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Abstract

We consider whether an order ten Latin square with an order four
Latin subsquare can belong to an orthogonal triple of Latin squares.
We eliminate 20 of 28 possibilities for how this could occur by con-
sidering the structure of possible mates. Qur technique supplements
the small collection of existing tools for obtaining negative results
regarding the existence of collections of orthogonal Latin squares.

1 Latin Squares

A latin square of order n is an n by n array containing the symbols 0
through n — 1 so that each symbol appears exactly once in each row and
exactly once in each column. A transversal of a latin square consists of
n positions of the square chosen so that there is exactly one entry from
each row and column, and so that each symbol appears exactly once. A
transversal is uniquely denoted by recording the permutation obtained by
listing the symbols chosen from each of the columns. A latin square of order
four is pictured in Figure 1. The boxed entries constitute the transversal
represented by 0231 .

Two latin squares are orthogonal if when they are superimposed, each
ordered pair of symbols occurs exactly once. An orthogonal triple of latin
squares is a set of three latin squares which are pairwise orthogonal. One
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Figure 1: A latin square of order four

outstanding open question is whether there exists an orthogonal triple of
latin squares of order ten. A large amount of attention has been paid to
this question and much of it is summarized in [6] and [7]. The four mutually
orthogonal latin squares of order ten with a hole of order two [3], and a turn-
square having a mate which shares four parallel transversals [4] are as close
as people have come to constructing a triple (turn-squares are introduced
in [12], and one having 5504 transversals, a remarkable number, is given).

For any pair of orthogonal latin squares, the cells containing a particular
symbol of one square delimit a transversal of the other. Thus, a mate of a
latin square of order n can be described simply by presenting an ordered
list of n disjoint transversals, where the ith transversal gives the location
of symbol i in the mate. This is how we describe mates in this paper.

It is convenient to visualize the n permutations representing the transver-
sals of an orthogonal mate (obtained as described above) as the n rows of
a latin square. There is a nice characterization of when an arbitrary col-
lection of latin squares corresponds to this “iransversal representation” for
an orthogonal set of latin squares:

Theorem 1.1 A collection of » mutually orthogonal latin squares of order
n exists if and only if theve exists a collection of v latin squares of order n
having the property that the rows of each square correspond to transversals
for each of the other squares.

This “transversal representation” of mutually orthogonal latin squares
has proven especially useful to us when designing computer programs for
exploring squares and their mates. Further, it is used exclusively through-
out the discussion in the rest of this paper.

Various constructions are known for finding large sets of mutually or-
thogonal latin squares. A unified approach to the small cases (up to order
32) is discussed in [2]. A table of the maximum sets discovered as of 1991
going up to order 200 is in [7, pp. 166-167). A more extensive and up to
date table is given in the CRC Handbook of Combinatorial Designs {1] (the
WWW page for this book records updates occurring since the book was
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published). An explanation of how this table was generated with a wealth
of information on existing constructions appears in [5].

In contrast, there are few tools for showing that large collections cannot
be created. Many of the available techniques are summarized in [6, pp. 445-
456] and [7, pp. 23-32]. One such result is a theorem of Mann (Theorem
1.2) from which it can be seen for example that an order ten latin square
with an order five latin subsquare has no orthogonal mates.

Theorem 1.2 Mann's Theorem [9]. If L is a latin square

1. of order 4n + 2 with an order 2n + 1 subsquare which has at most n
squares having symbols distinct from a set of 2n + 1 of the symbols,
or

2. of order 4n+1 with an order 2n subsquare which has at most nj2 — 1
squares having symbols distinct from a set of 2n of the symbols.

then L has no orthogonal mate. O

A corollary of a theorem of Parker (Theorem 1.3) indicates that an order
ten latin square and a mate cannot have mutually orthogonal subsquares
of order four (a slightly stronger theorem appears in the paper as well, but
it provides no further information for order ten). This is also obvious from
our discussions regarding the structure of potential mates.

Theorem 1.3 Parker’s Theorem [10]. If a set of t mutually orthogonal
latin squares of order n has a set of t mutually orthogonal subsquares of
order r with r < n, then n > (t+1)r. O

Further, a second theorem of Parker (Theorem 1.4) indicates that two
mutually orthogonal latin squares of order ten with mutually orthogonal
order three subsquares cannot appear together in an orthogonal triple.

