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Abstract. It is known that the ovoids in Os(g), ¢ < 7, are classical ovoids.
Using algebraic and computational techniques, we classify ovoids in O35(9)
and Os(11) with the aid of a computer. We also study the ovoids which
contain an irreducible conic and classify them in Os(13). Our results show
that there is only one nonclassical ovoid (a member from a family of Kantor)
up to isomorphism in Os(9) and all the ovoids in O5(11) are classical.

1. Notation

More details of the following definitions can be found in Artin [1], Kantor [6]
and Taylor [12]. An orthogonal space is a pair (V, @) such that V is a finite
dimensional vector space of dimension n over GF(q) and @ : V — GF(q)
Is a quadratic form, i.e.

Q(z) = MQ(z)

and
Q(z+y) = Q)+ Q) +(z,9),

forall A € F;z,y € V, where (, ) is a bilinear form. The quadratic form
Q is nondegenerate if (z,y) = 0 for Q(z) =0 and all y € V implies z = 0.
The points of an orthogonal space (V,Q) are one-dimensional subspaces
and (v} is called a singular point if Q(v) = 0. Two points {v;) and (vs)
are perpendicular if (vy,v2) = 0. Two sets of singular points X and Y
are totally nonperpendicular if (z,y) # 0 for any (z) € X and for any
(y) € Y. A subspace S is totally singular if Q(v) = 0 for all v € S. When
n = 2m and @ is nondegenerate, there are two types of quadratic forms
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up to equivalence. One form is called hyperbolic which produces maximal
totally singular subspaces with dimension m. The other form is called
elliptic and it produces maximal singular subspaces with dimension m — 1.
When Q is nondegenerate, (V, Q) is called an Om—1(q) space if n = 2m—1,
or an Ozm(‘l) space if n = 2m, using superscript + or — according as Q is
hyperbolic or elliptic.

An r-cap in an orthogonal space is a set of pairwise nonperpendicular
singular points with cardinality r. An ovoid O in an orthogonal space of
type Og'm_,_z(q),O{m(q) or Oam+1(q) is a set of singular points such that
every maximal totally singular subspace contains just one point in O, or
equivalently, O is a (g™ + 1)-cap. Using OF,,(g) ovoids, 0%.._,(q) ovoids
can be produced as follows. Let O be an ovoid in an OF,,(q) space. If (z) is
any singular point not in O then z* N O projects onto an ovoid of zl/(z).
This process is commonly referred to as “slicing”.

The orthogonal group (also called the group of isometries) is the subgroup
of GL(V') which fixes the quadratic form. The generalized orthogonal group
(also called the group of similarities) is the subgroup of GL(V) which fixes
the quadric (the set of singular points). Two n—caps are isomorphic if there
is a group element in the generalized orthogonal group that takes one cap
to the other.

2. Background and the Statements of the Results

The Os(q) spaces are well known as a family of classical generalized quad-
rangles, Payne and Thas [8]. As mentioned in Section 1, any ovoid in an
Os(q) space has q2+1 points. Thus any hyperplane intersecting Os(q) in an
orthogonal space of type O; (¢) is an ovoid in Os(q). Such an ovoid is called
a classical ovoid. When ¢ is odd and not a prime, there is an infinite family
of nonclassical ovoids due to Kantor [6]. There are two other known infinite
families of nonclassical ovoids in Os(q). One family is when ¢ = 32~ ¢ > 2
due to Kantor (6] and the other family is when ¢ = 3%,e > 3 due to Thas
and Payne [11]. A recent result by Penttila and Williams [9] shows another
nonclassical ovoid in Os(3%).

Ovoids do not exist in O2n41(g), n > 3 [2, 5, 10]. Ovoids do exist in
Os(gq) as mentioned above. The O7(q) spaces behave differently. Thas [10]
has shown that ovoids do not exist in O7(2¢). Ovoids do exist in O7(3¢),
Kantor [6]. O’Keefe and Thas [7] show that if every ovoid in Os(g), ¢ > 3
and odd, is classical then ovoids do not exist in O7(q). The orthogonal
space Os(q), ¢ < 7 contains only classical ovoids [7] and hence there are no
ovoids in the corresponding O7(g). Thus one of the major open problems
about ovoids is to show the existence or nonexistence of ovoids in O7(q) for
the remaining open cases.
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Thus we have two interesting questions. Are there any other nonclassical
ovoids in Os(q)? Is every ovoid in Os(p), p a prime, classical? Our results
produce the answers for these questions in the smallest two open cases,
namely Os(9) and Os(11). The work involved in obtaining the following
results is described in Section 4.

