Baer partitions of small order projective planes
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ABSTRACT. The partitions into baer subplanes of the Desar-
guesian projective planes of order 9, 16 and 25 are classified
by computer. It is also shown that the non-Desarguesian pro-
jective planes of order 9 and the non-Desarguesian translation
planes of order 16 and 25 do not admit such a partition.

1 Introduction

In a projective plane 7 of order ¢? a subplane of order q is called a baer
subplane. A baer partition of 7 is a collection of baer subplanes such that
every point of 7 is contained within a unique element of the collection. The
size of such a partition in necessarily (¢* +¢?+41)/(¢? +q+1) = ¢> —q+1.

Those lines of a projective plane of order g2 that meet a baer subplane in
g+ 1 points form the points of a baer subplane in the dual plane. Given a
baer partition we can then construct the dual partition in the dual plane by
taking the dual of each of the baer subplanes of the partition. In the case
that a projective plane is isomorphic to its dual (as are the Desarguesian
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planes) it may or may not be that a baer partition is isomorphic to its dual
partition.

It is well known that every Desarguesian projective plane of square order
admits a baer partition. This follows from the fact that every Desarguesian
projective plane of order ¢2 admits a cyclic group of order ¢* + ¢% + 1
acting regularly on the points and the lines of the plane. The orbits of the
group generated by taking the (g2 — ¢ + 1)-st power of a generator of the
cyclic group are then baer subplanes, and they partition the plane. For the
purposes of this paper we will call such a partition the classical partition.
See [7, Chapter 4] for more on the classical partition.

In [1], Peter Yff gave an example of a non-classical baer partition of
PG(2,9), the Desarguesian projective plane of order 9. It was stated that
this partition together with the classical partition are the only baer parti-
tions of PG(2,9). As far as the authors are aware the classical partition
and Yffs result are the only known baer partitions of the Desarguesian
projective planes.

In the following section we classify, by computer, the baer partitions of
PG(2,¢?) for ¢ = 3,4 and 5. It is shown that in PG(2,9) there are (up to
isomorphism) two such partitions, confirming Yffs result. For ¢ = 4 and
g = 5 several new baer partitions are shown to exist. Similar computer
searches in non-Desarguesian planes of order 9, translation planes of order
16 and 25 show that such planes (and hence their duals) do not admit baer
partitions.

2 Method

The idea for constructing all baer partitions of Desarguesian projective
planes up to isomorphism is as follows. A partition of the points P of
PG(2, ¢°) into baer subplanes can be interpreted as a spread of subplanes
from a collection B. The algorithm is then an exhaustive search for spreads
of subplanes in PG(2,¢?) [9]. A spread S is constructed one subplane at
a time. If S; is a partial spread of ¢ disjoint subplanes and P; C P is the
set of points not covered by S; a new subplane b must lie in the set B; € B
of subplanes disjoint from all members of S;. For S; to have a completion,
every point in P; must belong to some subplane in B;. This is a strong
condition which allows an early detection of bad partial spreads (a look
ahead) and motivates the following powerful heuristic for subplane selec-
tion. Choose a point p € P; which is incident with a minimum number
(say t) of subplanes in B; and choose the next subplane from this set. If
t = 0 then a backtrack step is necessary, if £ = 1 the unique subplane
through p is forced; in general, the fewest number of subplanes is being ex-
amined. Knowledge of the collineation group of the plane can significantly
reduce the size of the search.
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The collineation group of PG(2,¢?) is the projective semi-linear group
PT'L(3,4%) and this group is transitive on ordered quadrangles [7]. It is
well known that on any quadrangle in PG(2, q%) there exists a unique baer
subplane [6, p. 401]. It follows that up to isomorphism any baer subplane,
B, say, may be chosen to be the initial one.

The collineation stabiliser of a baer subplane of PG(2, ¢%) is isomorphic
to PT'L(3,g). Nauty ([8]) was used to find the generators of the stabilizer of
a baer subplane. A fast algorithm based on hashing was used to calculate
the orbits of baer subplanes disjoint from B,. A representative of each orbit
was then chosen. For each orbit representative all baer subplanes disjoint
from the representative and B; were then be found. Each of these pairs of
baer subplanes were then used as “starter sets” in the algorithm described
in the first paragraph.

Once all such partitions were found the isomorphism problem between
partitions was solved using Nauty.

