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ABSTRACT

Let V be a set of v elements. Let G,,G,,...,G,, be a par-
tition of V into m sets. A {G,,Ga,...,.Gm Mrame F with block
size k, index )\ and latinicity g is a square array of side v
which satisfies the properties listed below. We index the rows
and columns of F with the elements of V. (1) Each cell is
either empty or contains a k-subset of V. (2) Let F, be the
subsquare of F indexed by the elements of G,. F; is empty for
1=12,..,m. (3) Let j€G,. Row j of F contains each element
of V=G, u times and column j of F contains each element of
V=G, p times. (4) The collection of blocks obtained from the
nonempty cells of F is a GDD(v;k;G,,Gy,....Gmi0N). If
|G| =k for i=1,2,.,m, we call F a (u)\k,m,hk}frame.
Frames with p=X=1 and k=2 were used by D.R. Stinson to
establish the existence of skew Room squares and Howell
designs. (1,2;3,m,h)-frames with A=1,3 and 6 have been stu-
died and can be used to produce KSy(v;1,2)s. In this paper,
we prove the existence of (2,4;3,m,kh }rames for h=3 and 6
with a finite number of possible exceptions. We also show the
existence of (2,4;3,m,1)frames for mmi1(mod12). These
frames can be used to construct KSy(v;2,4)s.

1. Introduction.

Let V be a set of v elements. Let G|,G,,....G,, be a partition of V
into m sets. A {G,,G,....Gp rame F with block size k, index X\ and
latinicity p is a square array of side v which satisfies the properties listed
below. We index the rows and columns of F by the elements of V.

(1) Each cell is either empty or contains a k-subset of V.

(2) Let F, be the subsquare of F indexed by the elements of G,. F, is
empty for s=1,2,...,.m.

(3) Let j€G,. Row j of F contains each element of V=G, u times and
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column j of F contains each element of V=G, u times.

(4) The collection of blocks obtained from the nonempty cells of F is a
GDD(v;k;G,,G3....Gmi0,A). (See [14] for the notation for group
divisible designs (GDD).)

If there is a {G,,G,,....G, Mrame H with block size k, index \ and latini-

city p such that

(1) H,=F, fori=12,..,m and
(2) H can be written in the empty cellsof F — |J F,,

1=]
then H is called a complement of F' and denoted F. The superposition of
F and F, FeF, is a {G,,G,,...,.Gn }-frame with block size k, index 2\ and
latinicity 2¢. If |G,| =h for i=1,2,..,m, we call F a (g,\;k,m,h)}-frame.
If a2 complement of F exists, we call F a complementary (u\;k,m,h}
frame.

Existence results for {G,,Gs,...,G,, Mrames with k=2, u=1 and A=1
and for a special type of complementary frame with k=2, p=X=1 (called
a skew frame) can be found in [10]. These frames were used to establish
the existence of skew Room squares and the existence of Howell designs,
H(s,n) (see [10]).

Frames with k=3 have also been considered. For k=3, u=1, A\=1
there are few results. A (1,1;3,14,2) and a (1,1;3,20,2) are known to exist
((2])-

Frames have also been investigated for k=3, p=1 and A=2. The
following results appear in [3].

Theorem 1.1. There ezist (1,2;3,m,3)-frames for m=5 ezcept possibly
Jor m €{6,10,14,16,18,20,22,24,26,28,30,32,34,38,39,42,43,44,
46,47,51,52,59,118,123}.

Theorem 1.2. There eriet (1,2;3,m,6)-frames for mZ5 ezcept possibly
for m €{10,11,14,15,17,18,19,20,23,24,27,28,32, 34, 39}.

These frames were used to construct KSy(v;1,2)s for vm3(mod12) in [6].
Similarly, KSs(v;2,4)s can be constructed from (2,4;3,m,h)frames and
complementary (1,2;3,m,h }-frames [7].

