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Abstract. We give a brief account of some recent results on
edge-colouring simple graphs and of some recent results on the
total-chromatic number of simple graphs. We illustrate the kind
of arguments which have been found to be successful by proving one
of the simpler results on edge-colouring graphs, and by showing how
to apply this to obtain one of the recent results on the total-

chromatic number.

™ This paper was originally presented at the Second Carbondale Combinatorics Conference
in May, 1987.

JCMCC 3(1988), pp. 121-134



Introduction. In this paper an account is given of recent results

of the author, A.G. Chetwynd and P.D. Johnson. wWe are concerned here
with simple graphs, that is finite graphs without loops or multiple
edges. Let A(G) and &(G) denote the maximum and minimum degrees
respectively. An edge-colouring of a graph G 1is a map ¢: E(G) + 46,
where £ is a set of colours, such that no two vertices with the same
colour have a common vertex. The chromatic index X'(G) is the
least number j of colours such that G can be edge-coloured with

j colours. A famous theorem of Vizing [24] says that
AG) € X'(G) S A(G) + 1 .

If x'(G) = 4G , then G is said to be Class 1, and otherwise G
is Class 2. The question of deciding whether or not a graph is

Class 1 was shown by Holyer [21) to be NP-hard. However for certain
types of graph, the problem of classifying Class 2 graphs seems to be

tractible.
If G satisfies the inequality

lv(e)
lE(G) ] > &(6) [-L~?;—l J ,

then G is overfull. Clearly if G is overfull, then [V(G)]| is
odd. An overfull graph has to be Class 2, since no colour-class
of G can have more than l%|V(G)IJ edges. In (8}, Chetwynd and

Hilton made the following conjecture (now slightly modified) .

Conjecture 1. Let G be a simple graph with A4(G) > v ] .

Then G is Class 2 if and only if G contains an overfall subgraph

H with A4(G) = 4A(H) .
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The graph G obtained from Petersen's graph by removing one vertex
is Class 2, but contains no subgraph H with A(H) = A(G) ; this

shows that the figure % in Conjecture ! cannot be lowered.

Conjecture 1 has been proved in a number of cases. Plantholt
((22}, (23]) and Chetwynd and Hilton ((6], [7), [8], (9]) have between

them established the following.

Theorem 1. Conjecture 1 is true if A(G) 2 |v(G)] - 3 .

If G is a regular graph of even order with d(G) 2 %[V(G)I ’
then it is fairly easy to establish that G cannot contain an overfull
subgraph H with A(H) = d(G) . The following results of Chetwynd
and Hilton ((4), [10]) therefore provide additional evidence for

Conjecture 1.

Theorem 2. Let G be a regular graph of even order. If either

aw) 2 &v| ,

d@) 2 [vie | -4,

then G is Class 1.

In [5]), Chetwynd and Hilton proved some further results of a

similar nature. We mention the following two.

Theorem 3. Let G be a graph with r vertices of maximum degree.

If |v(G)| = 2n and
8G) 2n+ 3r-2,

then G is Class 1.
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Theorem 4. Let G be a graph with r vertices of maximum degree,

[viGy; = 2n + 1 and
s
6(G)Zn+-ir-l.

Then G is Class 2 if and only if G is overfull.

The first part of Theorem 2 can in fact be deduced from Theorem 4.

Let GA denote the subgraph of a graph G induced by the vertices

of degree A(G) in G . Fournier (15] proved the following.

Theorem 5. If G is a forest, then G is Class 1.

A

Chetwynd and Hilton [12], together with Hoffman [13), investigated
the graph GA further. Chetwynd and Hilton (12] made the following

conjecture.

Conjecture 2. Let G satisfy
(a6 > (v ]}, ana

(ii) 6(GA) S1.

Then G is Class 1.

Chetwynd and Hilton showed that Conjecture 1 implies Conjecture 2,
so that, in the cases when Conjecture 1 is verified, Conjecture 2 is

also verified. The lower bound on A(G) cannot be lowered further.

In a series of papers ((18], (19], (20]) Hilton and Johnson have
described a number of further interesting consequences of Conjecture 1

in various situations. some of their results are given in [16].
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Now let us turn to total-colourings. A total-colouring of a
graph is a map ¥: V(G) U E(G) + {£ such that no two incident or
adjacent elements receive the same colour. ' Thus if two vertices are
adjacent, then they receive different colours, if two edges have a
vertex in common, then they receive different colours, and if an edge
is incident with a vertex then they receive different colours. The
total-chromatic number XT(G) of a graph G 1is the least number of
colours needed to totally-colour G. A long-standing and fascinating
conjecture made independently by Behzad [l] and Vizing ([25] in

1965 is that
8(G) + 1 2 x.(6) 5 A(G) + 2.
The results to date on this conjecture are rather weak. Recently

Bollobas and Harris [2} showed that if A(G) 2 3917 then

xT(G) b3 %}A(G) . Also Chetwynd and Haggkvist [3) showed that, for

triangle free graphs, XT(G) s %A(G) + 2. We shall call a graph .G
Type 1 if XT(G) = A(G) +1 and Type 2 if XT(G) = A(G) + 2 .
If the Total-Chromatic Number Conjecture is true, then every graph

is Type | or Type 2.