Using the above method it was possible to perform complete searches
for all (up to isomorphism) baer partitions of PG(2,9), PG(2,16) and
PG(2,25). The rest of this paper is devoted to listing the partitions found.

3 Results

In the following the Desarguesian plane PG(2,4%) is represented via ho-
mogeneous coordinates over the Galois field GF(q2). le. represent the
points of PG(2,¢%) by ((z,y,2)), 7,3,z € GF(¢?) and (z,y, 2) # (0,0,0),
and similarly lines by ([a, b, ¢]) a,b,c € GF(q?) and [a,b,¢] # [0,0,0]. Inci-
dence is given by the dot product ((z,y, z)) | (la,b,c]) © ax+by+cz=0.
In this notation the the subset of points {(z,, z)), z,y,2 € GF(q) and
(z,y,2) # (0,0,0) form a baer subplane of PG(2, ¢%) which we shall call
the real baer subplane.

We describe the baer partitions found in the following manner. For each
partition a collection of g% — g three by three matrices over GF(q?) is given.
The real baer subplane is in every partition. Each other baer subplane in
the partition is obtained by applying one of the matrices to the points of
the real baer subplane.

In the following we do not list the classical partitions.

3.1 Partitions of PG(2,9)

In PG(2,9) there is up to isomorphism one non-classical partition. It is self
dual and has collineation stabiliser of order 21. The collineation stabiliser
has a subgroup of order 7 that acts regularly on the elements of the par-
tition. The classical partition in PG(2,9) is self dual and has collineation
stabiliser of order 546.
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Let w be a primitive element of GF(9) satisfying w? —w =1, then the
non-classical partition is described by the matrices:

W ow! 0
wi 0 Wb
1 of W3
wl Ww® 0
w2 0 W7
0 o 1

3.2 Partitions of PG(2,16)

w Wt 0 w W 0
w2 0 w! wt 0 WP
Wl Wt W7 Wt w? Wl
w! wd 0 w? w! 0
Ww' 0 Wwe w0 W

1 W 1 Wi oWt w?

In PG(2,16) there are up to isomorphism three non-classical partitions.
Partition 1 (below) is self dual and has collineation stabiliser of order 39.
Its collineation stabiliser has a subgroup of order 13 that acts regularly
on the elements of the partition. Partition 2 has collineation stabiliser of
order 12. Its collineation stabiliser has two orbits on the subplanes of the
partition, one of length one and the other of length 12. Partition 2 is not
isomorphic to its dual partition. The classical partition in PG(2, 16) is self
dual and has collineation stabiliser of order 3276.

Let w be a primitive clement GF(16) satisfying w* +w = 1 then the
non-classical partitions are as follows:

Partition 1:

W13 WS 0 w?
(wl ’ w9) (wu
w14 w7 wlo wll
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w? 0
0 w!
w1
w!? 0
0 wld
wt Wl
wt 0
0 1
w? W0
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€

w?  w! 0 wt W! 0 wil w2 0 WO w0
7 13 W0 wit L ot wB 0 1
Wl w3 L9 w1 WU W oWl WM Wb W wit

Partition 1 can be described in the following way. We assume that gq is
even. For definitions the reader is referred to [7].

Let o be a generator for a cyclic group of order ¢* + ¢+ 1 in PG(2, ¢?).
Then the orbits of the group generated by 09" ~9+1 are a collection of baer
subplanes B;, i = 1...4% — g+ 1, and give rise to the classical baer par-
tition. The orbits of the group generated by o7+t gre a collection G,
i=0...g%4q of complete arcs. Choose any point P,. Then P, is contained
within a unique baer subplane By and a unique complete arc Cy, say. Since
q is even, the set of lines that meet Cp in a unique point form a classical
unital U in the dual plane (see [10]). The unital U induces a unique polarity
o of the projective plane that maps a point of the unital to the (unique)
tangent line to the unital on that point. The line Py does not contain
Py, but does contain ¢ + 1 points Pi,..., Py41 of the baer subplane By.
There are then g + 1 baer subplanes of PG(2,4?) that contain the points
Po, Py, ..., Pyy1, exactly one of which, By, is in the classical partition.

