together in exactly A blocks;

(ii) for any resolution class R, there is a positive integer a(R) (the repli-
cation number of R) such that every point occurs in ezactly a(R) blocks
Jrom R;

(iii) the cardinality of each block and the cardinality of the intersection
of two distinct blocks depend only on their respective resolution classes.

As shown in [11, Theorems 2.2 and 2.3], condition (iii) can be replaced
by the equality |B| = |X|+ |R| - 1.

The proofs of the following two propositions are modifications of proofs
given in [2, Theorems 2.1 and 2.2].
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Proposition 2.7 For positive integers v > 1 and q¢ > 1, if (v,k,)) C
(v, gk, g)), then there exists an ARPBD of index g\ whose resolution con-
sists of v classes of cardinality q and replication number g\/k and one
class of cardinality v' — qu and replication number q — g\/k.

Proof: Suppose there exists a strong symmetric 2-(v, k, A) subdesign € =
(U, A) of a symmetric 2-(v', gk, g)) design ® = (V,B). Let X = V\ U.
If By and B, are distinct blocks from B, then B; N X # By N X, since
otherwise we would have had |[BiNX|=(g—1)\, (¢g—1)A+k =gk, k= A

Let C = {B N X: B € B}. Define partition R of C by declaring B; N X
and B, N X (By, B2 € B) equivalent if and only if By NU = By NU, so
R = {Ry,..., Ry, Ry41}, where |R;| = q for i = 1,...,v. Clearly, (X,C,R)
is a pairwise balanced design of index g\ with the cardinality of each block
and the cardinality of the intersection of two distinct blocks depending only
on their respective classes. Forz € X and ¢ = 1,...,v,v+1, let a;(z) be the
number of blocks from R; that contain z. Fixing ¢ € {1, ...,v} and counting
pairs (z, A), where A € R; and z € AN X, we obtain:

D ai(z) = q(g - k. (1)
z€X

Fixing ¢« € {1,...,v} and counting triples (z, A, B), where A4, B € R;,
A # B, and z € AN BN X, we obtain:

)" ci(z)(eulz) — 1) = g(g — 1)(gh — k). @)
z€X
Eqgs. (1) and (2) imply:
3 (@i())? = ¢*(g - D 3)
zeX

Fixing 4,7 € {1, ..., v}, i # j and counting triples (z, A, B), where A € R;,
B € Rj, and z € AN BN X, we obtain:

Y ai@)aj(z) = ¢*(g— DA (4)

zeX
Egs. (3) and (4) imply
> (eil@) — a5(2))* =0,
zeX

so a;(z) = a(z) is the same for i = 1,...,v. Let z € X and y € U. Since
z and y occur together in g\ blocks from B and y occurs in k blocks from
A, we have ka(z) = g), so a(z) = g\/k does not depend on z € X.
From va(z) + ay+1(z) = gk and (v — 1)A = k(k — 1), we derive that
avi1(z) = g — g /k. O
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Corollary 2.8 If (v,k,\) C (v/,qk,q)), v > 1, and g > 1, then k divides
qi.

Proposition 2.9 For positive integers v > 1 and q > 1, if there exists a
symmetric 2-(v, k,\) design and an ARPBD of index g\ whose resolution
consists of v classes of cardinality q and replication number g\/k and one
class of replication number q — g)\/k, then (v,k,\) C (v',qk,q)), where
v =1+k(gk—-1)/\.

Proof: Let (X,C,R) be an ARPBD satisfying the condition of the proposi-
tion and (U, A) be a symmetric 2-(v, k, A) design. We assume that XNU =
0. Let R = {Ry,..., Ry, Ry41}, where |R;j] = q for ¢ = 1,..,v, and
A= {A,..., Ay}. For any B € C, define

g [BUA fBER;, i=1,..,v,
B if B € Ryy1.

