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ABSTRACT: Recent examples of perfect 1-factorizations arising from dicyclic groups
have led to the question of wheﬁ:cr or not dicyclic groups have symmetric sequencings. For every
positive integer n 2 2, there is a dicyclic group of order 4n. It is known that if n 23 is odd, then
the dicyclic group of order 4n has a symmetric sequencing. In this paper a new proof is given for
the odd casc; a consequence being that in this situation sequencings abound. A generalization of
the original proof is exploited to show that if n 2 4 is even and is not twice an odd number, then
the dicyclic group of order 4n has a symmetric sequencing.

1. Introduction. Suppose G is a finite group of order n with identity e. A sequencing of G is an
ordering
S$: €55, 55,..445,
of all elements of G such that the partial products
t ¢, €5,, €5553, . . ., €5,53° * *Sp

are distinct and hence also all of G. Sequenceable Abelian groups have been characterized [9] as
those Abelian groups with a unique element of order 2. Several infinite families of non-Abelian
groups have been shown sequenceable [1, 3, 5, 8, 14] including some of odd order. It is known
[9] that the non-Abelian groups of orders 6 and 8 are not sequenceable, but in 1983, Keedwell [16]
conjectured that all finite non-Abelian groups of order n, n 2 10 are sequenceable. Recently [4, 5]
this conjecture has been verified for the 86 non-Abelian groups of ordern, 10 S0 <32,

Sequencings have arisen in several mathematical and statistical sitations [3, 9, 15]. Apart
from Keedwell's conjecture, there is interest in finding a certain type of sequencing for dicyclic
groups for a reason now to be explained.

* This paper is an expansion of a talk given at the First Vermont Summer Workshop on
Combinatorics, University of Vermont, June 1987.
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DEFINITION 1. Suppose n 2 2 is a positive integer. The dicyclic group Q,,, is the group

of order 4n defined by
Quu=(albi:0<i<2n-1, 0SjS1, at=¢, b2=al, ba=2a2tlb)

Reference (18] contains two examples of perfect 1-factorizations of the complete graph K, such
that the full symmetry group of the 1-factorization is the dicyclic group Q of order 12
(1-factorizations of K,,, are said to be perfect if every 2-factor union of distinct 1-factors is a
Hamiltonian circuit of the graph). Relatively little is known about the existence of perfect
1-factorizations on K, [2, 13, 19]. It turns out that the above meationed examples can be
interpreted in terms of what is called an "even-starter” induced 1-factorization. It would be of
considerable interest if either of these examples could be shown to be part of an infinite family of
perfect 1-factorizations. As a first step toward attempting to find such a family, it would be useful

to know the answer to the

QUESTION. If n 22, can one exhibit a 1-factorization of K, ., whose symmetry group
contains Q,;,?

This paper settles most of the previously undecided cases in the affirmative.

DEFINITION 2. Suppose G is a group of order 2n with identity e and unique element z of
order 2. A sequencing €, s, . . ., Sp, - « - » Sop Will be called a symmetric sequencing iff
Sp4p=zandfor1<isn-1, spq 4= Gper- rl

If G has a symmetric sequencing and z is the unique clement of order 2in G, then z is in
the center of G. Thus, symmetric sequencings

St € Sg s Sy Sy ..., 57l 5]
have the associated partial product sequence
teb..owlntngltly1%..., 4, Z
In this paper, when G = Z,,,, the cyclic group of order 2n, symmetric sequencings will be writien
additvely. Thus, a symmeic sequencing of Z,y,, would be expressed
83 0,55, 83, ---450 M =Sy ~Sp_ge -+ -+ =530 52
t 0,5, t. ..ot ty4n, 1y 40, ..., b0, DL

The following should now be clear.
LEMMA 1. If s is a symmewic sequencing of Z,,,, then
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i) 2<i<nimpliess;=-5;n49.§+

i) 1si<nimpliest =t ;+n

DEFINITION 3. Suppose G is a group of order 2n with identify ¢ and unique element z of
order 2. Call

E = ({x;, 1} (X5 ¥obo o - {Xpopo ¥ )}
a Jeft even stanter for G iff
i) every nonidentity element of G except one, denoted m, occurs as an
element of some pair of E,
ii) every nonidentity element of G cxcept z occurs in
[xi'lyi. yi'l xj:1sisn-1).

