On the existence of (2,4;3,m,h)-frames for h=1,3 and 6

E.R. Lamken and S.A. Vanstone

ABSTRACT

Let V be a set of v elements. Let $G_1, G_2, ..., G_m$ be a partition of V into m sets. A $\{G_1, G_2, ..., G_m\}$ -frame F with block size k, index λ and latinicity μ is a square array of side v which satisfies the properties listed below. We index the rows and columns of F with the elements of V. (1) Each cell is either empty or contains a k-subset of V. (2) Let F_i be the subsquare of F indexed by the elements of G_i . F_i is empty for i=1,2,...,m. (3) Let $j \in G_1$. Row j of F contains each element of V-G, μ times and column j of F contains each element of $V-G_1$ μ times. (4) The collection of blocks obtained from the nonempty cells of F is a GDD($v;k;G_1,G_2,...,G_m;0,\lambda$). $|G_i| = h$ for i = 1, 2, ..., m, we call F a $(\mu, \lambda; k, m, h)$ -frame. Frames with $\mu = \lambda = 1$ and k = 2 were used by D.R. Stinson to establish the existence of skew Room squares and Howell designs. (1,2;3,m,h)-frames with h=1,3 and 6 have been studied and can be used to produce $KS_3(v;1,2)s$. In this paper, we prove the existence of (2,4;3,m,h)-frames for h=3 and 6 with a finite number of possible exceptions. We also show the existence of (2,4;3,m,1)-frames for $m=1 \pmod{12}$. frames can be used to construct $KS_3(v;2,4)$ s.

1. Introduction.

Let V be a set of v elements. Let $G_1, G_2, ..., G_m$ be a partition of V into m sets. A $\{G_1, G_2, ..., G_m\}$ -frame F with block size k, index λ and latinicity μ is a square array of side v which satisfies the properties listed below. We index the rows and columns of F by the elements of V.

- (1) Each cell is either empty or contains a k-subset of V.
- (2) Let F_i be the subsquare of F indexed by the elements of G_i . F_i is empty for i=1,2,...,m.
- (3) Let $j \in G_i$. Row j of F contains each element of $V G_i$ μ times and

column j of F contains each element of V-G, μ times.

(4) The collection of blocks obtained from the nonempty cells of F is a $GDD(v;k;G_1,G_2,...,G_m;0,\lambda)$. (See [14] for the notation for group divisible designs (GDD).)

If there is a $\{G_1,G_2,...,G_m\}$ -frame H with block size k, index λ and latinicity μ such that

- (1) $H_i = F_i$ for i = 1, 2, ..., m and
- (2) H can be written in the empty cells of $F \bigcup_{i=1}^{m} F_i$,

then H is called a complement of F and denoted \overline{F} . The superposition of F and \overline{F} , $F \circ \overline{F}$, is a $\{G_1, G_2, ..., G_m\}$ -frame with block size k, index 2λ and latinicity 2μ . If $|G_i| = h$ for i = 1, 2, ..., m, we call F a $(\mu, \lambda; k, m, h)$ -frame. If a complement of F exists, we call F a complementary $(\mu, \lambda; k, m, h)$ -frame.

Existence results for $\{G_1, G_2, ..., G_m\}$ -frames with k=2, $\mu=1$ and $\lambda=1$ and for a special type of complementary frame with k=2, $\mu=\lambda=1$ (called a skew frame) can be found in [10]. These frames were used to establish the existence of skew Room squares and the existence of Howell designs, H(s,n) (see [10]).

Frames with $k \ge 3$ have also been considered. For k = 3, $\mu = 1$, $\lambda = 1$ there are few results. A (1,1;3,14,2) and a (1,1;3,20,2) are known to exist ([2]).

Frames have also been investigated for k=3, $\mu=1$ and $\lambda=2$. The following results appear in [3].

Theorem 1.1. There exist (1,2;3,m,3)-frames for $m \ge 5$ except possibly for $m \in \{6,10,14,16,18,20,22,24,26,28,30,32,34,38,39,42,43,44,46,47,51,52,59,118,123\}.$

Theorem 1.2. There exist (1,2;3,m,6)-frames for $m \ge 5$ except possibly for $m \in \{10,11,14,15,17,18,19,20,23,24,27,28,32,34,39\}$.