Put V= XUU and B = {B*: B € C}. We claim that (V,B) is a
symmetric 2-(v’, gk, ¢)) design. Indeed, |B| = |C| = | X|+|R]-1= |X|4+v =
[V]. If z € X, then z occurs in % (v — 1) + ¢ = gk blocks from B, the same
is true for y € U. Clearly, any two distinct points from X as well as any
two distinct points from U occur together in gA blocks from B; if z € X
and y € U, then z and y occur together in k(g\)/k = g blocks from B. O

In this paper we will consider three different constructions of symmetric
designs from their strong symmetric subdesigns. The main tools in these
constructions will be generalized Hadamard matrices and balanced gener-
alized weighing matrices.

Definition 2.10 A generalized Hadamard matrix GH(q,s) over a group
G of order q is a matrit H = [hij] of order qs with entries from G such
that for any two distinct rows ¢ and 1, the multiset

{h‘_jlh,-j: 1<j<gs}
contains s copies of every element of G.

Remark 2.11 If q is a prime power and G is the additive group of the field
GHK(q), then the following generalized Hadamard matrices GH(g, s) over G
are known to ezist (the list is not complete):

(i) GH(q,1) [8]; (i) GH(q,2) for odd q [12]; (i) GH(q,4) for odd q
[6];(4i) GH(q,q — 1) if ¢ — 1 is also a prime power [15]; (iv) GH(q,8) if
q > 19 i3 a prime [7].

It is also known [16] that if GH(q, s) and GH(q,t) over a group G exist,
then there exists a GH(q,qst) over G.
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Definition 2.12 A balanced generalized weighing matrix BGW(v, k, )
over a finite group G is a matriz W = [w;;] of order v with entries from the
set GU{0} (we assume that 0 & G) such that (i) each row and each column
of W contain ezactly k non-zero entries and (ii) for any two distinct rows
i and 1, the multiset

{wg'wij: 1< < v,wi5 #0,wy5 # 0}
contains ezxactly A\/|G| copies of every element of G.

Remark 2.13 Replacing every non-zero entry in a BGW(v,k, ) by 1 pro-
duces the incidence matriz of a symmetric 2-(v, k, X) design. It is known [5,
1V.4.4] (see also Lemma 5.9 and Remark 5.10 below) that a BGW(v, k, \)
over G ezists forv = (g™t =1)/(¢g-1), k =¢™, A=q" " (g—1), and
G = Z, where g is a prime power, m 18 a positive integer, and t is a divisor
of g —1.

Remark 2.14 (Notations) In subsequent constructions we will employ
the following notations.

(i) If 7 is a permutation of rows or columns of a matriz M, then =M
18 the resulling matriz.

(ii) If P = [mi;] is a generalized Hadamard matriz or a balanced gener-
alized weighing matriz over a group of permutations of rows or columns of
a matriz M, then P ® M is the matriz obtained by replacing each m; in
P by a block mi;M (if mij =0, then mijM is the zero matriz of the same
size as M ).

(iii) For any m by n matriz M and for any positive integer t, t x M de-
notes a tm by n matriz obtained by replicating each row of M consecutively
t timesand M xt=(t x MT)T.

(iv) We will use j and O for the all-one and all-zero row and/or column
vectors as well as J and O for the all-one and all-zero matrices. The sizes
of these vectors and matrices will be clear from the contexzt. We will use
(:y+) for the inner product of two rows or columns of the same size.

3 Construction 1
The following theorem is due to Rajkundlia [14, Construction 3.7].
Theorem 3.1 Let q and A be posilive integers, A = 1 (mod q). If there

exist symmetric 2-(gA + 1, A\, 2=1) and 2-(¢*A + ¢+ 1,gA + 1,)) designs
and generalized Hadamard matrices GH(g\ +1,1) and GH(g\+ 1, q) over
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a group G, then for any positive inleger m,
((qA+ )™l —gA -1

5 +1,(gA+1)™, Mg+ 1)"‘—1)
m+2 _ o\ —1
C ((q“' 1) 3 g +1,(gr+ 1)'”+1,A(qA+1)’").