If E is a left even starter for G, define E* = §. UV (e, m) and Q* = [{x, xz} : x € G), with
the understanding that Q* contains unordered pairs so that {x, xz} = {xz, xzz). Think of the
clements of G as labeling the complete graph KiGg. Itis clear that when m # z, E* and Q* arc
disjoint 1-factors of K and one may consider the 2-factor union of E* and Q*. Note thatif G is
Abelian, the adjective "left" may be omitted. '

THEOREM 2.[1). The group G has symmetric sequencing iff G has a left even starter E
such that E* U Q* is a Hamiltonian circuit of Ky}

Itis easy to see [1] that if E is a left even starter for G, then E induces a 1-factorization F(E)
on KiG}4,- Now, results of Ihrig [11, 12] show that the perfect 1-factorizations of K, mentioned
above can be represented as arising via even starters on Q. It follows that Qg has a symmetric
sequencing and hence the basic question of this paper can be rephrased.

QUESTION. If n2 3, does Q,, have a symmetric sequencing?

It is known that for n = 2, Q,, does not have a symmetric sequencing.

One more idea must be introduced.

DEFINITION 4. Suppose H is a finite group of order n with identity e. A 2-sequencing
of H is an ordering ¢, k,, . . ., ky, of certain elements of H (not necessarily distinct) such that

i) the associated partial products e, ek, ekyky.. . ., ekoky: < - ky

are distinct and hence all of H,

ii) ifye Hand y#y1, then



|
Ii:2<isnand (5 =york;=y1))I=2

iii) ifye Hand y = y-1, then
Hi:1<isnandkj=y}i=1.

It is known that Q,, has a unique element z = a" of order 2 and that Q,/Z, = Dy, the

dihedral group of order 2n. The following result is verified in [3).
THEOREM 3. Q,, has a symmetric sequencing iff D, has a 2-sequencing.

Again the basic question can be rephrased.

QUESTION For n 2 3, does Dy, have a 2-sequencing?
In [3] it is shown that if n 2 3 is odd, D, has a 2-sequencing.

It should be noted that 2-sequencings have been studied recently by statisticians [7, 17]
who call the notion a "terrace” and use terraces in the design of certain experiments where a given
plot can be assumed to be equally affected by all neighboring plots. The problem of sequencing
dihedral groups has been considered [4, 8, 10], but only limited results are currently available, It
appears to be much easier to find 2-sequencings for dihedral groups.

The basic aim of this paper is to 2-sequence dihedral groups Dy,n24andneven. Itis
verified that this would follow from the existence of a certain type of 2-sequencing of Z;, n odd,

by means of what is essentially a single construction and a doubling process. Unfortunately, the
best that can be done at preseat is to show that the required type of 2-sequencing exists on Zy,n

odd.
A companion paper [6] overcomes the difficulties that remain in 2-sequencing Dy, neven,
by relaxing the conditions associated with the "certain” type of 2-sequencing of Z,,nodd, but at

the cost of increasing the number of constructions required.

2. The Odd Casc Revisited,  As was stated in the introduction, [3) contains a proof of the
statement that forn 2 3, n odd, D, hasa 2-sequencing. There is an illuminating alternate

argument for this that will now be presented.
LEMMA 4. The following results hold for any dicyclic group Q,, and any
integers i and j.

i) alb=bai



i)  (alb) @*Mb)= ¢

iii) ax=alb  implies x=alib
(aib)x=al  implies x=al-i*Nb

iv) aix=al implies x = aJ-i

v) (alb)x=alb implies x=ai

PROOF. The computations are straightforward.

DEFINITION 5. If G is a finite group with unique element z of order 2, let 3(G)
denote the family of all symmetric sequencings of G and let (G) denote the associated
family of partial product sequences.

By [9), Z(Z)p) # ¢. As before, clements s of X(Z,,) will be expressed as in (1).
Elements C of 3(Q,y) and D of Q(Qy,) will be listed

C e, cpmCops 2, Qn'l . g’l. oz'l

D: e, d,...dy,, dypz, dypl g2,y 692, 2

THEOREM 5. If n 2 3 is odd, then there is a 1-1map % from Z(Z,,) into £(Q,,)
and an associated 1-1 map § from Q(Z, ) into Q(Q,,).