These frames were used to construct $KS_3(v;1,2)$ s for $v=3(mod\ 12)$ in [6]. Similarly, $KS_3(v;2,4)$ s can be constructed from (2,4;3,m,h)-frames and complementary (1,2;3,m,h)-frames [7].

In this paper, we establish the existence of (2,4;3,m,h)-frames for h=3 and h=6 with a finite number of possible exceptions in each case. The next section contains constructions for (2,4;3,m,h)-frames. The existence results for h=3 and h=6 are in section 3. In the last section, we prove the existence of (2,4;3,m,1)-frames for $m=1 \pmod{12}$.

2. Constructions

Before describing the main recursive construction for frames, we recall the definition of a pairwise balanced design. A pairwise balanced design, denoted PBD(v;K), is a collection B of subsets (called blocks) of a finite v-set of elements V such that every pair of distinct elements of V is contained in precisely one block of B and for each $b \in B$, $|b| \in K$, where K is some subset of positive integers. We state and prove the construction in the most general form; a special case of it was used in [3].

Theorem 2.1. Let K be some subset of positive integers. If there exists a PBD(v;K) such that for each $\ell \in K$ there is a $(\mu,\lambda;k,\ell,h)$ -frame, then there is a $(\mu,\lambda;k,v,h)$ -frame. If the $(\mu,\lambda;k,\ell,h)$ -frames are all complementary, then the $(\mu;\lambda;k,v,h)$ -frame is also complementary.

Proof. Let $V = \{x_1, x_2, \ldots, x_v\}$ and let $H = \{1, 2, \ldots, h\}$. Form a $vh \times vh$ array F with the rows and columns of F indexed by the elements of $V \times H$. Let D be a PBD(v;K) defined on V. Let B be a block of D of size ℓ . The rows and columns of F indexed by the elements of $B \times H$ form an $\ell h \times \ell h$ subarray. Replace this subarray by a $(\mu, \lambda; k, \ell, h)$ -frame defined on $B \times H$ where the holes of the frame are indexed by $\{b\} \times H$ for $b \in B$. Do this for all of the blocks in D. The resulting array is a $(\mu, \lambda; k, v, h)$ -frame. \square

It will be useful to have a frame singular direct product. We generalize the product stated in [3]. For completeness, we include the proof.

Theorem 2.2. If there is a (complementary) $(\mu,\lambda;k,m,h)$ -frame containing a (complementary) $(\mu,\lambda;k,n,h)$ -frame $(n\geq 0)$, a (complementary) $(\mu,\lambda;k,s,h')$ -frame and three mutually orthogonal Latin squares of side $\frac{h(m-n)}{h'}$, then there is a (complementary) $(\mu,\lambda;k,s(m-n)+n,h)$ -frame.

Proof. Let $V = \{x_1^i, x_2^i, ..., x_h^{i, i} | i = 1, 2, ..., s\}$ and let $G_i = \{x_1^i, x_2^i, ..., x_h^{i, i}\}$ for i = 1, 2, ..., s. Let $H = \frac{h(m-n)}{h'}$. Let $W = \{1, 2, ..., H\}$ and let $N = \{\infty_1, \infty_2, ..., \infty_{nh}\}$.

Let L_1, L_2 and L_3 be a set of three mutually orthogonal Latin squares of side H. L will denote the array of triples formed by the superposition of L_1, L_2 and L_3 . L_{ijk} is the $H \times H$ array formed by replacing each triple (a,b,c) in L with the triple (a_1,b_1,c_k) where $a_1 \in H \times \{i\}$, $b_1 \in H \times \{j\}$ and $c_k \in H \times \{k\}$.

Let F be a $(\mu,\lambda;k,s,h')$ -frame defined on V. F is a $\{G_1,G_2,...,G_m\}$ -frame. Construct an $hs(m-n)\times hs(m-n)$ array A from F by replacing each triple (x,y,z) in F with the $H\times H$ array L_{xxz} and by replacing each

empty cell in F with an $H \times H$ empty array. A contains a diagonal of s $(m-n)h \times (m-n)h$ empty arrays.

Let T_i be a $(\mu,\lambda;k,m,h)$ -frame defined on $(W\times G_i)\cup N$ which contains a $(\mu,\lambda;k,n,h)$ -frame defined on N. Let T denote the $(\mu,\lambda;k,n,h)$ -frame. T_i can be partitioned as follows.

$$T_{i} = \begin{array}{|c|c|}\hline T & R_{i} \\ \hline C_{i} & K_{i} \\ \hline \end{array} \} nh$$

We construct a new array B from A and the T_i 's. B has size $h\{s(m-n)+n\} \times h\{s(m-n)+n\}$.