We will consider two applications of this theorem.

If A =1 and ¢ is a prime power, then the required symmetric designs
are PG(1,q) and PG(2,q). If ¢+ 1 is also a prime power, then matrices
GH(g + 1,1) and GH(q + 1, q) over the additive group of GF(q + 1) exist,
and Theorem 3.1 yields Family 10 from [5, 1.5.6.].

Theorem 3.2 If q and g+1 are prime powers, then for any positive integer
m there exists a symmetric 2-((g+1)™*! —q, (g+1)™, (g+1)™"1) design.

If A = 9 and ¢ = 8, then the symmetric designs required by Theorem
3.1 are PG(2,8) and PG(3,8). Since there exist matrices GH(73,1) and
GH(73,8) [7, Theorem 1.2] over the additive group of GF(73), we obtain
another family of symmetric designs.

Theorem 3.3 For any posilive inleger m, there exists a symmelric
2-((73™+! — 64)/9,73™,9 - 73™~1) design.

Remark 3.4 These designs are new except m = 1, when we obtain a pro-
Jjective geometry PG(3, 8).

4 Construction 2

The following theorem modifies Brouwer’s construction of a family of sym-
metric designs [4].

Theorem 4.1 Suppose that (vo, k, A) C (v1,gk, g)), where g > 1 i3 a posi-
live integer and (q—1)k = 2q\. Suppose further that there exists a general-
ized Hadamard matriz GH(q,1) and a balanced generalized weighing matriz
BGW(q+1, q,q—1) over the group of order 2. Then, for any positive integer
m,

('Um_l, qm_lkv qm—lA) c (‘Um, qut qm)\),

where vy, = 1+ k(g™k — 1)/
Proof: It suffices to show that (v1, gk,gA) C (v2,¢%k,q%)). Let Do be a

strong symmetric 2-(vp, k, A) subdesign of a symmetric 2-(v,, gk, gA) design
D;. Using (g — 1)k = 2¢), we obtain that vo = 1 + 2¢(k — 1)/(q — 1),
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v1 = quo +q+1, and vy = ¢q%v + (¢ + 1)2. By Proposition 2.7, there
exists an affine resolvable pairwise balanced design B of index g\ having
resolution classes R;, 1 < i < v of cardinality q and replication number
9—5—1 and resolution class R, of cardinality ¢ 4+ 1 and replication number
1-11. Let V = {1,...,d}, d = v; — vy be the point set of this ARPBD. Let
E;, 1 < i < vg be the blocks vs. points incidence matrix of R; and E., be
the blocks vs. points incidence matrix of R, so E; is a q by d matrix and
E is a ¢+ 1 by d matrix.

Let H be a generalized Hadamard matrix GH(q, 1) over a group Q of
order g. We assume that Q acts as a regular group of permutations on the
set of rows of each matrix E;, 1 < i < v, so g2 by qd matrices H ® E; are
defined.

Let W = [w;;] be a balanced generalized weighing matrix BGW(q +
1,9, — 1) over a group G of order 2. We will assume that the diagonal
entries of W are equal to 0 and the off-diagonal entries in the last row
and column are equal to the neutral element of G. If w is the non-neutral
element of G, we define wEy = J — Eo. For 1 <1 < g+1, form q by
qd matrix T; whose consecutive rows are the Ith rows of the block-matrices
[‘wllEoo wlquo], [meoo 'wquoo], e [’waEoo wquoo].
Finally, define a ¢ + 1 by gd matrix Too = [Eeo  Eoo ... Es)-