2.1 Result There is only one nonclassical ovoid up to isomorphism in
Os(9). This ovoid is a member of a family of ovoids in Os(q) constructed
by Kantor [6].

2.2 Result Any ovoid in Os(11) is classical.

The following result is a direct consequence of Result 2.2 and the theorem
due to O’Keefe and Thas mentioned above.

2.3 Result O7(11) does not contain ovoids.
An orthogonal space of type O3(q) is called an irreducible conic.

2.4 Result Let O be an ovoid which contains an irreducible conic in O5(13).
Then O is classical.

3. Preliminaries

There are two orbits of irreducible conics under the generalized orthogonal
group in Os(q), ¢ odd. We call them Type 1 and Type 2 according to the
following fact. The orthogonal complements of Type 1 and Type 2 conics
in Os(q) are of type OF (g) and O; (q) respectively.

3.1 Lemma Let C be an irreducible conic in Os(g), where ¢ is odd. There
are exactly (g + €)/2 classical ovoids in Os(g) which contain C, where ¢ is
—1 or +1 according as C is of Type 1 or Type 2.

Proof: Let o be the number of classical ovoids containing C, let 3 be the
number of orthogonal spaces of type OF (¢) containing C, and let ¥ be the
number of hyperplanes containing C and intersecting Os(q) in a degenerate
orthogonal space. By counting the singular points of Os(q), we obtain

a(® -+ B +a)+1% +q+1=(qg+1)(g* + 1),

and a+ S8+ =g+ 1.If Cis of Type 1, then y = 2, and so a = (¢ - 1)/2.
If C is of Type 2, then y=0,and so e = (¢ + 1)/2. B
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Let O be an ovoid in an OF,,(q) space. Let V be the underlying vec-
tor space over F = GF(q) and let Q be the quadratic form for OF;,(q).
Fix a singular point (u} € O. We select vectors vy, v2,...,m—1 such
that (u, vy, v2,...,Um-1} is @ maximal totally singular subspace. For any
ai,az,....am-1 € GF(q), {v1 + a14,v2 + @2y, ..., Um_1 + Gm-1u)* N O is
a cap of size 2 with one of the points being (u). (As mentioned in the
terminology of Section 1, we slice the ovoid m — 1 times).

3.2 Proposition (Gunawardena [4]) Define a function ¢ : F™~! — O\
{{u)} such that ¢(ay, az, ..., am-1) = (v1+a1u, va+azy, ..., tm-1+am_1u)*N
O\ {{u)}. Then ¢ is a bijection.

The above bijection helps us create an efficient computer algorithm to list
all the ovoids in a given set of singular points. The following algorithm is
taken from [4]. Suppose we have a cap C and a set S consisting of singular
points such that S and C are totally nonperpendicular. This algorithm will
list all the possible ovoids in C U S that contain C.

Input: C, 51,52, ...,Sk: S1,S2,...,Sk are subsets of S and they are cre-
ated as follows.

Let u € C and select vectors vy, v, .. ., vm—1 Such that (u,v1,v2, ..., ¥m-1}
is a maximal totally singular subspace. Construct subsets S;,S3,...,Sk
(where k = g™~ ! + 1 —|C]) of S as follows.

1. S = ({v1 + @iy, v2 + a2y, ..., ¥m=1 + Gigm-1)u})* N S, for some
ai1, Gz, . . ., aim-1) € GF(q).

2. S,'ﬁSj =0ifi#7.
3. S;NC =0 for each 1.

The above sets Sy, Sa, ..., Sk partition S. This means that any ovoid in
C U S should contain exactly one singular point from each S;. Thus, we
have the following recursive algorithm.

Ovoid(C, {51, S2,..-,S})
begin
If (|C] = ¢™~! +1), print C which is an ovoid and return.
Select i such that |S;| = min{|S;|:1 < j < k}.
If |S;| = O return.
For each (z) € S;, do
begin
C —Cu{z).
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For each j # i,
S; —{{v) €5j_: (y,x) #0}. _ _
Call OVOid(C, {Sl ’ Sz, veey S;'_l ) S,'.H, eeny Sk})
end
end

3.3 Proposition (O’Keefe and Thas (7]) If every ovoid of Os(g), where q
is odd and ¢ # 3 is classical then O7(¢) has no ovoid.

The following proposition exhibits a member of an infinite family of
ovoids in Os(q) constructed by Kantor.

