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ABSTRACT. In the last two decades, mathematicians discuss
various transtivities of automorphism groups of designs (i.e.
points, blocks and flag transtivities), from all of these study,
we know that

0< 0*(G,B) - 0%(G,X) < |B| - |X|

for 2 — (v, k, \) designs. (See [BMP]).
In this paper, we discussed the orbit structure of general
combinatorial designs D(X, B), obtained the equalities

u !
0*(G,F) =Y 0*(H(z:), X:) =Y O*((H(B)), By),
=1 =1

where H(z;) and H(B;) are the stabilizers of the point z; and
the block Bj respectively, u = 0% (G, X), | = 0#(G, B).

A design D(X, B) with parameters ¢ — (v, k, A) is an incidence structure,
such that

(1) X is a v-set,

(2) B is a collection of k-subsets of X, and
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(3) each t-subset of X is contained in exactly A members of B. The
elements of X are called points, and the elements of B, blocks. We
shall assume that all the parameters are positive integers, and that
v > k >t (to avoid trivial situations). Also, the members of B must
be distinct; in other words, repeated blocks are not allowed.

For each positive integer s, with 0 < s < ¢, a t-design D(X, B) is also an
s-design. If the given design has parameters ¢t —(v, k, A), then its parameters
as an s-design are s — (v, k, A;), where

_J(v=s8)v=s=1)...(v—t+1)
A"—A(k—s)(k—s—l)...(k-—t+l)°

In particular, we set A\g = b and A\; = r. This means that r is the number
of blocks containing any given point. Thus we have the general equation

-Dhp=(k-N (0<i<i),
and the important case of ¢ = 0 may be written as

ur = bk.

(soe [HIP] and [BW])

We define the flag set F of a design D(X, B) as the set of all pairs (z, B),
where z € X, B € B, and z € B. Clearly, the number of elements of F is
bk or vr.
complete (i.e., b# [',:] ), t>2, and b=v.

An automorphism of a design D(X, B), is a permutation o of X such that
B € B implies that o(B) € B. Furthermore, according to the definition
of flags, for F = (z, B) € F, o(F) € F must also be satisfied. Clearly, the
automorphisms of D(X, B) form a group which acts of X from the left.
Since an automorphism takes blocks to blocks and flags to flags, the group
also has a permutation representation on the block set B and the flag set
F. They are denoted by (G, X), (G, B), and (G, F), respectively.

Let O#(G, F), O#(G, X), and O#(G, B) denote the number of orbits of
(G,F), (G,X), and (G, B),respectively. For each z; € X, welet X; = {B €
B | z; € B}. Clearly, |X;| = r, independent of the choice of z; € X, and
|B] =k for all B € B.

Proposition 1. If G is point transitive, i.e., (G,X) is transitive, then
O#(G,F) < r. Furthermore, O#(G,F) = r if and only if H(z) = H(F)
for any z € X and F € F.

Proof: It is easy to compute |F| = vr = bk and v = |X| = [G: H(z)),
for all z € X since G is point transitive. Let Fy, Fs,..., F,, be a set of
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representatives of orbits for (G, F) such that F; = (z, B;). Hence we obtain
H(z) 2 H(F);

in fact, H(F;) = H(z)N H(B;), for B; €B,j=12,...,w.
From the structure of a design, we have

w w

or=|F| =Y [G: H(F;)| = )_[G: H(z)|[H(=): H(F;)]
i=1 j=1
= [G: H(z)] i[H(z): H(F;)] =v) _[H(z): H(F;)),
Jj=1 j=1

so
r=Y [H@): HF))
J=1
Therefore, » > O#(G,F) since [H(z): H(F})] > 1 for j = 1,2,...,w.
Moreover,

r=O0%*(G,F)
o [H(z): H(F)] =1
& H(z) = H(F;).

Corollary. If G is point regular, then G is flag semiregular and r =
O#(G,F).

Proof: Since H(z) = 1, H(F) = 1; and since H(z) = H(F), r =
O#(G, F). o

Similarly, we have the following:

Proposition 1’. If G is block transitive, then k > O#(G, F). Furthermore,
k = O#(G,F) if and only if H(B) = H(F) for any B€ B and F € F.

Corollary. If G is block transitive, then G is flag semiregular and k =
O#*(G, F).