Theorem 1.4 Another of Parker’s Theorems [11]. If a set of r — 1
mulually orthogonal latin squares of order n has a set of r — 1 mutually
orthogonal subsquares of order r. r < n. and there erists a latin square
of order n orthogonal to all v ~ 1, then n > r*. Further. if n > 72, then
n>ri4p. 0

The known constructions result in squares with a lot of structure and
“large” (relative to the order) latin subsquares are common. So it seems
natural, given that an order ten square with a mate has no order five latin
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0453 216789 0172461589 3
1 045 3 276 98 1 63 705 9 2 8 4
210673 89 5 4 2 96 35 8 7041
3 2106 79 845 3 85 179 46 0 2
93 21085 47€6 4 72 09 3651 8
8 932104567 5 3 49 27 8160
4 567890123 6 2 9 8 3 1 04 5 7
5 6 78 9 410 3 2 7415 80 29 36
6 78 945 23 01 8 5046 213729
7894563210 9 0 8 61437235

Figure 2: A latin square of order ten and transversals corresponding to an
orthogonal mate

subsquare, to ask if there exists an orthogonal triple containing a square
with an order four latin subsquare. Such a square may have a mate as
evidenced by Figure 2 (the order four subsquare occurs in the lower right
hand corner and is based on the symbols 0—3). In fact, such squares are not
particularly rare. A quick check (about two hours) on the computer yielded
83 such squares with mates, but none were contained in an orthogonal triple
of latin squares.

By examining the structure of the possible mates of an order ten square
with an order four subsquare, we eliminate 20 of 28 prospective pairs of
mate patterns as possibilities for an orthogonal triple. Possibly with a bit
more ingenuity, the remaining cases can be eliminated. If not, they provide
guidance towards a search for potential triples.

Section 2 describes the notation we use when drawing our pictures.
Then in Section 3, we discuss the structures of transversals of a square
with an order four subsquare, and enumerate the potential mates. Once we
have this machinery, the proofs in Section 4 are very simple. We conclude
in Section 5 with some suggestions for future research.

2 Notation

We assume we start with an order ten square L which has an order four latin
subsquare in the bottom right hand corner. Without loss of generality, the
order four subsquare is based on the symbols 0 through 3. We distinguish
between these symbols and those in the range 4-9 in a transversal or row
of L by colour; white cells indicate an entry in the range 0-3, and grey cells
indicate 4-9. The twelve cells with values in the range 4-9 in the upper
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Figure 3: White. grey, and black cells

Pattern p, I
(impossible)

Pattern p

Pattern p] :
Pattern p2 :
Pattern pj :

Figure 4: Patterns for transversals of L

left hand order six subsquare of L are singled out for special attention by
colouring them black. Figure 3 depicts these three types of cells. 1t should
be noted that in the transversals and the orthogonal mates of L, a cell is
white, grey, or black if the corresponding cell in L is that colour.

Columuns are divided into two blocks consisting of the first six columns,
and then the last four columns. This division is indicated in our figures with
a thick black line. Within a block of columns, the symbols indicated may
be arranged in any order. For example, the pattern ps (refer to figure 4)
indicates that there are two symbols chosen from 0 through 3 in the first six
columns, and four symbols from 4-9. The permutations 9834601527
and 7186293054 both fit this pattern, but 0591436 7 2 8 does not
but is a realization of pattern p; instead (see Figure 4 again). We name
the possible patterns for transversals as p;, i = 0,1,2,3,4 where p; is the
pattern with i white cells in the last four columns. These are pictured in
Figure 4. The number of black cells is justified later in Lemma 3.1.

Our starting square [ is as pictured in Figure 6. We number the rows
and columns of L with 0 through 9. The four blocks of L are called A (the
order four subsquare is in the lower right hand corner), B (4 by 6), C' (6
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by 4), and D (6 by 6) as indicated in the figure.

3 Transversals and Mates of L

We start by justifying the number of black cells given in the transversals in
Figure 4, and also show that transversal pattern py is impossible.