PROOF. Suppose s € 2(Z,,) with associated partial sum sequence t. Define
g =Das follows.
a2+l L j=4i+1,0<i<n-1

a'livb,j=4i+2,0<isn-1
) dj=
a~Rip J=4i-1,1€i<n

a2 ,j=4i ,1<ign

An example and picture will be useful. Consider the following symmetric sequencing of
10°

S. 0. 4, 3' l. 8' 5, 2' 9' 7- 6
v 0478613295

Lift to §(t) = D as in figure 1.



t 0 4 7 8 6 1 3 2 9 5
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Figure 1
It is clear from (2) that D defines a Hamiltonian path through Qup. Itis also clear
that if 5., 5,, € £(Z,,) such that s, #s,, then §(1,) = &(t,) and 1(s,) = %(s,).
Thus, if : 2(Z,) = £(Q,,), itis 1-1 and so is .
Interest now centers on C =1(s). It can be verified algebraically that C has the

right properties. This will be done first and then a more intitive argument will be given.

It is easy to conclude that given D of (2), the associated C has the following

propenties.
i) 0<isn-1 implies ¢, =22+
) 0<i<n-1 implies cjyyy=2aS2i+2
(3)

i) 0Sisn-1 implies cg,,=a2R2i+b
iv) 1<isn  implies c,; =a22i*Np
Claim 1. C contains all elements of Q-
It is clear from (i) and (ii) of (3) that C contains all elements of the form al. Now
consider the elements that arise via parts (iii) and (iv) of (3). Define
Fp={{x.x+n}): xe Z,;).
A, =Yy 0Sisn-1)
Ay =(ty: 1€i<gn)
By the properties of t, A, and A, are choice functions on Fy, such that A, chooses x iff
A, chooses x +n. Since 2x = 2(x +n) in Z,;,, 0 i <n - 1 implies
2ie 2A,N2A,
Thus2A, =2A, = (2i: 0<i<n-1)=-2A, =-2A,. This means
2A,+n={2i+1: 0Sisn-1)

and C contains all elements of the form ajb. Note how this part of the argument fails if n

10



is even.

Claim2. i) cypy4y =12

i) if1<i<2n-1,then cynyyqi = (Coneyi) -

Ifnisodd,then2n+1=3 (mod4) andifdi+3=2n+1,theni=(n- 1)12.

Therefore by (3)
Congy =20t =2

In order to verify (ii), consider the pairs of positive integers k. j such thatk +j =4n + 2.
The argument breaks into several cases depending on the congruence classes mod 4 of k

and j . A single case will give the flavor of all possibilities.

Suppose 4n + 2 = (4i + 2) + 4(n - i). Then by (3)

Caj 42 =27 21241b

and c,(q_ 5y = a"202(n-i)*+Np,
Since 2(n-i) + (2i + 1) = 2n + 1, Lemma 1 implies

L(n-i) = i+ *0
and thus
Can-i) = 82 HHH b = (i) L.

This completes the argument for Theorem 5.

A more intuitive argument might proceed as follows (with several glances at
figure 1). By Lemma 4

aix =a implies x = ai
(a-ib)x = a-jb implies x = a-+j,

Thus the elements of s become the exponents of "a” in alternate positions of C. Clearly all
aK appear and the order of appearance is the same as that of the clements k in s. It follows
that ¢, = z and for j even, Cont14j = ( %+,,j)'1.

Now if t; is in position i of t, then y;+n is in position 2n + 1 - i. Since

[Rn+1)-i)-i=2@m-i)+1

there are an odd number of positions encountered as one moves from position i to position

(2n + 1) - i. What elements of C arise as one “crosses from one side to the other” (see

figure 1) at these positions?