In this paper, we establish the existence of (2,4;3,m,h }frames for
h=3 and h=6 with a [inite number of possible exceptions in each case.
The next section contains constructions for (2,4;3,m,h)}frames. The
existence results for h=3 and h =6 are in section 3. In the last section, we
prove the existence of (2,4;3,m,1}-frames for mm1(mod12).
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2. Constructions

Before describing the main recursive construction for frames, we
recall the definition of a pairwise balanced design. A pairwise balanced
design, denoted PBD(v;K), is a collection B of subsets [called blocks) of a
finite v-set of elements V such that every pair of distinct elements of V' is
contained in precisely one block of B and for each b€B, | b| €K, where K
is some subset of positive integers. We state and prove the construction in
the most general form; a special case of it was used in [3].

Theorem 2.1. Let K be some subset of positive integers. If there ezists
a PBD(v;K) such that for each €K there is a (p,):k,€,h)-frame, then
there is a (p,\;k,v,h)-frame. If the (u Nk ,&,h)-frames are all complemen-
tary, then the (u;\;k,v,h)-frame is also complementary.

Proof. Let V = {z,z, ...,z,} and let H = {1,2,..,k}. Form a vhXvh
array F with the rows and columns of F indexed by the elements of VX H.
Let D be a PBD(v;K) defined on V. Let B be a block of D of size €. The
rows and columns of F indexed by the elements of BXH form an £h X¢€h
subarray. Replace this subarray by a (u,);k,€,h )}frame defined on BXH
where the holes of the frame are indexed by {6}XH for $€B. Do this for
all of the blocks in D. The resulting array is a (g,\;k,v,k}frame. O

It will be useful to have a frame singular direct product. We general-
ize the product stated in [3]. For completeness, we include the proof.

Theorem 2.2. If there is a (complementary) (u,\;k,m h)-frame contain-
ing a (complementary) (p,\k,nh)-frame (n20), a (complementary)
(uN:k,8,h')-frame and three mutually orthogonal Latin squares of side
h ";1,-') , then there is a (complementary) (u,\;k,8(m —n)+n,k)-frame.
Proof, Let V = {z},z},..,2}.| i=12,.,¢} and let G, = {z},z},...,z}-} for
' 1:%2 Zm-n 1 A
i=12,..,. Let H= Let W=1{1.2..H} and let
N = {=;®, ..., o,}

Let L;,L, and Ly be a set of three mutually orthogonal Latin squares
of side H. L will denote the array of triples formed by the superposition of
L\L; and Ly. L, is the HXH array formed by replacing each triple
(a,b,c) in L with the triple (a,.b,,c;) where o, €H X{i}, b,€HX{;} and
Ci eHX{k}

Let F be a (p\;k,s,h’ }rame defined on V. F is a {G,,G,,....Gn
frame. Construct an hs(m—n)Xhe(m —n) array A from F by replacing
each triple (z,y,z) in F with the HXH array L,,, and by replacing each

hl

137



empty cell in F with an HXH empty array. A contains a diagonal of &
(m=n)h X(m—n)h empty arrays.

Let T, be a (u,);k,m,h)frame defined on (WXG,)JUN which con-
tains a (. \:k,n,h)rame defined on N. Let T denote the (uXk,n,h})
frame. T, can be partitioned as follows.

T | R|} nh

=
[l

C,| K|} (m=n)

We construct a new array B from A and the T.,'s. .B has size
h{s(m—=n)+n}Xh{s(m=n)+n}.

T R, R, - - R,
c, K, A

B =
C; K,

It is straightforward to verify that B is a (p,)\k,s(m—n)+n h}frame

defined on (WXV)UN. If each of the frames used in the construction is

complementary, then the resulting array B is also a complementary frame.
0

The next result uses complementary (1,2;3,m,1}-frames to construct
(2,4;3,m ,3)-frames.

Theorem 2.3. If there erists a complementary (1,2;3,m,1)-frame and o

set of three mutually orthogonal Latin squares of side m with a common
tronsversal, then there is a (2,4;3,m 3)-frame.
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Proof. Let V, = {1,,2,,..,m,} for i=123. Let F, be a complementary
(1,2;3,m,1)-frame defined on V, such that cell (i,i) is missing the element
i,. F, will denote the complement of F,.