It is straightforward to verify that B is a $(\mu,\lambda;k,s(m-n)+n,h)$ -frame defined on $(W\times V)\cup N$. If each of the frames used in the construction is complementary, then the resulting array B is also a complementary frame.

The next result uses complementary (1,2;3,m,1)-frames to construct (2,4;3,m,3)-frames.

Theorem 2.3. If there exists a complementary (1,2;3,m,1)-frame and a set of three mutually orthogonal Latin squares of side m with a common transversal, then there is a (2,4;3,m,3)-frame.

Proof. Let $V_i = \{1, 2, ..., m_i\}$ for i = 1, 2, 3. Let F_j be a complementary (1, 2; 3, m, 1)-frame defined on V_j such that cell (i, i) is missing the element i, F_j , will denote the complement of F_j .

Let L_1, L_2 and L_3 be a set of three mutually orthogonal Latin squares of side m with a common transversal. Suppose L_i is defined on V_i . Let h be the array of triples formed by the superposition of L_1, L_2 and L_3 . We may assume that cell (i,i) of L contains the triple $\{i_1, i_2, i_3\}$ for i=1,2,...,m. Delete the main diagonal of L and call the resulting array L'.

We construct a new array A as follows.

$$A = \begin{bmatrix} F_1 \circ \overline{F}_2 & F_3 & L' \\ F_3 & F_1 \circ \overline{F}_2 & L' \\ L' & L' \end{bmatrix}$$

A is a
$$(2,4;3,m,3)$$
-frame defined on $\bigcup_{i=1}^{s} V_i$. \square

The last construction in this section uses doubly resolvable (v,3,1)-BIBDs to construct (2,4;3,m,1)-frames.

Theorem 2.4. If there exists a doubly resolvable (2n+1,3,1)-BIBD, then there is a (2,4;3,n,1)-frame.

Proof. Let $N = \{1,2,...,n\}$ and let $V = (N \times \{1,2\}) \cup \{\infty\}$. Suppose D is a DR(2n+1,3,1)-BIBD defined on V such that the main diagonal of D contains the triples $\{\infty,i_1,i_2\}$. Delete the main diagonal of D and replace i_1 with the element i and i_2 with the element i for i=1,2,...,n. The resulting array has index $\lambda=4$ and latinicity $\mu=2$. It is a (2,4;3,n,1)-frame defined on N. \square

3. Existence of (2,4;3,m,h)-frames for h=3 and h=6

In this section, we prove the existence of (2,4;3,m,h)-frames for h=3 and h=6 with a finite number of possible exceptions for m. In the case h=6, we establish the existence of complementary (1,2;3,m,6)-frames and thus, from our remarks in section 1, the existence of (2,4;3,m,6)-frames.

In order to apply the main recursive construction, Theorem 2.1, we will need the existence of certain classes of pairwise balanced designs. The first lemma was proved in [3].

Lemma 3.1. Let $k \in \{1,2,3,4\}$. If there is a set of 3+k mutually orthogonal Latin squares of side s, then there is a PBD $\{5s+i_1+i_2+...+i_k; \{s,i_1,...,i_k,5,5+1,...,5+k\}\}$ where $0 \le i_j \le s$.

Lemma 3.2. If there is a resolvable (12n+4,4,1)-BIBD, then there is a $PBD(16n+5;\{5,4n+1\})$.

Proof. Let D be a resolvable (12n+4,4,1)-BIBD. Let $R_1,...,R_{4n+1}$ be the resolution classes of D. Add a new element x_i to each block in R_i for i=1,2,...,4n+1 and add a new block $\{x_1,x_2,...,x_{4n+1}\}$ to the resulting design. \square

We will also make use of the well known existence result for (v,5,1)-BIBDs: a (v,5,1)-BIBD exists if and only if v=1 or $5 \pmod{20}$ (Hanani [4]).

The recursive constructions for frames require the existence of some small (2,4;3,m,h)-frames for h=1,3 and 6. We construct these frames using starters and adders (see [3], [8] for definitions).

Lemma 3.3. (i) There is a (2,4;3,6,3)-frame.

(ii) There exist complementary (1,2;3,m,3)-frames for m=5,7,8,9,11,13,15 and 17.