11



Again by Lemma 4,

alix = a’lib implies x=a"2ip

(a"lib)x = ali implies x=a"2itNp
alithx = g(-titn)p implics x=a2ib
(a-(litM)p)x = gli+n implies x=a%itNy

Thus position i and position (2n + 1) - i yield the same pair of inverse solutions with the
same orientation. The odd number of positions from i to (2n + 1) - i means that the
crossings at these positions arc in different directions so that both possibilities arise in C.
The fact that n is odd insures (as argued previously) that all aib arise and it is not hard to
see that the inverse aib pairs occur in symmetric positions.
DEFINITION 6. If G is a finite group, let 65(G) denote the family of all 2-
sequencings of G and let w,(G) denote the associated family of partial product sequences.
There is a result analogous to Theorem 5 connecting 2-sequencings of Z;, and D,
when n is odd.
DEFINITION 7. Suppose n 2 2 is a positive integer. The dihedral group D, is the
group of order 2n defined by
Dp={albl:0<i<n-1, 0Sj<1, af=¢, b2=¢, ba=allb).
LEMMA 6. The following results hold for any dihedral group and any integers i and j.
i) alb=bad
ii) (alb) (ab)=e
iii) aix =alb  implies x =ai-ib
(alb)x = ai implies x = al-ib
iv) aix=al  implies x =al
v) (alb) x = alb implies x = ai-}
PROOF. The computations are straightforward.
THEOREM 7. If n 2 3 is odd, then there is a 1-1 map f from 0,(Z,) into 6,(D_) and an
associated 1-1 map g from W(Z,) into ,(D, ).

12



PROOF. The argument is very similar to that given for Theorem 5. Suppose s € 6,(Z;,)

with associated partial sum sequence t. Define g(t) = D as follows.

al2isl LJj=4+1 ,0€i<(n-1)2

aLi+lp Jj=4i+2 L0<is(n-1)2
) dj=

a™2ib Jj=4i-1 J<igsm- 12

a2 Lj=di JAgigsm-nn

Again, it is clear from (4) that D defines a Hamiltonian path through D, and that f and g are 1-1.
Computation shows that C = f(s) has the following properties.
i) 0Sis(n-1)2impliescy,, =252

i) 05i<(n-3)/2implies c ;5 = 25242

)
iii) 0 <i < (n - 1)/2 implies ¢, , = a2'2i+1b

iv) 1<i<(n-1)2impliesc,, =a22ib
This time it is only necessary to show that C is a 2-sequencing. Parts (i) and (ii) of (5) show that
the elements of form a in C don't violate the requirements for a 2-sequencing of D,. Since nis
odd, (iii) and (iv) of (5) give all clements in D of the form alb and the result follows.
The last part of the above argument fails if n is even because -2Z_# Z_ in that case.
It is now easy to see that when n 2 3 is odd, the following diagrams commute (in all cases,

% is the natural projectdon of the "first half” of the appropriate ordered seis).

A A
QzZ,) —&— Q@Q,) (2,) —— @Q,)
14 l l e n l j- b1
¢ f
0,Z) —£— 0, 0,(Z,) + 0,D,)

As noted previously, £(Z,)) = ¢, soif n 2 3 is odd, it is immediate that 6,(D,) # ¢. Available
data suggest that IZ(Z, )! increases rapidly with n.
Sequencings of dihedral groups have been hard to find and the above result is no help in

finding any.

THEOREM 8. If n 2 3 is odd, then f(6,(Z,,)) contains no sequencings of D,
PROOF. Suppose s € 0,(Z, ) and f(s) = C € 0,(D)).

13



By the definition of the embedding process,

€1 Cq Cgpnena €y g = a’1,2°2,2%,.. ., 2%,

Thus, if f(s) is a sequencing of D, then s must be a sequencing of Z_ and this is impossible for n
odd.

It will be instructive to consider another embedding process that generalizes the original
proof of existence of 2-sequencings of D, n odd. This is an idea that can be successfully
modified to handle the even case.

DEFINITION 8. Suppose G is a group of odd order and PS = { {x, -x): x # 0}

Let 0.;(6)«: oz(G) denote the family of all 2-sequencings s of G such that both
{Sy 840 - 8,4} and {55, 550 . 08}
can be viewed as choice functions on the pairs of PS. Elements of 6(G) will be
called starter-translate 2-sequencings. Let o} (G) denote the associated family of partiai product
sequences.

THEOREM 9. I n 2 3 is odd, then there is a 1-1 map ¢ from 6*(Z,) into 6,(D, ) and

an associated 1-1 map 6 from 0,*(Z) into @,(D,)-

PROOF. Suppose s & 62*(Zn) with associated partial sum sequence t. Define &1) =D

as follows.
e =1
b j=2
al2ip Jj=4i-1 ,1€8istn- 12
© dj=
al2i+l =4 ,1€is(n-1D2
al2 Jj=4i+1 ,1igm- DR
al2i+1p j=di+2 L1gis-1nn

As before, it is not hard to see that D defines a Hamiltonian path through D, and that 8 and ¢ are 1-1.