Lemma 3.1 The number of black cells in a transversal of L which has w
white cells in the first siz columns is 6 — 2w.

Proof. To understand the proof, it helps to refer to the picture of L in
Figure 6. A transversal of [ with w white cells in the first six columns
must have 4 — w white cells in the last four columns (each symbol 0-3
appears once in each transversal), and consequently, there are w grey cells
in the last four columns. Hence there are 2w nonblack cells chosen from
the first six rows; w white ones from the first six columns, and w grey ones
chosen from the last four columns. This leaves 6 — 2w black cells which
must also be chosen from the first six rows. O

Because po has four white cells in the first six columns. Lemma 3.1
indicates that there should be —2 black cells. Since a negative value is not
realizable, there are no transversals of L fitting pattern pg.

The mates are classified according to the number of transversals of L of
each type which correspond to the symbols in that mate. The seven possi-
bilities for the sets of transversals which correspond to mates are tabulated
in Figure 5 and their structures are pictured in Figures 6, 7, 8, and 9. Viable
mates have n; transversals of type p; where n; > 0. ny +na+nz+n3 =10
(the mate has ten rows), and ny + 2na + 3nz + 4n4 = 16 (the number of
symbols chosen from block A is 16 in total). The mate pictured in Figure
2 has pattern X (pictured in Figure 9).

4 Illegal Combinations of Mates

In this section, we show that 20 of the potential 28 pairings of the mate
structures indicated in the previous section are impossible. This first the-
orem eliminates 18 possibilities.

Theorem 4.1 The following combinations of latin square patterns do not
appear together in an orthogonal triple with a square of pattern L:

1. RutthR, S, T,U,V, or W,
2. SwithS, T, U, V,orW,
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Figure 5: The seven possibilities for mates of L

Name | ny | na | na | ng
R 81 0] 0 2
S T 003 0
T T 1 1 1
U 6] 2] 2 0
vV 6 3| 0 1
W 5| 4 il 0
X 4 6] 0] 0

Figure 6: Latin square L and mate pattern R.

101



S T

Figure 7: Mate patterns S and T.

U v

Figure 8: Mate patterns U and V.
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W X

Figure 9: Mate patterns W and X.

3. TwithT, U, V, or W,
4. U withV, or
2.V withV or W.

Proof. By Theorem 1.1, it suffices to show that the rows of the first square
listed in each part above cannot correspond to disjoint transversals of the
other squares listed in the theorem. Look at the rows containing black
symbols in the first square listed. We cannot find corresponding transversals
in the second square because the black cells span too few rows, or as for
example with S and [/, too few black cells span an adequate number of
rows. O

The result in our next lemma is used to eliminate two further cases.

Lemma 4.2 [f a mate orthogonal to X (Figure 9) and L (Figure 6) has a
transversal of type py then it has no further transversals of types py or ps
(Figure J indicates the transversal types).

Proof. Figure 9 has the cells of X corresponding to a p4 transversal marked
with the letter “a”. A shortage of white cells available in the last four
columns in rows disjoint from where the black cells are chosen makes an-

other py or py impossible. O
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Corollary 4.3 An orthogonal triple of latin squares containing L and X
cannot have R or T,

Proof. Pattern R has two ps’s. Pattern T has a py and a ps. Hence, these
are ruled out by Lemma 4.2. O

We summarize the results of this section in the following theorem.

Theorem 4.4 Main Theorem. The only potentially feasible combina-
tions for constructing an orthogonal triple with L are either

1. XwithS, U, V, W, or X,

18]

.U withU or W, or
3 W withW. O

5 Future Work

The computer has been one tool used to provide negative results. However,
exhaustive computer searches such as that of Lam, Swiercz and Thiel [8]
who claim that there are no projective planes of order ten (or equivalently,
no set of nine mutually orthogonal latin squares of order ten) are very
laborious, prone to error, hard to check, and they take too much time on
larger problems. Consequently, more tools for proving negative results are
urgently needed.

The most obvious next step in extending the current work is to elimi-
nate the remaining eight cases from consideration. Either this. or find an
orthogonal triple fitting one of these patterns. Another possibility is to
generalize these results to squares of arbitrary orders.
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