Let L,,L, and Ly be a set of three mutually orthogonal Latin squares
of side m with a common transversal. Suppose L, is defined on V,. Let h
be the array of triples formed by the superposition of L,,L, and Ly, We
may assume that cell (i,i) of L contains the triple {i,i,is} for
1=1,2,...m. Delete the main diagonal of L and call the resulting array L’.

We construct a new array A as follows.

Fl°?2 Fs L'
A= Fa F]°Fz L'
L L

s
A is a (2,4;3,m ,3)-frame definedon JV,. O

1=1

The last copstruction in this section uses doubly resolvable (v,3,1}
BIBDs to construct (2,4;3,m,1)-frames.

Theorem 2.4. If there ezists a doubly resolvable (2n +1,3,1)-BIBD, then
there is a (2,4;3,n,1)-frame.

Proof. Let N = {1,2,..,n} and let V = (NX{1,2})U{x}. Suppose D is a
DR(2n +1,3,1)-BIBD defined on V such that the main diagonal of D con-
tains the triples {®,i,,i,}. Delete the main diagonal of D and replace i,
with the element ¢ and ¢, with the element ¢ for i =1,2,..,n. The resulting
array has index A\=4 and latinicity p=2. It is a (2,4;3,n,1)-frame defined
onN. O

3. Exlstence of (24;3,m,h}-frames for 1 =3 and h =6

In this section, we prove the existence of (2,4;3,m,h}-frames for h=3
and A=6 with a finite number of possible exceptions for m. In the case
h =6, we establish the existence of complementary (1,2;3,m ,6}-frames and
thus, from our remarks in section 1, the existence of (2,4;3,m ,6)-frames.

In order to apply the main recursive construction, Theorem 2.1, we
will need the existence of certain classes of pairwise balanced designs. The
first lemma was proved in [3].
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Lemma 3.1. Let k€{1,2,3,4}. If there is a set of 3+ k mutually orthogo-
nal Latin squares of side s, then there 18 & PBD(Ss+i,+i,+. . .+i};
{s,i1,.00x,5,5+1,..,.5+k}) where 01, Ss.

Lemma 3.2. If there is a resolvable (12n+4,4,1)-BIBD, then there is a
PBD(16n +5,{5,4n +1}).

Proof. Let D be a resolvable (12n +4,4,1}BIBD. Let R,,....R,, ., be the
resolution classes of D. Add a new element z, to each block in R, for
i=1,2,...,4n+1 and add a pew block {z,,z4..,21+,} to the resulting
design. D

We will also make use of the well known existence result for (v,5,1)-
BIBDs: a (v,5,1)-BIBD exists if and only if v=1 or 5(mod20) (Hanani [4]).

The recursive constructions for frames require the existence of some
small (2,4;3,m,h}-frames for h=1,3 and 6. We construct these frames
using starters and adders (see (3], [8] for definitions).

Lemma 3.3. (i) There is a (2,4,3,6,3)-frame.

(i1) There exist complementary (1,2;3,m ,3}-rames for m=5,7,8,9,11,13,15
and 17.

Proof.

(i) A starter for a (2,4;3,63)frame is ({11,13,14},{3,17,16},
{4,14,5},{8,9,16},{2,15,17}.{2,7,9}.{1,3,10},{1,4,8},{5,10,13},{15,7,11}).
A corresponding adder is (2,11,3,13,5,1,10,15,4,8).

(ii) In Table 3.1, we list starter-adder pairs for (1,2;3,m ,3}-frames and
their complements for m=35,7,8,9 and 11. For m=13,15 and 17, the
starters for a (1,2;3,m,3)}-frame and its complement are SU-S
where S is given in Table 3.2. The adders are A;U—A,; and
A,U—A, respectively. All of the starters for these tables were taken
from [3]. O

Lemma 3.4. There ezist complementary (1,2;3,m,6)-frames for
m=5,6,7,8,9 and 13.

Proof. In Table 3.3, we list starter-adder pairs for (1,2;3,m,6)-frames and
their complements for m=5,6 and 7. For m=8,9 and 13, the starters for
a (1,2;3,m 6)}frame and its complement are SU=S where S is given in
Table 3.4. The adders are A,U~A, and A,U=A, respectively. These
starters were also found in [3]. O
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Lemma 3.5. There ezist (2,4;3,m,3)-frames for m=16 and m=19.

