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ABSTRACT. The problem of determining which graphs have the
property that every maximal independent set of vertices is also
a mazimum independent set was proposed by M.D. Plummer
in 1970 [28]. This was partly motivated by the observation that
whereas determining the independence number of an arbitrary
graph is NP-complete, for a well-covered graph one can simply
apply the greedy algorithm. Although a good deal of effort has
been expended in an attempt to obtain a complete characteri-
zation of such graphs, that result appears as elusive as ever. In
this paper, intended to serve as an introduction to the problem,
several of the main attacks will be highlighted with particular
emphasis on the approach involving the girth of such graphs.

An Overview

This expository paper is by no means complete and the interested reader is
referred to the excellent survey paper by M.D. Plummer [29] for much more
detailed information. Also, the paper by Y. Caro [4], has many references
(and thus more recent ones). As indicated, M.D. Plummer [28] coined the
term well-covered for those graphs in which every maximal independent set
of vertices is maximum. To appreciate the reason for such a choice recall
that a point cover is a set of points (vertices) such that every edge is incident
with some point in the cover. Gallai [18] observed that the complement
of such a set would necessarily be independent. Hence, if one minimizes
the order of a point cover, the remaining vertices will form a maximum
independent set. Much of the work on well-covered graphs has been from
this complementary point of view, namely, consideration of independent
sets of vertices.

As simple examples of well-covered graphs, consider a path on 4 vertices
or a 7-cycle. Every maximal independent set is of size 2 for the former and
of size 3 for the latter. On the other hand, a path on 3 vertices admits
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maximal independent sets of either one or two vertices and thus is not
well-covered. J. Staples was the first to study these graphs in detail [34,
35). One of her results was a characterization of the well-covered graphs for
which the independence number is exactly half the number of vertices in
the graph. These include the bipartite well-covered ones. O. Favaron [10]
obtained a similar characterization and G. Ravindra [32] also characterized
the bipartite case.

Quite unaware of the problem, A. Finbow and the author [11] became
involved through the connection of another question. Consider a 2-person
game in which the players alternate removing a vertex and all of its neigh-
bours from a graph. The player last able to move wins. For example, if the
graph were a path on 5 vertices then player 1 could ensure a win by choos-
ing the central vertex and removing it and its neighbours leaving player 2
facing two isolated vertices. The main result of [11] was a characterization
of the graphs of girth 8 or more with the property that regardless of how
the players moved, the same player would always win. That is, the parity
of the number of moves was always the same. For instance, consider a star
on an even number of vertices (and thus an odd number of leaves). Either
player 1 chooses the central vertex (removing it and all others) or chooses
a leaf (removing it and its unique neighbour, the central vertex). In the
latter case there are now an even number of isolated vertices left as moves
meaning the total number (of moves) is odd. In either situation the number
of moves is odd.

In general, if a graph has the property that every vertex is either a leaf
or has an odd number of leaves attached, then the number of moves in this
game will always be of the same parity. Furthermore if the girth is 8 or
more, these are the only graphs (called parity graphs) with this property.

Now observe that the union of the moves made by the players forms an
independent set and, when the game is over, a marimal independent. set.
Hence, a special case of this game is the situation where the number of
moves is not only of the same parity but actually a constant. In order for
this to occur every vertex must be either a leaf or have exactly one leaf at-
tached. Thus a corollary of the above characterization is the determination
of the well-covered graphs of girth 8 or more.

We observe that these graphs are such that the independence number is
exactly half the order of the graph and thus this result overlaps with, but
is not contained in, the work of J. Staples [34] and O. Favaron [10].

The next results on well-covered graphs were announced in 1987 al-
though, in one case, appeared in print much later. S. Campbell [1] studied
cubic graphs with connectivity at most 2 and, along with M.D. Plummer
[2], proved that there are only four 3-connected, cubic, planar well-covered
graphs. This work was later extended by S. Campbell along with M. Elling-
ham and G. Royle [3] to include all cubic well-covered graphs. Still later,

108



J. Ramey [31] managed to completely characterize all well-covered graphs
of mazimum degree 3.

Meanwhile, A. Finbow and the author, along with R. Nowakowski, con-
tinuing a girth approach, characterized the well-covered graphs of girth 5
or more {15]. As indicated previously, this result was actually announced
at a conference in early 1987. In addition, the same three authors, using a
similar approach, characterized the well-covered graphs in which there are
no 4-cycles nor 5-cycles (but triangles are allowed) [16]. In order to under-
stand the description of these graphs we require the following definition.
A vertex v in a graph G is called eztendable if and only if G — v is also
well-covered and the independence number of G — v is the same as G. For
instance, any vertex of a graph which is a 5-cycle (or a 3-cycle or a complete
graph) is extendable. On the other hand, no vertex in a 4-cycle is.