Recently the present author (1) proved the following result about

XT(G) when G has a spanning star.

Theorem 6. Let J be a subgraph of K2n ., let e = IE(J)l and let

J be the maximum size (i.e. number of edges} of a matching in J .

Then

Xp{Ky NEW)) = 20 41

if and only if e+ j £n - 1.
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For regular graphs of high degree, Chetwynd and Hilton (11} have

recently obtained a number of reasonably strong results. These are
summarized in the following chart. In no case is the lower bound

on d{(G) best possible.

d(G) 2 0dd order Even order

§%|V(G)| Type 1 and -
Type 2 characterized

6 -

O Xp(G) € A(G) + 2

2 vie] Xp(G) S d(G) + 3 Xp(6) € 4(6) + 2
Chart 1. Recent results on XT(G) when G is regular.

The characterization when G has odd order and d(G) 2 33|V(G) |

is easily stated.

Theorem 7. Let G be a regular graph of odd order with

dae z Elve| -

Sl

Then G is Type 1 if and only if G , the complement of G ,

contains a subgraph K, UK, U ... UK. , where K. ,K. ,...,K,
i i i — i/ i
1 2 s 1 2 s

are vertex-disjoint complete graphs of orders il"”'is respectively,

where ij is odd and’ 2 3 (1 £ jss), and

Gy + e v 1) = s 2 |vie)| -4 - 1. Otherwise G is of Type 2.

1

For regular graphs of even order, Chetwynd and Hilton made the

following conjecture.
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Conjecture 3. Let G be a reqular graph of even order 2 6 with

4a(G) > %IV(G)] . Then G is Type 1 if and only if G contains a

subgraph K., UK, U ... UK, , where K, , ... , K. are
i LI LU i i === % i ===

1 2 s 1 s )
vertex-disjoint complete graphs of orders il""'is . where lj is

even (1 € j ¢ s) and il .. is = 2n .

Conjecture 3 would be a close analogue of Theorem 7; however it

appears to be very much more difficult to prove.

2. Proof techniques

Our object in this section is to illustrate the rather novel proof
techniques we have found by giving two of the simpler proofs, one of
Theorem 3 on edge-colouring, and one of the inequality
XT(G) S d(G) + 2 for regular graphs of odd order satisfying

d(G) 2 §|v(G)| . The second of these results follows from the first.

Our results are at the moment much less strong than they would
be if we had a more appropriate tool to use than Dirac's theorem [(14]
on the existence of Hamiltonian circuits in graphs satisfying
§G) 2 §|V(G)| . However it is not clear whether, if we had such a
tool, our method is good enough to give the best possible results.

Only time will tell.

Proof of Theorem 3. Suppose that G has r vertices of maximum

degree, has |V(G)| = 2n and satisfies 6(G) 2 n + 3r - 2 .

Let Gr be the induced subgraph of G on the r vertices of
maximum degree. Partition E(Gr) into r matchings, Ml""'Mt N
such that, for | : i y r, M1 1s a maximal (by inclusion) matching in

the graph Gr\(M U...u M) - Using Vizing's theorem, it is

1 1
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clear that B(Gr) can be partitioned into r matchings; then edges
can be transformed between these matchings, if necessary, so that the

maximality condition is satisfied.

Next let Fl,...,F -1 be r-1 edge-disjoint l-factors of G

x
such that Mi c Fi (1 £i s r-1) . We now show that such l-factors

LY

do exist. Let 1 £ 3 r-1 and suppose that Fl""'Fj-l exist and

that (F, U ... U Fj—l) n (Mj Uu...V Mr) = @ ; we now show that Fj

1

exists.

Let H, =GMF U ... UFy ) .