Proof.

- (i) A starter for a (2,4;3,6,3)-frame is $(\{11,13,14\},\{3,17,16\},\{4,14,5\},\{8,9,16\},\{2,15,17\},\{2,7,9\},\{1,3,10\},\{1,4,8\},\{5,10,13\},\{15,7,11\})$. A corresponding adder is (2,11,3,13,5,1,10,15,4,8).
- (ii) In Table 3.1, we list starter-adder pairs for (1,2;3,m,3)-frames and their complements for m=5,7,8,9 and 11. For m=13,15 and 17, the starters for a (1,2;3,m,3)-frame and its complement are SU-S where S is given in Table 3.2. The adders are A_1U-A_1 and A_2U-A_2 respectively. All of the starters for these tables were taken from [3]. \square

Lemma 3.4. There exist complementary (1,2;3,m,6)-frames for m=5,6,7,8,9 and 13.

Proof. In Table 3.3, we list starter-adder pairs for (1,2;3,m,6)-frames and their complements for m=5,6 and 7. For m=8,9 and 13, the starters for a (1,2;3,m,6)-frame and its complement are SU-S where S is given in Table 3.4. The adders are A_1U-A_1 and A_2U-A_2 respectively. These starters were also found in [3].

Lemma 3.5. There exist (2,4;3,m,3)-frames for m=16 and m=19.

Proof. We list starters and adders for complementary (1,2;3,m,1)-frames for m=16 and m=19. We then apply Theorem 2.3 to construct (2,4;3,m,3)-frames for m=16 and m=19.

m = 16							
Frame	S	3 4 6	13 14 7	9 11 15	2 5 10	8 12 1	
	A	2	13	4	7	6	
Complement	$\frac{\bar{S}}{A}$	13 12 10	3 2 9	751	14 11 6	8 4 15	
	Ā	14	3	12	9	10	
m = 19							
Frame	S	14 15 3	126	9 11 17	5 7 10	13 16 4	8 12 18
	A	2	7	1	15	10	3
Complement	$\frac{\bar{S}}{A}$	5 4 16	18 17 13	10 8 2	14 12 9	6 3 15	11 7 1
	A	17	12	18	4	9	16

We can now prove the existence of (2,4;3,m,h)-frames for h=3 and h=6 with a finite number of exceptions in each case. We consider three cases: $5 \le m \le 126$, $126 \le m \le 729$ and $m \ge 630$.

Lemma 3.6. There exist (2,4;3,m,3)-frames for $5 \le m \le 126$ except possibly for $m \in \mathbb{N} = \{10,12,14,18,20,22,24,27,28,32,34,39\}$.

Proof. We consider four cases.

- (i) $5 \le m \le 39 \ (m \notin N)$.
 - m Construction
 - 5 Lemma 3.3
 - 6 Lemma 3.3
 - 7 Lemma 3.3
 - 8 Lemma 3.3
 - 9 Lemma 3.3
 - 11 Lemma 3.3
 - 13 Lemma 3.3
 - 15 Lemma 3.3
 - 16 Lemma 3.5
 - 17 Lemma 3.3
 - 19 Lemma 3.5
 - 21 (21,5,1)-BIBD Thm. 2.1

25	(25,5,1)-BIBD	Thm. 2.1	
26	5.5 + 1	Thm. 2.1	(Lemma 3.1)
29	7(5-1)+1	Thm. 2.2	
30	PBD(30;{5,6})	Thm. 2.1	
31	(31,6,1)-BIBD	Thm. 2.1	
33	8(5-1)+1	Thm. 2.2	
35	5.7	Thm. 2.1	(Lemma 3.1)
36	5.7+1	Thm. 2.1	(Lemma 3.1)
37	5.7 + 1 + 1	Thm. 2.1	(Lemma 3.1)
38	5.7+1+1+1	Thm. 2.1	(Lemma 3.1)

(ii) 40≤m≤64

We can write $m = 5.8 + i_1 + i_2 + i_3$ where $i_1 \in \{0,1,5,6,7,8\}$. Since there are 7 mutually orthogonal Latin squares of side 8 and (2,4;3,k,3)-frames for $k \in \{0,1,5,6,7,8\}$, we apply Theorem 2.1 (Lemma 3.1) to construct $\{2,4;3,m,3\}$ -frames.