The leaves of a path on 4 vertices are not extendable whereas the other
two vertices are. Extendable vertices play a very important role as they can
be used as attachment points to join well-covered graphs to create larger
ones. For instance, two 5-cycles can be joined by an edge or a 5-cycle and
a complete graph can be joined by an edge. In fact, one can start with any
collection of K3’s and 5-cycles and designate one vertex of each K5 as well
as any two non-adjacent vertices of each 5-cycle as attachment points and
then form a connected graph by arbitrarily joining attachment points (see

Figure 1).
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Figure 1. A well-covered graph of girth 5

The graph so formed will be well-covered. In [15] it is shown that any
well-covered graph of girth 5 or more that has an extendable vertex must
in fact belong to this family. The rather surprising result is that there are
only six other well-covered graphs having no extendable vertices but having
girth at least 5 (see Figure 2).
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Figure 2.
Well-covered graphs (with no extendable vertices)
of girth 5 or more

Hence the K and the 5-cycle are essentially the two basic building blocks
used to form the family. Observe that in this setting, the characterization
for girth 8 or more [11] could be rephrased as being a collection of K3’s with
one vertex of each selected as an attachment point and then arbitrarily
joining attachment points (as long as girth is 8 or more). In [16], this
approach is employed again, this time to graphs with no 4-cycles or 5-cycles.
In this case, there is a collection of K»’s, with exactly one attachment point,
and 3-cycles, with either one or two attachment points. Once more one can
create a well-covered graph by arbitrarily joining attachment points. It is
shown that any well-covered graph with an extendable vertex must in fact
belong to this family. Again, it turns out there are only two other graphs
(having no extendable vertices), besides the trivial K, in the collection
(see Figure 3).
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Figure 3.
Well-covered graphs (with no extendable vertices)
with no 4-cycles nor 5-cycles

Attempts to extend this attack to include all well-covered graphs with
no 4-cycles have met with limited success. Although it is likely that there
are a reasonably small number of basic building blocks (each has at least
one extendable vertex) it is not obvious how to determine them! In [19] one
attempt to do so resulted in the discovery of over a dozen new ones (besides
the K3, 3-cycle and 5-cycle seen before). Furthermore, in [20] it is shown
that an extendable vertex in a well-covered graph without 4-cycles is either
part of one of the already known special K5’s, 3-cycles or 5-cycles or is a
vertex of a special induced subgraph on 8 vertices called Sg (see Figure 4).
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Figure 4

The black vertices indicate those that are extendable.

Although imposing either a maximum degree or girth constraint have
been the most fruitful in attacking the well-covered problem, these are cer-
tainly not the only approaches. In addition, as indicated earlier, there are a

111



number of more specialized results (for example, [8, 13,14,21,23,24,25,26,27,
30,38]).

Complexity issues and some related problems

The question of how easy or difficult it is to recognize if a graph has the
well-covered property has been addressed by a number of individuals. Inde-
pendently it was shown [7,33] that deciding if a given graph is well-covered
is CO-NPC. More recently, this has been refined to the result that deciding
if a Ky ,-free graph (for n > 4) is well-covered is CO-NPC [6]. On the
other hand, D. Tankus and M. Tarsi [36,37] have established a polynomial
algorithm to decide if a claw-free graph is well-covered (see [21,38] for par-
tial characterizations). In a more general setting, the original problem that
A. Finbow and the author had considered, namely, characterizing parity
graphs (every maximal independent set is of the same parity) was again
studied in [12] where a characterization of such graphs of girth 6 or more
was presented. This idea was further extended in [5] to graphs whose ver-
tices are labeled by the elements of a finite abelian group A, where a graph
G with a given labeling is called A-well-covered if maximal independent sets
have the same sum of labels in A. In [5], Y. Caro, M. Ellingham and J.
Ramey give a polynomial time algorithm to decide A-well-coveredness pro-
vided the maximum degree of G is no more than c(log |G|)}/3. Hence, this
also shows, as a special case, that it is polynomial to decide if a graph G is
well-covered in the case that the maximum degree is bounded as indicated.
Y. Caro [4] further shows, as a corollary of a more general result, that even
if one knows that G is a parity graph it is CO-NPC to decide whether G
is well-covered. This question had been posed in [12]. Another direction
that has been examined is the following. Let M(t) be the class of graphs
having maximal independent sets of exactly ¢ distinct sizes. Then M(1) is
the collection of well-covered graphs. In [17], the M(2) graphs of girth 8 or
more are characterized. Again in [4] Y. Caro has shown that recognizing
membership in M(t) is CO- NPC even in the class of K 4-free graphs.

In still another direction [22], C. Whitehead and the author have exam-
ined graphs in which every maximal k-packing is of one size. Recall that a
set of vertices P is a k-packing if the distance between any two vertices of
P is at least k4 1. In [22] such graphs, in the case that their girth is at
least 4k + 4, are characterized. Note that for k = 1, these correspond to
the well-covered graphs.

N. Dean and J. Zito [9] considered still another generalization of well-
covered. In particular, a graph is called k-eztendable if every independent
set of vertices of size k can be extended to a maximum independent set. One
of a number of interesting results in [9] is a corollary that establishes the
existence of a polynomial time algorithm to test perfect graphs of bounded
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clique size to determine if they are well-covered.

Conclusions

It would certainly seem that a complete characterization of well-covered
graphs, at least in the sense of easy to recognize, is still not on the immediate
horizon. However, determining various subclasses, that are interesting in
their own right, should still be possible. In addition, the concept of all
maximal (or minimal) sets with property P being of one size (such a graph
could be called P-greedy) may well prove to be a useful approach to a
variety of other problems as a simple greedy algorithm would determine
the maximum (or minimum) set with property P.
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