The following facts can be used to verify that C = ¢(s) £ 6,(D,).
i) (@2b)x =al2 implies x = a-S2i+1b
- ii) @%)x = a'2i+1b implies x = aS2i+1b

jii) (a'2+)b)x = a'2i+2b implies x = a"S2i+2

iv) (aRi+l)x =22  implies x = aS2i+]

14



An example can be constructed using the following member of ©0,4(Z, ).

 0,2,4,10095,8,7,3,6,1
Once again, this method does not yield any scquencings. This follows from (iii) and (iv) of (7) and
the fact that for n odd, Z is not sequenceable.
THEOREM 10. If n 2 3 is odd, then 0(02' (Zn)) contains no sequencings of D_.

3. Sequencings of Certain Dihedral Groups. The construction to be described depends on
Theorem 2 and basic properties of dihedral groups.

It is important to have more detailed information about the left even starter mentioned in
Theorem 2. This information, taken from [1], is given below in the form in which it is used in this
paper.

LEMMA 11. Suppose s is a symmetric sequencing of Z,,, as in (1). If nis odd, then

) E={{uh.... (e tods (e taash - - oo (tnepe ) )
is an even starter for Z,,, (note that t, =0 and t,,;, are not in any pair of E),

i) E+n={{0,)..., {tgo tha)s (tnege thea)s - - -4 (anoas oy )}
is a translate of E.

If n is even, then

i) E={{ty i), .., {tn-2e tng)s {tn41s tads - - -+ (s o))
is an even starter for Z,, (note thatt, =0 and t, arc not in any pair of E),

V) E+n=({0,4),....{th.1 tn)s (g4 tnas3)s - - o4 {ynoai op g })
is a translate of E.

One additional property will be required of the sequencings used in the construction.

DEFINITION 9. If s is either a 2-sequencing of Z,, or a symmetric sequencing of Z,,,
then s will be called special iff there is a y # 0 such that s and the associated partial sum sequence t
begin as follows:

15053 =0,2y, -y
1.0, =02,y

THEOREM 12. If n 2 3 and Z,;) has a special symmetric sequencing, then D, hasa 2-

sequencing.

PROOF. The argument divides into two similar cases. Suppose first that n 2 3 is odd and
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s, written as in (1), is a special symmetric sequencing of Z,,. The aim is to definc a
2-sequencing

C: €, CpCy.naiCopuevvaCyp
of D,,, with associated partial product sequence

D: ¢,dy, dse...,dyp, .o -0 Gype

Define D as follows.
c Jj=1
at2n-2i ,j=4i+2 ,0<5is(n-DR2
atzn-2i-1p ,j=4i+3 ,0sis(n-3)2
al2n-2i+2p ,j=4i ,1€is(n-1)R
al2n-2i+ Lj=4i+1  ,18is(@m-D2
aln+1p ,j=2n+1

dj= at2n-2i+1 ,j=41 ,(n+1)28isn-1
at2n-2ip ,j=4i+1 , (+DR2Si<n-1
atan-2i+1p ,j=4i+2 , (@+1)2<isn-2
aten-2i ,j=4i+3 , (m+DR2<i<n-2
b . j=4n-2
al3b ,j=dn-1
a2 ,j=4n

It can be shown that the associated C is a 2-sequencing of D5y, but it is much more enlightening to

do things another way.

We wish to build a Hamiltonian path D through D, and want the associated Cto be a
2-sequencing. Since s is a symmenric sequencing of Z,,

E={{tat3)..... (tp.1. n)s (a2 tnasds - - -+ (Lineyo o))

is an even starter for Z, .

Step 1. For each pair (1, t;,,} of E, construct two edges {a%, a'i+1b) and {alib, ali+1).
If an edge is part of D, then "wavelling the edge” corresponds to defining an element x of C. By
Lemma 6

alix = ali+1b implies x =ali+1-lib

(alib)x = ali+! implies x = ali-ti+1b,

16



The differences of the pairs of E arc the exponents of a. Since it is immaterial which way one
travels these edges (Lemma 6 (iii)), if they are part of D, then C will contain all aib except possibly
a% = b and a"b. This step and succeeding ones are shown graphically in Figure 2.