3.4 Proposition (Kantor [6]) There is a nonclassical ovoid in Os(9). Let
K = GF(9) and ¢ be a nonsquare in K. Equip V = K5 with the quadratic
form Q(z1,x2, 3,24, 75) = 2125 + T224 + 5. The ovoid consists of the
points (0,0,0,0,1) and (1,y,z, —ey, =22 + €y?), v,z € K.

4. Os(9), Os(11), O+(11) and Os(13) Spaces

Our approach to classify the ovoids in Os(9) is as follows. We create a list
of ovoids which contains all the ovoids in O5(9) up to isomorphism. We
show that every ovoid in this list contains an irreducible conic. Then we
classify the ovoids that contain an irreducible conic. Let F = GF(9) =
{0,1,2,3,4,5,6,7,8} with addition and multiplication tables as follows.

+[(0 1 2 3 4 5 6 7 8
0]0 1 2 3 4 5 6 7 8
11 2 0 4 5 3 7 8 6
2(2 01 5 3 4 8 6 7
3|38 4 5 6 7 8 0 1 2
414 5 3 7 8 6 1 2 0
515 3 4 8 6 7 2 0 1
616 7 8 0 1 2 3 4 5
717 8 6 1 2 0 4 5 3
818 6 7 2 0 1 5 3 4
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10 1 2 3 4 5 6 7 8
0fo 0 0 0 0 0 0 0 O
110 1 2 3 4 5 6 7 8
2({0 2 1 6 8 7 3 5 4
3|0 3 6 2 5 8 1 4 7
410 4 8 5 6 1 7 2 3
5(0 5 7 8 1 3 4 6 2
6({0 6 3 1 7 4 2 8 5
710 7 5 4 2 6 8 3 1
8({0 8 4 7 3 2 5 1 6

Let V = F8. Define Q: V — F such that
Q(z1, T2, ..., Te) = T1T6 + T2T5 + T324.

Thus, (V, Q) is an OF (9) space and for z = (21,22, ..., 26), ¥ = (1, ¥2, --- Us),

we have
(z,y) = z1ys + Toy1 + Tays + Tsy2 + Tays + T4y3.

Now consider the Os(9) space obtained by intersecting the OF (9) space
with the hyperplane z3 = r4. Os(9) contains 820 singular points and any
ovoid contains 82 singular points. There are two orbits on the set of 3-
caps under the generalized orthogonal group. It is known that any ovoid
in O3(9) contains both types of these 3-caps [5]. Hence, we can begin with
any 3-cap. We fixed the 3-cap C = {(u), (z1}, (x2)}, where u =(0 0000
1), 2, =(100000)and 2z, =(101102).

We created the set S which is the set of all singular points totally non-
perpendicular to C. From (3], we have a complete classification of 4-caps
which span subspaces of type O (¢) or O7 (g) in orthogonal spaces under
the orthogonal group. There were thirteen nonisomorphic 4-caps which
contained C. We ordered these 4-caps as Cy,Cy,...,Cy3. For each C; we
created a set S; as follows. Let X; be the set of all singular points totally
nonperpendicular to C;. Let Y; be the set of all the singular points such
that if y € Y; then y U C is isomorphic to C; for some j, 1 < j < i. Now
Si = X; \Y;. To list the ovoids in the sets C; U S;, we applied the algorithm
given in Section 3 with the maximal totally singular subspace ({u, vy, v2}},
where u =(000001), v, =(000010), v2=(000100). The algorithm
listed 252 ovoids of O5(9). By a computer, we found that each ovoid in this
list contained an irreducible conic. Next we selected two irreducible conics
CO; and COQq, which contain {u), such that CO, is Type 1 and CO; is
Type 2. Let Z; and Z, be the sets of all the singular points that are totally
nonperpendicular to CO; and COx respectively. Using our algorithm, we
listed all the ovoids in CO, U Z; and CO, U Z5. There were 44 ovoids
which contained CO; and 5 ovoids which contained COj. The five ovoids
which contained CQO, were classical by Lemma 3.1. Using a probabilistic
algorithm, we checked the isomorphisms among the nonclassical ovoids that
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contained CO,; and found them in one orbit under the stabilizer of CO; in
the generalized orthogonal group. Therefore, we have a unique nonclassical
ovoid in Os(9) space and it is mentioned in Proposition 3.4.

In Os(11), we used 4-caps and followed the above mentioned procedure
to list all the ovoids up to isomorphism. Every ovoid found was classical.
Thus by Proposition 3.3, there are no ovoids in 07(11).

In Os5(13), we found that the total number of ovoids that contained a
given Type 1 conic was six and the total number of ovoids that contained
a Type 2 conic was seven. By Lemma 3.1, these ovoids must be classical.
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