Let zy,z5,...,7, be a set of representatives of the orbits for the per-
mutation representation (G,X), v = O#(G,X), By, Bs,...,B; be a set
of representatives of the orbits for (G,B), | = O#(G,B). The permuta-
tion representations (H(z;), X;), ¢ = 1,2,...,u, indicates that H(z;) acts
on X;, which is a subset of B, and O*(H(x;), X;) is the number of or-
bits of (H(z;), X;); similarly, O#(H(B;), B;) is the number of orbits of
(H(Bj), Bj), where H(B;) acts on Bj, a subset of X, for j = 1,2,...,1.
We conclude:
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Theorem. (Point, Block and Flag Orbit Theorem)

u {
O*(G,F) = O*(H(z:), X:) = Y_ O*(H(B;), By).

i=1 i=1

Proof: We first prove that O#(G,F) = 3}, O*(H(z;), X;).

Let t; = O¥(H(z;), X;), and let Bj;, Bia, ..., By be a set of representa-
tives of the orbits for (H(z;), X;), 1=1,2,...,u.

We need to prove that the pairs (z;, B;;), 5 =1,2,...,4,i=1,2,... 4,
is a set of representatives of the orbits for (G, F); in other words, we need
to prove that, for any two pairs (z;, Bi;) and (z, Byj),

0(:1:,', B.‘j) 75 (-Ti’, Bi'j')’

foralloc € G. Here j =1,2,...,%,3 =1,2,...,tp,and ¥, i = 1,2,...,u.
Case 1. If i # ¥/, clearly o(z;, Bij) # (zi, Birj), for all o € G since z; and
Ty are not in the same orbit of (G, X).

Case 2. If i = ¢, and j # j’, we also have o(z;, B;;) # (xi, Bij), for all
oc€qG. 5,7=12,...,t;;and i =1, 2,...,u. Otherwise, there exists c € G
such that

o(x;, Bij) = (z, Biyr),

which implies that o(z;) = =, i.e., 0 € H(z:), and 0B;; = B;y. This
contradicts the fact that B;; and B;;- are in different orbits of (H (z;), X;).

For any flag F € F, where F = (z,B) and =z € B, thereis z; and 0 € G
such that oz; = z, then

F= (:L', B) = (O':L’,-, B) = a(xiaa—lB)'

Since z € B, 0~z € 0~ 1B, which implies that z; € 6~ 'B, and 6~ !B € X;.
Hence, there exists 7 € H(z;) and B;;j € X; such that

70" !B = B;;.
Therefore
F =o(z;,07'B) = o7 Yzi,7071B) = a‘r‘l(a:i, B;;).
Moreover,

O*(G,F) = Zu:t,- = zu: O* (H(zs), X:).

i=1 i=1
Similarly, we take the dual of points and blocks and conclude,

{
O#(G: F)= Z O#(H(BJ): BJ)
=1
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Corollary 1. If G is point semiregular, then
O#(G,F) = rO*(G,X).
If G is block semiregular, then ‘
O*(G,F) = kO*(G, B).

Proof: It follows from
O*(H(z;), X;)=r, fori=1,2,...,u,
and
0#(H(Bj), BJ) = k, for ] = 1,2, ey 1.
]

Corollary 2. If G is point transitive, G is flag transitive if and only if
H(zo) is transitive on Xo for some zo € X. If G is block transitive, G is
flag transitive if and only if H(Bp) is transitive on By for some By € B.

Proof: Since G is point transitive, O%(G,X) = 1. G is block transitive,
then O#(G,B) = 1. o

As an example,, Let D(X,B) be a 2 — (32,3, 1) design, where
X=1{0,1,2,...,8}, s0 |X|=9;
B={B;1={0,1,5}, Bs={2,7,8}, By ={3,4,6},
B> = {0,2,6}, Bs ={1,3,8}, Bip = {4,5,7},
B3 ={0,3,7}, By ={1,2,4}, By, ={5,6,8},
By = {0,4,8}, Bs ={1,6,7}, Bi» = {2,3,5}},
so |B| = 12;

F = {(0, B1),(1,B1), (5, B1), (0, B2),(2, B2), (6, B), ...,
(2, B12), (3, B12), (5, B12) },
so |[F| =312 = 36.
The automorphism group G of the 2 — (32,3, 1) design is
(G, X) = {00 =1=(0)(1)...(8),
o1 = (015)(287)(346), o7 = (051)(278)(364),
o2 = (026)(183)(457), a5 = (062)(138)(475),
o3 = (037)(142)(568), 03" = (073)(124)(586),
o4 = (048)(167)(253), o; ' = (084)(176)(235)}
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According to Burnside’s Lemma,