Proof. We list starters and adders for complementary (1,2;3,m,1}-frames
for m=16 and m=19. We then apply Theorem 2.3 to coonstruct

(2,4;3,m ,3}-frames for m =16 and m =19.

m=16
Frame S 346 13147 91115 2510 8121
A 2 13 4 7 6
Complement S 131210 329 751 14116 8415
A 14 3 12 9 10
m=19
Frame S 14153 126 91117 5710 13164 81218
A 2 7 1 15 10 3
Complement é $416 181713 1082 14129 6315 1171
A 17 12 18 4 0 16
(]

We can now prove the existence of (2,4;3,m,h}-frames for h =3 and
h=6 with a finite number of exceptions in each case. We consider three
cases: 58Sm=126, 126sm =729 and m2630.

Lemma 3.8. There ezist (2,4;3,m,3)-frames for 55m =126 except possi-
bly for m €N = {10,12,14,18,20,22,24,27,28,32,34,39}.

Proof. We consider four cases.
(i) S5=m=39(mgN).

m Construction

5 Lemma 3.3

6 Lemma33

7 Lemma 3.3

8 Lemma3.3

9 Lemma3.3
11 Lemma 3.3
13 Lemma 3.3

15 Lemma 3.3
16 Lemma 3.5
17 Lemma 3.3
19 Lemma3.5

21 (21,51)}BIBD Thm. 2.1
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(ii)

(iii)

(iv)

25 (25,51)}BIBD Thm. 2.1
26 5.5+1 Thm. 2.1 (Lemma 3.1)
29 7(51)+1 Thm. 2.2
30 PBD(30;{5,6}) Thm. 2.1
31 (31,6,1}BIBD Tbm. 2.1

33 8(5-1)+1 Thm. 2.2

35 5.7 Thm. 2.1 (Lemma 3.1)
36 5.7+1 Thm. 2.1 (Lemma 3.1)
37 5.7+1+1 Tbm. 2.1 (Lemma 3.1)

38 5.7+1+41+1 Tbm. 2.1 (Lemma 3.1)

40=m =64

We can write m =5.8+1,+i,+iy where i,€{0,1,5,6,7,8}. Since there
are 7 mutually orthogonal Latin squares of side 8 and (2,4;3,k,3)
frames for k€{0,1,5,6,7,8}, we apply Theorem 2.1 (Lemma 3.1) to
construct (2,4;3,m,3)}-frames.

65sm=80

We can write m=59+1i,+1,+iy+i, where 1,€{0,1,5,6,7,8,9}. Since
there are 8 mutually orthogonal Latin squares of side 9 and
(2,4;3,k,3)-frames for k €{0,1,5,6,...,.9}, we can construct (2,4;3,m 3}
frames by applying Theorem 2.1 (and Lemma 3.1).

80sm =126

We can write m=5.16+1{,+i,+iy+i, where 1 €{0,15,.,9,16}.
Since there are 15 mutually orthogonsl Latin squares of side 16 and
(2,4;3,m,3)}-frames for k€{0,1,5,...9,16} we apply Theorem 2.1 (and
Lemma 3.1) to construct (2,4;3,m 3)-frames. O

Lemma 3.7. There ezist complementary (1,2;3,m,6)-frames for
5Sm=126 ercept possibly m€M={19,11,1214,...,20,22,23,24,27,28,
32,34,39,114,115,116,118,1 19,122,123,124}.

Proof.