Step 2. For cach pair (t;, ;4,) of E, construct the edge (a'ib, a'i+1b). By Lemma 6

(alib)x = ali+1b implies x = ali-ti+1
(a'itib)x = alib implies x = ali+1-U.
IfPS={(1,2n-1},{2,2n-2),...,{n- 1, n+ 1)) and the edges just defined are part of D,
then any orientation of them will force the associated elements x = al of Cto have the property that
the exponents will be a choice function on the pairs of PS.

Step 3. Replace (a'2b, a'3b) by {b, a'3b). Since s is special,

(- )=(t,-0)
and the exponents are still a choice function on the pairs of PS.

Step 4. For cach pair {t;, ;) of E + n, construct the edge {a%, a'i+1}. Again the
associated clements x = al of C will be such that the exponents are a choice function on the pairs of
Ps.

Step 5. Replace {e = a% at2] by {b, a'2b}.

The elements aB, b and alb siill must be added to C.
Step 6. Add edges (e, a'2n}, {aln+1, aln+1b} and {aln+1b, aln),

Itis easy 10 see that all edges defined give a Hamiltonian path D and that C is a 2-sequencing of

t 0 '7. ‘3 tn-l ‘n ‘ml 'nd ln+3 t2:1-2 -1 ‘2::

i
'z

y

o
[
~
e
0~
-

2y

a‘n-fl ;n-rz a‘n+3 gzn-z l;211-1 a‘2n P

—

3 SEES R

b alp &b &b a2 ap g22p g2l ainp

Figure 2
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The solid lines in the t-row of figure 2 are the pairs of E. These go to the pairs of D,
defined in steps 1, 2 and 3. The double lines in the t-row are the pairs of E + n. They go to the
pairs of Dy, defined in steps 4 and 5. The dotted lines in the D part of figure 2 are the three edges
defined in step 6.

A specific example may be constructed from the following ton Z,,,

t 0,4,2,36,1879,5
Suppose now that n 2 6 is even (it is not hard to see - use Theorem 13 - that Z; does not

have a special symmetric sequencing) and s is a special symmetric sequencing of Z,,. The

construction is analogous to the odd case so the definitions can be given without explanation.

Define D as follows.
¢ vi=1
at2n-2i ,j=4i+2 ,0<8is(-2)2
al2n-2i-1p ,j=4+3 ,0<5is(n-2)2
al2an-2i+2p , j=4i ,18isn2
atn-2i+1 »j=4i+1 ,18iSn2
alnp .j=2n+2

dj= 4 al2n-2i ,j=4+3 ,n2<i<n-2

\ at2n-2i+1 , j=4i L (n+2)R<Lign-1

alan-2ip ,j=4i+1 ,(m+2)2<€isn-1
alan-2i+1p ,j=4i42 , (+2)2s8isn-2
b . j=4n-2
al3b , j=4n-1
at2 - , j=4n

As before, the proof will be outlined by considering various parts of the construction. This time
E=({tuy)h.... ltna taa)s (s tnaads - -0 ey t2nd )
is an even starter for Z,;.

Step 1. For each pair (t;, t;,,} of E, construct two edges (al, a'i+1b) and

{a[ib, ali+1 }.

18



Step 2. For each pair {1, t;,, )} of E, construct the edge (a'ib, a'i+1b).

Step 3. Replace {a'2b, a'3b} by {b, a'3b}. Again, this is where the special property is

used.
Step 4. For each pair (1, t;,,) of E + n, construct the edge {ali, ali+1),

Step 5. Replace {e = %22} by {b, a'2b).
Note that, except for the fact that the collections of pairs (t;, t;,, } arc not the same in the two

cases, the first five steps are identdcal. The last steps are not the same.
Step 6. Add edges (e, a'2n), {a'n+1, a'nb) and (a'nb. a'n).
As in the odd casc, the edges define a Hamiltonian path D through D, and the associated Cis a
2-sequencing. Figure 3 is the analogue of figure 2 with the single lines, double lines and dotted

lines playing the same roles.