(iii) 65≤m≤80

We can write $m=5.9+i_1+i_2+i_3+i_4$ where $i_1 \in \{0,1,5,6,7,8,9\}$. Since there are 8 mutually orthogonal Latin squares of side 9 and (2,4;3,k,3)-frames for $k \in \{0,1,5,6,...,9\}$, we can construct (2,4;3,m,3)-frames by applying Theorem 2.1 (and Lemma 3.1).

(iv) $80 \le m \le 126$

We can write $m=5.16+i_1+i_2+i_3+i_4$ where $i, \in \{0,1,5,...,9,16\}$. Since there are 15 mutually orthogonal Latin squares of side 16 and (2,4;3,m,3)-frames for $k \in \{0,1,5,...,9,16\}$ we apply Theorem 2.1 (and Lemma 3.1) to construct (2,4;3,m,3)-frames. \square

Lemma 3.7. There exist complementary (1,2;3,m,6)-frames for $5 \le m \le 126$ except possibly $m \in M = \{10,11,12,14,...,20,22,23,24,27,28,32,34,39,114,115,116,118,119,122,123,124\}.$

Proof.

(i) $5 \le m \le 39 \ (m \notin M)$

m Construction

5 Lemma 3.4

6 Lemma 3.4

7 Lemma 3.4

8 Lemma 3.4

9 Lemma 3.4

13 Lemma 3.4

21 (21,5,1)-BIBD Thm. 2.1

25 (25,5,1)-BIBD Thm. 2.1

```
(Lemma 3.1)
     5.5 + 1
                     Thm. 2.1
26
                     Thm. 2.2
29
     7(5-1)+1
                     Thm. 2.1
30
     PBD(30;{5,6})
31
     (31.6.1)-BIBD
                     Thm. 2.1
33
     8(5-1)+1
                     Thm. 2.2
     5.7
                     Thm. 2.1
                                 (Lemma 3.1)
35
                     Thm. 2.1
                                 (Lemma 3.1)
36
     5.7 + 1
                     Thm. 2.1
                                 (Lemma 3.1)
37
     5.7 + 1 + 1
                                 (Lemma 3.1)
                     Thm. 2.1
38
     5.7+1+1+1
```

(ii) 40≤m≤80

We apply Theorem 4.1 (and Lemma 4.4) as in Cases (ii) and (iii) of Lemma 3.6.

(iii) 81≤m≤113

We can write $m=5.13+i_1+i_2+i_3+i_4$ where $i_1 \in \{0,1,5,...,9,13\}$. Since there are 12 mutually orthogonal Latin squares of side 13 and complementary (1,2;3,k,6)-frames for $k \in \{0,1,5,...,9,13\}$, we can construct complementary (1,2;3,m,6)-frames by applying Lemma 3.1 and Theorem 2.1.

(iv) $114 \le m \le 126, m \notin M$.

m	Construction		
117	16.7+5	Thm. 2.1	(Lemma 3.2)
120	PBD(120;{5,6})	Thm. 2.1	
121	(121,5,1)-BIBD	Thm. 2.1	
125	(125,5,1)-BIBD	Thm. 2.1	
126	(126,6,1)-BIBD	Thm. 2.1	

Lemma 3.8. (i) There exist (2,4;3,m,3)-frames for $125 \le m \le 729$. (ii) There exist complementary (1,2;3,m,6)-frames for $125 \le m \le 729$.

Proof. We consider four cases.

(i) $125 \le m \le 209$.

We can write $m=5.25+i_1+i_2+i_3+i_4$ where $i_1 \in \{0,1,5,6,7,8,9,21,25\}$. Since there are 7 mutually orthogonal Latin squares of side 25 and $\{2,4;3,k,3\}$ -frames and complementary $\{1,2;3,m,6\}$ -frames for $k \in \{0,1,5,...,9,21,25\}$ (Lemmas 3.6-7), we apply Theorem 2.1 and Lemma 3.1 to construct the appropriate frames.

(ii) $210 \le m \le 335$.

We can write $m=5.41+i_1+i_2+i_3+i_4$ where $i, \in \{0,1,5,...,9,21,25,26,29,30,31,33\}=I_1$. Since there are 7 mutually

orthogonal Latin squares of side 41 and (2,4;3,k,3)-frames and complementary (1,2;3,k,6)-frames for $k \in I_1 \cup \{41\}$, we can apply Lemma 3.1 and Theorem 2.1.