(i)

5=m=39 (mgM)

m Construction
5 Lemma 3.4
6 Lemma 3.4
7 Lemma 3.4
8 Lemma34
9 Lemma 3.4
13 Lemma 3.4
21 (21,51)}BIBD Thm. 2.1
25 (25,5,1}BIBD Thm. 2.1
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(ii)

(iii)

(iv)

26 5.5+1 Thm. 2.1 (Lemma 3.1)
29 7(5-1)+1 Thm. 2.2
30 PBD(30;{56}) Thm.2.1
31 (31,6,}BIBD Thm. 2.1

33 8(5-1)+1 Thm. 2.2
35 5.7 Thm. 2.1 (Lemma 3.1)
36 5.7+1 Thm. 2.1 (Lemma 3.1)
37 5.7+1+1 Thm. 2.1 (Lemma 3.1)

38  5.7+1+1+1 Thm. 2.1 (Lemma 3.1)

40sm=<80

We apply Theorem 4.1 (and Lemma 4.4) as in Cases (ii) and (iii) of
Lemma 3.6.

81sm=113

We can write m=5.13+1i,+i,+is+i, where 1 €{0,15,.,9,13}.
Since there are 12 mutually orthogonal Latin squares of side 13 and
complementary (1,2;3,k,6)-frames for k €{0,1,5,...,9,13}, we can con-
struct complementary (1,2;3,m,6)}-frames by applying Lemma 3.1 and
Theorem 2.1.

1145m =126, mgM.

m Construction

117 16.745 Thm. 2.1 (Lemma 3.2)
120 PBD(120;{5,6}) Thm. 2.1

121 (121,5,1}BIBD Thm. 2.1

125 (125,5,1}-BIBD Thm. 2.1

126 (126,6,1}BIBD Thm. 2.1

(a]

Lemma 3.8. (i) There exist (2,4;3,m,3)-frames for 125Sm =729,
(i) There exist complementary (1,2;3,m ,6)-frames for 1255m =729.

Proof. We consider four cases.

(i)

(ii)

125=m =209,

We can write m=5.25+14,+ 1,413+, where 1, €{0,1,5,6,7,8,9,21,25}.
Since there are 7 mutually orthogonal Latin squares of side 25 and
(2,4;3,k,3)-frames and complementary (1,2,;3,m 6)frames for
k€{0,1,5,..,9,21,25} (Lemmas 3.6-7), we apply Theorem 2.1 and
Lemma 3.1 to construct the appropriate frames.

210=m s335.
We can write m=5414+¢,+i,+ig+5, where
i,€{0,1,5,....9,21,25,26,29,30,31,33}=1I,. Since there are 7 mutually
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orthogonal Latin squares of side 41 and (2,4;3,k,3}-frames and com-
plementary (1,2;3,k,6)-frames for k €/,U{41}, we can apply Lemma
3.1 and Theorem 2.1.

(iii) 335sm=465.
We can write m=5.67+1,+i,+iy+i, where i, €],. Since there are 7
mutually orthogonal Latin squares of side 67 and (2,4;3,k,3)-frames
and complementary (1,2;3,k,6)-frames for k €7,U{67}, we can apply
Lemma 3.1 and Theorem 2.1.

(iv) 465sm=729.
We can write m=5.81+1,+i,+is+i, where i, €/,U{35,...81}. Since
there are 7 mutually orthogonal Latin squares of side 81 and
(2,4;3,k,3)-frames and complementary (1,2;3,k,6)frames for
k €{35,...,81}U],, we can apply Lemma 3.1 and Theorem 2.1 again.
o

Finally, we combine these results to prove the following.

Theorem 3.9. (i) There ezist (2,4,3,m,3)-frames for mZ5 ezcept possi-
bly for m € N={10,12,14,18,20,22,24,27,28,32,34,39}.

(ii) There exist complementary (1,2;3,m ,6)-frames for m =5 except possi-
bly for mé€M={10,11,12,14,...,20,22,23,24,27,28,32,34,39,114,115,116,
118,119,122,123,124}.

Proof. From Lemma 3.6, there exist (2,4;3,m 3)}frames for
m€{5,...,126}-N. Lemma 3.8 provides (2,4;3,m,3}frames for
125sm =729. Similarly, from Lemma 3.7 there exist complementary
(1,2;3,m ,6)-frames for m €{5,...,126}— M and Lemma 3.8 provides comple-
mentary (1,2;3,m,6)-frames for 125=sm =<729.