LAY t3 t112 tn-l tn tnﬂ !n-vz t2n-2 t21'11 "zn
e 312 ‘:3 8"’2 a‘nl aln a‘n-rl a'm! ;‘.'n2 ;2111 £2n e

bWb 2% lp ad  a™lb P a2 a2n-lp anb

Figure 3.
A specific example may be constructed from the following t on Z,,.
r0,21,411,3095,10,7,8,6
In order to apply Theorem 12, it will be necessary to gather information about special
symmetric sequencings.
DEFINITION 10. Suppose G is a finite group of order 2n with identity ¢ and unique
element z of order 2. Letn: G — G/Z, be the natural projection and suppose

stk k... Ky

is a 2-sequencing of G/Z,. Then
Lie k..., 1

is a lifting of s iff for each i,2<i<n, }; € G and n(l}) = k;.
THEOREM 13. Forn 2 3, Z,, has a special 2-sequencing iff Z,, has a special symmetric
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sequencing.
PROOF. Suppose Z,;, has a special symmetric sequencing s. By [3, Theorem 2],
7(s). 7(s,y), . . ., (sy)

is a 2-sequencing of G/Z,. Since x is a homomorphism and s is specia), the 2-sequencing is also

special.

Suppose, conversely, that Z;; has a special 2-sequencing

$: 0,2y,-y,....,8,

®
t 0,2, y.....t,

Represent y as a coset of {O,n} in Z,, so that y = (x,x +n},x € Z,; and 2y = {2x, 2x +n).
The problem is to show that one can always lift to a special symmetric sequencing of Z,,. Clearly
there are four possible ways to lift in the first three positions. ‘

s: 0, 2x, -x s: 0,2x,-x+n s: 0,2x +n,-x s: 0,2x+n,-x+n
@ » () » (© .

t 0,2x,x t: 0,2x,x+n t 0,2x+n,x+n  t 0,2x+n,x.

Of these, (a) and (b) have the right properties to be special but (c) and (d) do not.

There are also restrictions when lifting to a symmetric sequencing. These are listed in the
proof of Theorem 4 of (3] and repeated here.

Casel. v#-v

i) If v (-v similar) appears twice in s, then the two occurrences of v = {x, x + n) must be
lifted to x and x + n.

ii) If v and -v each appear once in s, then each lift of v forces a unique lift for -v. In
particular, if v is lifted t0 x, then -v must be lifted to -x + n and if v is lifted to x + n, then -v must
be lifted to -x.

Case 2. v=-v,v20

In this case v occurs only once in s and can be lifted to either x or x + n.

Now consider (8) from the standpoint of wanting to lift to a symmetric sequencing,

Case A. Either 2y or -y is a non-zero element of order 2 in Zy, (it is easy to see that both

can't be of order 2). One can use either (a) or (b) and extend 10 a lifting of s that will generate a

symmetric sequencing.
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Case B. Neither 2y nor -y has order 2 in Z;.
i) 2y#-yand-2y#-yinZ,
Either (a) or (b) can be extended.
ii) 2y=-y
This implies y = 0, a contradiction.
iii) 2y =-yinZ,,
If 2x = -x in Z,, then (b) can be extended.
If 2x =-x + nin Z,;, then (a) can be extended.
The result follows.
COROLLARY 14. If Z,, has a special 2-sequencing and m 2 1, then D,my, has a
2-sequencing,.
PROOF. This follows from Theorems 12 and 13 and the obvious fact that a special
symmetric sequencing is also a special 2-sequencing.
COROLLARY 15. If m 2 2, then Dym is 2-sequenceable.
PROOF. Itis known [3] that D, and Dy are 2-sequenceable. It is easy to see that Z, does
not have a special 2-sequencing, but Zg does have one as follows.
s:0,23,1,1,46,3
t 02567314

The result follows by Corollary 14.
Since, as has been mentioned, it is known that for n 2 3, n odd, D, is 2-sequenceable, the

entire problem could be setted affirmatively if the following conjecture is tue.
CONJECTURE. If n 2 3, n odd, then Z, has a special 2-sequencing.

Evidence for this conjecture will be presented later when examples of special 2-sequencings
will be given for Z;), n odd and 3 < n <25. Although the conjecture has not yet been verified,

there is a very general result available by means of a single construction. This result (Theorem 18

below) says that "twice” the conjecture is true.
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DEFINITION 11. If n2 5 is odd, then E,y, is a collection of pairs in Zyy, as follows.
(1, 2)

(n,2n-1),(n+1,2n-2},...,[(n+(n-3)2,2n-(n- )2}
{(n+3)12,2n- (n + 1)12)

andifn27,

(3,n-1),{4,n-2),..., {(n- 12, (+5R).