Arrange matrices H® Ey, ... , HQ E,,, Ty, ... , Te+1, Too consecutively
to obtain a v, by ¢d matrix P and divide all but the last g + 1 rows of P
into groups of q consecutive rows each. Since v; = quo + g+ 1, we assign a
row of the incidence matrix of ®; to each of these groups so that distinct
rows are assigned to distinct groups and then adjoin the assigned row to
every row in the group. Adjoining 0 to each of the last ¢ + 1 rows of P,
we obtain a square matrix of order vy = qd + v;. It is readily verified that
this is the incidence matrix of a symmetric 2-(v, g%k, g2\) design which
therefore contains D, as a strong subdesign. O

The only current application of this theorem is the following. For odd
prime power g, we have (1,1, 9%) C (2¢9+1,q, 9;—1), and there exist ma-
trices GH(g, 1) over the additive group of GF(g) and BGW(q+1,q,q — 1)
over the group of order 2, so we obtain Family 11 from (5, 1.5.6.].

Theorem 4.2 For any odd prime power q and positive integer m,

m m=1(, _
(20(41 1) +1,4m 2 (g 1))
q-1 2

2¢(¢q™*! 1) m1 97 (g—1)
C ( g—1 +1,q77, 2 .
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5 Construction 3

In this section we will construct a new family of symmetric designs that
includes Fanning’s family [9]. The construction will be based on three
lemmas, two of them showing how generalized Hadamard matrices and
generalized balanced weighing matrices can be used for construction of
infinite series of quasi-derived and quasi-residual designs. First we recall
several definitions from design theory.

Definition 5.1 A 2-(v,k, \) design is called quasi-derived if A =k — 1.

Definition 5.2 A 2-(v, k, ) design is called quasi-residual if k+ A =r,
where r is the replication number of the design.

Definition 5.3 A 2-(v, k, ) design is called c-resolvable if there exists a
partition of its block-set (c-resolution) such that every point is replicated
ezactly o times in the blocks of each resolution class.

Remark 5.4 Of course, any 2-(v, k, ) design has a lrivial r-resolution,
where 7 is the replication number of the design.

Lemma 5.5 Let A be the points vs. blocks incidence matriz of a 2-(v, k, )
design (k > 1) with replication number r. For m = 1,2,..., let H,, be a
generalized Hadamard matriz GH(v,v™ ') over a regular group of permu-
tations of rows of A. Put Ap = A and define inductively for m > 1
block-matrices Ay = [Hn ® A v X Am_1). Then Ay, is the points vs.
blocks incidence matriz of an r-resolvable 2-(v™t! v™k, \,,) design, where

Am =A@™k-1)/(k-1).

Proof: The statement is true for m = 0, so let m > 1 and A,,—; be
the incidence matrix of an r-resolvable 2-(v™,v™ 1k, \,,_;) design. The
replication number of this design is r,,—1 = A(v™ —1)/(k —1). Clearly, the
column sum of A,, is v™k. Let s = v™ and let ayj, ...,a14; ... ; @51, ---) Asw
be the consecutive rows of Ap,. If 5 # [, then (a;j, au) = v A+rm_1 = Am;
if 2 # A, then (a,'j, ah,) = 'v'"‘l'ro + (’Um - 'Um_l)A +Am-1 = Am.

Dividing the columns of A,, into groups of b consecutive columns each,
where b is the number of columns of A, we obtain an r-resolution. O

Remark 5.6 If the above matriz A is the incidence matriz of a quasi-
derived design, then A,, s also the incidence matriz of a quasi-derived

design.

Lemma 5.7 Let B be the points vs. blocks incidence matriz of a 2-(v, k, \)
design. Suppose that this design has an a-resolution consisting of t classes
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of cardinality s. Let o be a cyclic permutation of order s that acts on
each of these classes and let G be the cyclic group generated by o. Finally,
let W be a balanced generalized weighing matriz BGW(w, 1, u) over G. If
pta? = sAl, then W ® B is the incidence matriz of a 2-(vw, kl, \l) design.