Let m=630. We write m=5s+1 where 82125 and i €{5,6,7,8,9}.
Since there are 4 mutually orthogonal Latin squares of side 5 and
(2,4;3,k,3)-frames and complementary (1,2;3,£,6)-frames for
k€{56,7,8,9,s}, Theorem 2.1 and Lemma 3.1 can be applied to construct
the appropriate frames. O

4. Exlstence results for (2,4;3,m,1}-frames

A npecessary condition for the existence of a (2,4;3,m,1}frame is
mm1(mod3). In this section, we prove the existence of (2,4;3,m,1)}-frames
for mm1(mod12). Since the proof uses the frame singular direct product
(Theorem 2.2), we require the existence of (2,4;3,m,1)}frames for some
small values of m. (1,2;3,m,1}-frames have been constructed by using star-
ters and adders for m=10,16,19,25 and 28 in [1]. Certain classes of
(1,2;3,m,1)-frames were constructed in [13] by using algebraic techniques to
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find starters and adders. We use some of those constructions and Theorem
2.4 to prove the following result.

Lemma 4.1. There ezist (2,4;3,m,1)-frames for m=13,16,19,25,31,37,
40,43 and 49.

Proof. For m=13,19,25,31 and 40, there exist DR(2m +1,3,1)}-BIBDs ([3],

(8], [10], [11]) and we can apply Theorem 2.4. A (2,4;3,16,1)}-frame was

constructed using starters and adders in Lemma 3.5. We list starters and

adders for complementary (1,2;3,m,1)}-frames for m =31,37 and 43.

(i) m=31. We define a starter in Z%,;=2,~{0}. Let M={3'93"1}.
We define M3’'={3!9*73%*J 3/} A starter S for a complementary
(1,2;3,31,1-frame is (M,M3%M3°% ..., M37). An adder for S is
(13%3%..,37) and an adder for a complement s
(320'323’320’329,3’34’37’310'313'316).

(ii) m=37. We define a starter in Z*,;. Let M={1,2,19}. A starter S
for a complementary (1,2;3,37,1)-frame is (M,M2°, M2, . M2%). An
adder for S is (277,2%,2%,2%,22 25 28 911 914 917 920 92%) 3nd ap adder
for a complement is (2%,2,24,27,210,213 216 19 922 935 08 031)

(iii) m = 43. We define a starter in Z*,. Let M = {1,313%}. A star-
ter S for a  complementary (1,2;3,43,1)-frame s
(M,M3%M3®,.. ,M3%). An adder for S is (1,3%23°..,3%°) and an
adder for a complement is
(31‘,317’320'323'320'329,332,385,338'34l'3,34'37'310).

(iv) Consider GF(7%) generated by f(z) = z?+z+3 and let a be a primi-
tive element such that f{a)=0. If M = {a%a',a'} then
(a® M:0=i=<15) is a starter and (= a*(a®+a'+a'):0si<15) is an
adder. A complementary adder is (a®*1:05is13). o

We can now prove our main result for (2,4;3,m,1)-frames.
Theorem 4.2. For mm1 (mod 12) there is a (2,4;3,m,1)-frame.

Proof. Let m = 12n+1. There exist (2,4;3,12n+1,1}-frames for
n=0,1,2 and 3 (Lemma 4.1). If there exists a (2,4;3,n,3}-frame, then since
there is a (2,4;3,13,1}-frame and three mutually orthogonal Latin squares of
side 4, we can construct a (2,4;3,12n +1,1}-frame by applying Theorem 2.2.

Let N, ={10,12,14,18,22,24,32,34}, N, = {24,27,.39}  and
Ny = {20,28}. Let N = N,UN,UN;.