LEMMA 16. If n 25 is odd, then E,; is an even starter for Z,,, such that (]. 2} e Ey

andm=(n+1)2.

PROOF. This is straightforward.

DEFINITION 12. If n 2 5is odd, then H,, is a collection of pairsin Z,;, as follows.
{0, 2}, {1..n}
{n+1,2n-1),(n+2,2n-2),...,{n+(n-3)/2,2n-(n-3)2)
{(n+1)/2,2n- (n- 1)2}, {(n + 1)/2, (n + 3)12)

andifn27,

{(n+5)2,2n-(n+1)2})

andifn29
((n-1)2,(n-12+4}, {(n-3)2,(n-3)2+6},...,{4,n-1).

LEMMA 17. If n2 5 is odd, then H,;, has the following properties.

i) H,p, has n pairs containing 2n - 1 elements,

ii) one element, (n + 1)/2 is in two pairs,

one element, (7 if n =5, 3if n 2 7) is in no pair,

ili) all non-zero clements of Z,;, appear as a difference of some pair of Hypy;

n appears twice in this way,

iv) The pairs of H,;, and E,;, together (Hy, U E,p) form a Hamiltonian path through Z,,

that begins 0, 2, 1.

PROOF. The computations are straightforward.
THEOREM 18. If n 2 5 is odd, then Z,, has a special 2-sequencing.
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PROOF. Itis clear that Hyp, U E,, is the partial sum sequence associated with a special
2-sequencing of Z,,,.
Note that the special 2-sequencing described in Theorem 18 is not a symmetric sequencing.
COROLLARY 19. Ifn2 5 is odd, and m 2 2, then D,my, has a 2-sequencing.
PROOF. This is an immediate consequence of Theorem 18 and Corollary 14.
LEMMA 20. If n =3 and m 2 1, then D,m, has a 2-sequencing.
PROOF. This also follows from Corollary 14 since
s:0,2,2
t 0,21
is a special 2-sequencing for Z.
The only cases still in doubt are those of type Dyp, n 0dd, n 2 5. In [4] a hill-climbing

algorithm is used 1o generate sequencings (hence 2-sequencings) of Dy, 5 <n < 50.

23



L

The following special 2-sequencings were found by various methods. No general
construction has yet been discovered for Z, n odd.

13

1}

2

11,

10,

14,

13,

14,

9.

1.

10, 7,11, 6.

16, 2,14, 4,

9,11, 8,12,

20, 6. 18,22,

11, 17, 10, 7,

24

20,

24,

11,

19,

9. 18



4. Summary. For reasons mentioned in the introduction, it is of interest to show that if
n 2 3, then Q,, has a symmetric sequencing. This is the main goal of the current work.

The first result of this paper (Theorem 5) shows that if n 2 3 is odd, then the number of
symmetric sequencings of Z,;, is a lower bound for the number of symmetric sequencings
on Q,p,. This information has the potential to be of use to statisticians concerned with
certain randomization properties of collections of so-called quasi-complete Latin squares of
a given order [7,17).

The main goal can be achieved by showing thatif n 2 3, then D, has a
2-sequencing. The important idea of a starter-translate 2-sequencing is used (Theorem 9)
to show that if n 2 3 is odd, then D, has a number of 2-sequencings of an especially nice
kind. This idea can be modified (Theorem 12) to attack the case where n 2 4 is even. The

modification used is the notion of a special symmetric sequencing. Because of a doubling
construction (Theorem 13) it would suffice to know when Z, has a special 2-sequencing.

Methods are given that settle this question affirmatively for all even n, n 2 6, but leave the

question unsettled for most odd n. Consequently, the information in this paper allows one
to exhibit 2-sequencings for all Dy, n 2 3, except when n is twice an odd number.

The companion paper [6] takes care of these remaining cases as follows. It
generalizes the "special” idea to infinitely many possibilities that break down into eight
basic types. It is necessary to find constructions for four of these types in order to reach

the desired conclusion.
Considerable simplification would be achieved if a relatively straightforward proof
of the conjecture that Z,,, ., has a 2-sequencing could be found.
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