Then

6 H.\V M. 2 6 G) - 'l- - |V{M, .
By Dirac's theorem, if

S \V(M,)) 2 Hlv \vim, '
(5, \V (M) zlvag (J))I

then H,\V(M.,) has a Hamiltonian cycle. But

3 3

S{H.\V(M.}) 2 8(G) - (3-1) - |V(M,
(H,\V (M) G) - (3-1) I(J)I

"

§(G) - (x-2) - |V(Mj)|

§(G) - r +2 - |V(Mj)| ;

also |V(H \V(Mj)l = 20 - V(M;) . Therefore

3

S(H\V(M.)) - E|viH, \v(M,
(H,\V (M) 2l(J (J)l

w

6 -r+2- |V(Mj)l - n + %lV(MJ)l

=6-r+2-n—%|V(Mj)l

L

26-r+2-n-3r
=6 - 3; +2-n
20, since §2n + %; -2.
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Therefore Hj\v(Mj) has a Hamilton cycle (which is necessarily of
even length). Let F, consist of Mj together with alternate edges
of the Hamiltonian cycle. Since Mj was a maximal matching in
Gt\(Ml v...U Mj-l) , it follows that Fj contains no edge of
Mj*l u...u Mr . This shows that a suitable Fj does exist.
r-1
The graph G\(»U Fi) has exactly r vertices of maximum degree,

i=1
and each of these r vertices is joined to at most one other vertex

of maximum degree. Therefore by Theorem 5 (Fournier's theorem),
r-1

G\( U Fi) is Class 1. Working back, it follows that G is also
i=1

Class 1.

This proves Theorem 3.
Now we use Theorem 3 to prove the following.

Theorem 8. Let G be a regular graph of odd order with

aw) 2 glviey| - &

Then

) b3 2

*T(G) da(G) +
Proof. Let IV(G)i =2n + 1 . The theorem is true if n =1 or 2 ,
SO suppose that n 2 3 . Let the vertices of G be Viesse Vo

-adj < 5 < -

and let vj and v(2n-d)+j be non-adjacent for 1 £ j £ 2n-d .
To see that there are such vertices,note that G , the complement of
G , 1is regular of degree 2n-d . By Vizing's theorenm, G can be

edge-coloured with 2n-d+1 colours, and so G has a colour class
with at least

(2n+1) (2n-d) (2n+1) (2n-d) 7 (2n-d) 2 2n-d
2(2n+1-d) 2((2n+1) - §(2n+1) + 1Y 2(1+10/(2n+1))

edges, since 4 2 %(Znel) - %# and n 2 2
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From G form a graph G* by introducing a vertex v* and

joining it to v2n-d+l""'v2n+l . Then G* has d+2 vertices,

v of degree d+1 and 2n-d vertices,

*
2n-a+1’ " V2n+e1’V

Vl""'VZn—d , of degree 4 .

Now let Fl""’FZn-d be edge-disjoint matchings of G* such
that, for 1 £ j § 2n-d , Fj misses the two vertices vj and
. i * i
vj+2(2n-d) ; contains the edge vj+(2n—d)v , and misses no further

vertex. we show now that these matchings do exist.

We pick out these matchings one by one. For 1 £35S 2n-d,
suppose that Fl""'Fj—1 have been constructed. Let
* = *
6y =6 \MF U ... UF,
" .
from Gj by adding in the edges vjv2(2n-d)+j and v(2n-d)+jv2(2n-d)+j

) and let G; be the simple graph formed

if they are not already in G; . If j £ 2n-d-1 then
G(G;) 2 d-(§-1) = @-j+1 2 d-(2n-d-1)+1 = 2d-2n+2 , and if j = 2n-d ,
then 6(0;) 2 d-(j-2) = 2d-2n+2 . Since a2 §(2n+1) - 32, it

follows that

+

3

) 2 12(2n+1) - Zo2042 = n#2 ¢ T - § 2 me2 = F((2041) + 3,

§(6 d

+
since n 2 3 . Therefore, by Lemma 3, the graph Gj contains a

. . . - "
Hamiltonian circuit containing the path vj'v2(2n—d)+j’ v(2n-d)+j’ v
Therefore G; contains a matching Fj which contains the edge

v* misses the vertices vj and v , and misses

Vi+(2n-d) * j+2(2n-a)

no other vertex. Iterating this gives the required matchings
FyreotFong -
Let G** = G*\(F1 u...u F2n-d) . Then G** has 2n-d vertices

v(2n-d)+1""'v3(2n—d) of the maximum degree d+1 - (2n-d-1) = 24-2n+2 ,
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and the remaining vertices have degree 2d-2n+t . Since

a2z g2n+1) - &2, it follows that
§(G**) = 24 - 2n+1 2 (n+1) + $(20-a) - 2,
and so it follows from Lemma 1 that G** is Class |.

From an edge-colouring of G** with the 2d4-2n+! colours,

- 3 £ $
Con-d+1’ " 7%q42 + ¥e form a total-colouring of G with the d+2

colours Cyrev-1Cq,p as follows. Each edge of G which is also an

edge of G** receives the same colour. For 2(2n-d) + 1 £ j § 2n+1 ,

vertex vj receives the colour of the edge vjv* . For 1 & j S 2n-d
i *

the two vertices vy and Van-a+3 and the edges of Fj\{v V(Zn-d)+j}

all receive the colour cj . It is easy to check that this is a

total-colouring of G .

This proves Theorem 8.
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