By computer we have shown that for ¢ = 4, choosing any one of these
94 1 baer subplanes and taking its images under the group generated by
09'+9+1 gives rise to a baer partition of PG(2, ¢?). If By is chosen then by
definition the partition is the classical one. Any other choice gives rise to a
partition isomorphic to partition 1 in PG(2,16). We have also verified that
the above construction for ¢ = 8 gives rise to baer partitions of PG(2, 64).
A general proof that the construction gives a baer partition in even (square)
order Desarguesian projective planes has so far been elusive.

Congecture. There exist non-classical baer partitions of PG(2,22%¢), e > 1,
whose collineation stabiliser contains a cyclic group of order 22 — 2¢ 4 1.

3.3 Partitions of PG(2,25)

In PG(2,25) there are up to isomorphism four non-classical partitions. Par-
tition 1 (below) is not self dual and has collineation stabiliser of order
63 which is transitive on the subplanes of the partition. Partition 2 has
collineation stabiliser of order 18 and is not self dual. Its collineation sta-
biliser has two orbits on the subplanes of the partition, one of length 3 the
other of length 18. The classical partition in PG(2, 25) is self dual and has
collineation stabiliser of order 3906.

Let w be a primitive element GF(25) satisfying w? + 3w+ 3 =0
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Partition 1:

—
=

W w 0 w w® w 0 w'? W 0
W 0 B Ww® 0 of W13 0 W7 W 0 W2
Wl w2 1 Wil W8 8 w2 B 0 VRN
w® Ww® 0 w' w0 wP o wd 0 w? w® 0
w'® 0 Wl w'® 0 w? w® 0 w? w® 0 w®
W% 1 WS w0 L0 I 0 w9 oo 0 10 4
w™ W% 0 w® w0 w2 W 0 w® W0
w?! 0 w’ wt@ 0 W' w! 0 w'? w? 0 w'
W' w? w7 Wl w? w2 B W Wl w22 W10 0
w® W 0 wtow?® o W' W' 0 wt ¥ 0
JRCIEPRT W 0w WM 0 W8 w: 0 w6
W3 WP WP w0 13 20 Wl Wt Wil w3 Wt !
UJ17 w16 0 w19 wlo 0 w‘l w20 0 wll (.d7 0
w® 0 W w2 0 WwB w0 w8 w* 0 W
Wl w2 B w2 Wl W Wl W wlf WS Wt 2
Partition 2:
wit w2 0 wi® WP 0 w!® W8 0 wd W 0
W 0 W W 0w W 0 w2 W& 0 wi®
Wl w2 1 W0 w0 B W ol WS Wit W2 Ll
W w® 0 W Ww® 0 SRCINUR RPN w7 W€ 0
w0 W w0 WP w2 0 w2 w® 0 W
W Wil ? Wl W Wi W2 1 W8 Ol7 w2 12
wl? 16 0 w3 (4)5 0 wl3 w8 0 w4 U20 0
w? 0 W wt 0 Wt w!® 0 w2 w' 0 W'
W10 W5 W7 Wb w? wl? W2 Wiz 10 W W WP
S W0 ST W8 0 - R LR
W40 WP Ww® 0 Wf W0 WP w0 wi®
0 W3 o8 W2 1 W2 Wil Wt W2 ] 8 13
SR CINURT SR W19 W0 o D W0 W10 W19 0
W 0 W W2 0 w® WP 0 W W3 0 w7
W18 15 16 1 Wl o2 W W w? W? w2 16

3.4 Baer partitions of non-Desarguesian projective planes

The projective planes of order 9 were given in [5]. They are a Desarguesian
plane, a Hall plane and its dual, and a Hughes plane.

The translation planes of order 16 were classified by Dempwolff and Rei-
fart in [3]. They are: a Desarguesian plane; a semifield plane with kernel
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GF(4); a semifield plane with kernel GF(2); a Hall plane; the Lorimer-
Rahilly plane; the Johnson-Walker plane; a derived semifield plane; and
the Dempwolff plane. The Desarguesian plane and the two semifield planes
are self dual, while all the others are not.

The translation planes of order 25 were classified by Czerwinski and Oak-
den in [2]. There are 21 such planes.

Using techniques similar to those above it was shown by computer that
no non-Desarguesian plane of order 9 admits a baer partition. It was also
shown that no non-Desarguesian translation plane of order 16 or 25 admits
a baer partition. It follows that the duals of such planes also admit no baer
partition.
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