Proof: Clearly, the column sum of W® B is equal to kl. The rows of W® B
are naturally divided into w groups of v consecutive rows each. If x and
y are distinct rows from the same group, then (x,y) = M. Consider two
different groups of rows. Omitting the columns of zero matrices in these
groups, we obtain a block-matrix

mB weB ... wa]
pB ;B - puB|’

where m;, p; € G. We can permute the columns of this matrix to obtain
piimB pylmB ... pplm,B
B B es B )

where the upper row of matrices contains y/s copies of B for each 7 € G.
If x is a row from the upper group and y is a row from the lower group,
then there exist rows b and ¢ in B such that

a?
®y) =£ 3 mb,0) = £(F wb,0) = E(aj ) = "t =L

1r€Cv' TE€EG
a

Remark 5.8 If the above matrit B is the incidence matriz of a quasi-
residual design, then so is W ® B.

For the subsequent construction, we will need balanced generalized weigh-
ing matrices of specific format that is provided by the next lemma.

Lemma 5.9 Let q be a prime power and GF(q) = {a1,ay,...,aq}. Let S
be a q by q matriz with entries from GF(q) and (i,7)-entry equal a; —
aj, ,7 = 1,2,...,q. For m = 1,2,..., let H,, be a generalized Hadamard
matric GH(q,q™ 1) over a regular group of permutations of rows of S. Let
matrices S, and Wy, m =0,1,2, ... be defined inductively by

B [Hn®3
So=5 Sm=7 "q
and
REAR | Sm | g x Wpy
Wo—-j oF W = 3 0

Then Wp, is a balanced generalized weighing matrit BGW(qg™! 4 ¢™ +
ot g+1,4™1, g™ (g — 1)) over GF(q)*.
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Proof: For any rows x = (21, ...,Zn) and y = (¥1, ..., yn) With entries from
GF(q), we will denote by y~'x the multiset {y; 'z;: 1 <j <n,z; #0,y; #
0}. The rows of Sy, are naturally divided into groups of g consecutive rows.
Note that the multiset

{(ax —a;)"a;s —a;): 1< j < g,0; — a; #0,a — a5 # 0}

contains each non-neutral element of GF(q)* once. From this, it follows
by induction on m that the if x and y are distinct rows of Sy, from the
same group, then y~!x consists of g™ copies of each non-neutral element
of GF(q)*, and if x and y are rows of Sy, from different groups, then y~!x
consists of g™~1(g—1) copies of every element of GF(g)*. Another induction
on m implies now that W,, is a BGW(¢™*!+¢™+...4+q+1,¢™ %!, g™ (g—1))
over GF(g)*. O

Remark 5.10 If G is a cyclic group of order t, where t divides q — 1,
then G can be considered as a factor-group of GF(q)*. Applying the canon-
ical homomorphism from GF{(q)* to G to each entry of matrices Wy, con-
structed in the above lemma, we obtain balanced generalized matrices of the
same format over G.

We can now introduce Construction 3.

Theorem 5.11 Let g = 2P — 1 be a prime. For any positive integer m,

2(g+1)((g+1)* 1) m (g+1)*"(¢+2)
( porn +1,(g+1)*", 5 )
2m+2 _ 2m+1
c (2(¢I+1)((‘L':—12) 1) +1, (g + 1)2m+2, (g+1) 2+ (Q+2))'

Proof: Let X be the incidence matrix of a symmetric 2-(g, -‘1;—1, 9;—3) de-
sign. Let Y = [)‘,{], E=[X X),and F=[Y J-Y]. Then E is the

points vs. blocks incidence matrix of a quasi-derived 2 — (g, 3—;—1, 9-;—3) de-
sign with replication number q — 1 and F is the points vs. blocks incidence
matrix of a quasi-residual 1-resolvable 2 — (g + 1, 4%, 451) design whose
resolution consists of g classes of cardinality 2. Let H; be a generalized
Hadamard matrix GH(g, 1) over a group Q of order q. We will consider Q
as a regular group of permutations of the rows of F and apply Lemma 5.5
to obtain the incidence matrix By = [H1 ® E ¢ x E] of a quasi-derived
2-(¢?, 49 96-1) _ 1) design. Since E = [X X], this design is (232)-
resolvable.