Since there exist (2,4;3,n,3)}-frames for n =5 and ngN (Theorem 3.9
(i)), we can construct (2,4;3,12n +1,1)-frames for n=5 and ngN.
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Since there is a (2,4;3,25,1)}-frame and three mutually orthogonal
Latin squares of side 8, we apply Theorem 2.2 to construct
(2.4;3,24n+1,1}frames for n=5 and ngN. This will construct
(2,4;3,12n +1,1)}-frames for n €N,. Similarly, using a (2,4;3,37,1)}-frame
and three mutually orthogonal Latin squares of side 12, we construct
(2.4;3,36n+1,1}frames for n=5 and ngN. This will provide
(2,4;3,12n +1,1}-frames for n €N,

We now consider the remaining two values: n = 20 and n = 28.
There exist a (2,4;3,16,3)-frame, a (2,4;3,16,1)-frame and three mutually
orthogonal Latin squares of side 5. We can apply Theorem 2.2 to con-
struct a (2,4;3,16.3.5+1,1)frame. This is a (2,4,3,20.12+1,1}frame.
There exist three mutually orthogonal Latin squares of side 7, a
(2,4;3,8,6)-frame and a (2,4;3,43,1}-frame. We apply Theorem 2.2 once
mote to copstruct a (2,4;3,8.6.7+1,1)-frame or a (2,4;3,12.28+1,1}-frame.

a

Finally, we note the following asymptotic result for (2,4;3,m,1}-
frames.

Theorem 4.3. There exists a constant m, suck that for all m&m, end
m =] (mod 3) there ezists a (2,4;3,m,1)-frame.

Proof. This follows immediately from the existence result for
DR(2m +1,3,1)-BIBDs (8] and Theorem 2.4. o
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Table 3.1

Starters and adders for complementary (1,2;3,m 3}-frames for m=5,7,8.9

and 11

m=J
Frame

Complement

m=7
Frame

Complement

m=8§

Frame

Complement

m=9

Frame

Complement

m=11
Frame

ESLoY

> n

) > |0 > 0 ||

»

|0

123
2
111518
3

-5
—-A

123
2
1217 20
23

-5
25
4

128
15
132120
27

-S
—-A

2911 347
7 L}
8 11

3820 41315
12 9

19 16

4713 51223
18 7

4610 §1519

15 5
14 21 26

12

12 22

15

469 5815

30 16
142428 162032
13 10
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6814
13

6919
10

17

61721
20

71324
10

17

719025
28
17 26 31
12

101218
13

20

91419
1

816 33
6

21

10 23 30
2

11 16 17
1

10 20 22
13

112225
17

10

121827
1



Table 3.2

Starters and Adders for complementary (1,2;3,m,3)}-frames for m=13,15
and 17

m=13
Starter S 2327 6817 71015 163438 41420 92128
A, 8 38 2 20 33 12
Ag 3 21 10 16 17 14
m=15
Starter S 134 81317 102127 71436 62533 51929
Ay 2 9 8 40 32 27
Ag 1 11 25 6 28 4
22234
19
29
m=17
Starter S 1237 3524 132023 122125 61135 91529
Ay 2 40 12 44 25 15
A, 1 3 43 46 41 13
83341 43244
20 18
29 37
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Table 3.3

Starters and adders for complementary (1,2;3,m ,6)-frames for m=5,6,7

m=5
Frame S 123 4812 61820 72124 01622 111423
A 1 19 8 22 2 28
131927 172628
] 21
Complement E_ S
A 6 24 13 27 7 3
14 26
m=
Frame S 123 470 5828 1019032 111526 132333
A 2 13 s 19 8 14
142229 162135 172534 202731
21 10 27 1
Complement :_5_'_ -5
A -A
m=7
Frame S 31622 183036 41924 51034 112731 2633
A 31 33 37 1 3 s
1726290 13240 203739 152325 121338 8941
6 20 24 25 26 27
Complement S -S
A 8 9 10 11 15 20
30 32 LY 10 2 4
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Table 3.4

Starters and adders for complementary (1,2;3,m ,6)-frames for m=8,9,13

m=8
Starter S 21117 252030 4641 31522 11821 51028
A, 19 22 1n 35 ] 9
Az 18 34 45 47 21 2
14 35 36
6
17
m=9
Starter S 124 3713 51031 62140 82537 112435
A 6 21 38 11 15 14
A, 4 30 25 7 49 44
122634 152238
11 20
32 1
m=13
Starter S 21627 41928 12330 82420 52225 171836
A, 74 70 76 35 48 27
A, 1 3 11 69 20 66
324467 204757 71543 3041 61040 121445
5 28 17 59 21 24
25 23 31 7 ' 15
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