1

O*(G,F) = @

S H{F|o(F)=F forall FinF}| = %(36+0-8)=4,
34
since |F| = 36 and o; fixes no flags fori =1,...,8.
Similarly,
1

u=0%(G,X) = i

z |{(z | o(z) =z for all z in X}| = %(9.1.0.3) =1.
0€G

since |X| = 9 and o; fixes no points for i = 1,..., 8, so we know that (G, X)
is transitive.
1= O*(G,B) = = 5" KB | o(B) = B for all B in B}| = £(12+38) = 4
IG' geCG 9

since |B| =12 and

g1 fixes blocks Bl,Bs and Bg,
o fixes blocks By, Bg and By,...,
oy ! fixes blocks By, Bg and Bys.

Since (G, X)) is transitive, we can choose any point to be a representative
of its orbit, without loss of generality, we choose the point z; = 1, then
H(:n) = (0’0), X = {B | le B,Be B} = {B1,BG,B7, Bg}. Since o9 is
the identity element, the number of orbits

O#(H(z1), X1) = 4.

Since |X;| = 4, we have

O#(G,F) = zu:o#(H(zi),X.-) = O*(H(z1), X1) = 4.

i=1

We know that the number of orbits of (G, B) is 4. Next we need to find
the set of representative of orbits of (G, B).

Since
o1(By) = By, o7} (B1) = By,
o2(B1) = Bs, 03'(B1) = By,
03(By) = By, 03 (B1) = Bs,
04(31) = -891 0'4_1(B1) = B5;
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it follows that {Bj, Bs, Bo} is one orbit of (G, B). Using this method, we
get 4 orbits of (G, B). They are

U= {Bh Bs, B9}a U= {321 Bs, BIO}:
Us= {B3vB71 Bll}: Usg = {B4, Ba, Bl?}-
We choose U = {By, B2 B3, B4} as the set of representative of orbits for
(G,B).
We know that

H(B)) =(o1), H(Bz)=({02),
H(B3) = (03),  H(Bi) = (0a).
Since H(Bj) is transitive on Bj, this implies that O#(H(B;), B;) = 1,

j=12.3,4.
Hence, we have

4
O*(G,F)=) O*(H(B),B:) =4.

i=1
O

As an application of the point, block and flag orbit theorem to
the cohomology of permutation representation on designs, we assume that
(G, X) is a permutation representation of a group G, X is a nonempty set,
A is a G-module, and C*(X; G, A) is the nth cochain group. We have the
well-known theorem of Ernst Snapper (see [S1]):

Theorem. (Snapper)
CU(X; G, A) = CO(X; G, A) = AHX) g @ AH(X),

where @ designates the direct sum of Z-modules. If the action of G on A
is trivial then

CUX;G,A) =C'(X;G,A) 2 A®...0 A,

u times, where {z1,x3,...,%.} is a set of representatives of (G,X), and
u = O#(G, X).

According to the theorem, we have
COF; G, A) = AHP) g @ AH(FY),
COX;G, A) 2 AHE) g . @ AH(),
and
CO(B; G, A) = AHB) @ . @ AH(BY,
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where w = O#(G, F), u = 0%(G, X), and | = O#(G,B); X, B, and F are
respectively point, block, and flag set of the design D(X, B).

When we study the inflation from the cochain group of points C°(X; G, A)
to the cochain group of flags C°(F; G, A), we need to discuss the diagram

AHFR) g @ AHFW) B, COF; @G, A)
1

ap 1 . Tao
AHE) g @ ARG pi CO(X;G, A)

Obviously, we need to know the relationship between w = O#(G,F)
and u = O#(G, X), before we give the definition of the mapping ag. This
motive forces us to discover the point, block, flag orbit theorem, where we
have

u
w=0*(G,F) =3 O*(H(z:), X).
i=1
Based on this result, we define the mapping ay, as the generalized inclusion
mapping such that the above diagram is commutative.

For inflation and deflation between the cohomology group of points H™(X;
G, A), the cohomology group of blocks H*(B;G, A), and the cohomology
group of flags H*(F;G, A), we have studied all of them in detail. (see
[W3]).
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