Let W be a balanced generalized weighing matrix BGW(¢+1, ¢, — 1)
over the cyclic group of order 2. Using Lemma 5.7, we obtain the incidence
matrix F; = W ® F of a quasi-residual 2-((g + 1)2, ﬂ;’—ll, ﬂﬂ{—lz) design.
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Let A =J - Fy, so A is the incidence matrix of a quasi-derived 2-((q +
1)2, (q+1)2(?+2), (9+1)2("+2) — 1) design. Applying Lemma 5.5, we construct
the incidence matrix A,, of a quasi-derived

2-((g+12m2, 0t l)zm;(” 2) (a4 1)2"'2+1(q+ 2 _y

design.

Let B = J - Ey, so B is the incidence matrix of a quasi-residual (2£!)-
resolvable 2-(¢2, L&) Qﬁ)égiz)-) design. Its resolution consists of 2q + 2
classes of cardinality ¢q. Since (¢ + 1)? is a prime power and q divides
(¢+1)2 -1, Lemma 5.9 and Remark 5.10 supply a balanced generalized
weighing matrix

9(g+2)
over the cyclic group G of order g which we will denote W,,,. By Lemma
5.7, By = W, @ B is the incidence matrix of a quasi-residual

o (3g+1)*™*2 —1) q(g+1)*™*! (¢+1)*+1(g+2)
q+2 ’ 2 ’ 2
design. We claim that the matrix

BGW ( g+ 1% q(g+2)(g+ 1)2"“2)

Am
B

D, =

Ot

is the incidence matrix of a symmetric

o X+ 1((g+1)>+2 1) (g+1)**1(¢ +2)
q+2 2
design. Since A,, and B,, are the incidence matrices of a quasi-derived
and a quasi-residual design with proper parameters, we have only to check

_ (g+1)2™H1(g42 . .
that (a,b) = -(9—)———(9—22 , where a is a row of A,, and b is a row of B,,,.
Clearly,

+1,(g+ 1)+,

(g+1)*™
(a) b) = Z (ai) bi))
i=1
where each a; is a row of A and each b; is a row of B, m; € G. We will
represent a; as a; = [a;) @3...84,9+1), Where each a;; is a row of size 2q.
One of these rows equals j, every other isof form [y j—ylor[j—-y 1y],
where y is a row of Y. We will represent b; as b; = [bi1  biz...b; g11] with
each b;; is of form 7;e;;, where e;; is a row of J — E. Observe that

g+1 ifa;=j,
aij, bij) = . .
( J ‘lJ) {5';_1 |fau #J-
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Therefore,

Y. @b)=(g+1)*"@+2) (= 5

=1

2m
(g+1) (q+ 1) _ (q+1)2m+l(q+2).

To complete the proof note that the format of the matrices W, supplied
by Lemma 5.9 is such that the symmetric design determined by D,,_; is a
strong subdesign of the symmetric design determined by D,,. O

Remark 5.12 Symmetric designs with incidence matrices D,, are new ez-
cept m =0 (Brouwer [{]) and q =3 (Fanning [9]).

6 An open problem

Symmetric designs of Family 12 from [5, 1.5.6] discovered by Spence, Jung-
nickel and Pott have parameters k = ¢°™~!p*~! and \ = ¢®™~2p*—1(p*~1 -
1)/(p—1), where m is a positive integer, p is a prime, and ¢ = (p*—1)/(p—1)
is a prime power. Two consecutive (with respect to m) designs in this family
satisfy the necessary conditions imposed by Proposition 2.5 and Corollary
2.8. Is the smaller design a subdesign of the larger one? The smallest case:

true or false that (16, 6,2) C (160, 54,18)?
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