- (iii) $335 \le m \le 465$. We can write $m = 5.67 + i_1 + i_2 + i_3 + i_4$ where $i, \in I_1$. Since there are 7 mutually orthogonal Latin squares of side 67 and (2,4;3,k,3)-frames and complementary (1,2;3,k,6)-frames for $k \in I_1 \cup \{67\}$, we can apply Lemma 3.1 and Theorem 2.1.
- (iv) $465 \le m \le 729$. We can write $m = 5.81 + i_1 + i_2 + i_3 + i_4$ where $i, \in I_1 \cup \{35,...,81\}$. Since there are 7 mutually orthogonal Latin squares of side 81 and (2,4;3,k,3)-frames and complementary (1,2;3,k,6)-frames for $k \in \{35,...,81\} \cup I_1$, we can apply Lemma 3.1 and Theorem 2.1 again.

Finally, we combine these results to prove the following.

Theorem 3.9. (i) There exist (2,4;3,m,3)-frames for $m \ge 5$ except possibly for $m \in N = \{10,12,14,18,20,22,24,27,28,32,34,39\}$.

(ii) There exist complementary (1,2;3,m,6)-frames for $m \ge 5$ except possibly for $m \in M = \{10,11,12,14,...,20,22,23,24,27,28,32,34,39,114,115,116,118,119,122,123,124\}.$

Proof. From Lemma 3.6, there exist (2,4;3,m,3)-frames for $m \in \{5,...,126\}-N$. Lemma 3.8 provides (2,4;3,m,3)-frames for $125 \le m \le 729$. Similarly, from Lemma 3.7 there exist complementary (1,2;3,m,6)-frames for $m \in \{5,...,126\}-M$ and Lemma 3.8 provides complementary (1,2;3,m,6)-frames for $125 \le m \le 729$.

Let $m \ge 630$. We write m = 5s + i where $s \ge 125$ and $i \in \{5,6,7,8,9\}$. Since there are 4 mutually orthogonal Latin squares of side 5 and (2,4;3,k,3)-frames and complementary (1,2;3,k,6)-frames for $k \in \{5,6,7,8,9,s\}$, Theorem 2.1 and Lemma 3.1 can be applied to construct the appropriate frames. \square

4. Existence results for (2,4;3,m,1)-frames

A necessary condition for the existence of a (2,4;3,m,1)-frame is $m=1 \pmod{3}$. In this section, we prove the existence of (2,4;3,m,1)-frames for $m=1 \pmod{12}$. Since the proof uses the frame singular direct product (Theorem 2.2), we require the existence of (2,4;3,m,1)-frames for some small values of m. (1,2;3,m,1)-frames have been constructed by using starters and adders for m=10,16,19,25 and 28 in [1]. Certain classes of (1,2;3,m,1)-frames were constructed in [13] by using algebraic techniques to

find starters and adders. We use some of those constructions and Theorem 2.4 to prove the following result.

Lemma 4.1. There exist (2,4;3,m,1)-frames for m=13,16,19,25,31,37,40,43 and 49.

Proof. For m = 13,19,25,31 and 40, there exist DR(2m+1,3,1)-BIBDs ([3], [8], [10], [11]) and we can apply Theorem 2.4. A (2,4;3,16,1)-frame was constructed using starters and adders in Lemma 3.5. We list starters and adders for complementary (1,2;3,m,1)-frames for m = 31,37 and 43.

- (i) m=31. We define a starter in $Z^*_{31}=Z_{31}-\{0\}$. Let $M=\{3^{10},3^{20},1\}$. We define $M3^j=\{3^{10+j},3^{20+j},3^j\}$. A starter S for a complementary $\{1,2;3,31,1\}$ -frame is $\{M,M3^3,M3^6,\ldots,M3^{27}\}$. An adder for S is $\{1,3^3,3^6,\ldots,3^{27}\}$ and an adder for a complement is $\{3^{20},3^{23},3^{26},3^{29},3,3^4,3^7,3^{10},3^{13},3^{16}\}$.
- (ii) m=37. We define a starter in Z^*_{37} . Let $M=\{1,2,19\}$. A starter S for a complementary (1,2;3,37,1)-frame is $(M,M2^3,M2^6,...,M2^{33})$. An adder for S is $(2^{27},2^{30},2^{35},2^{36},2^2,2^5,2^8,2^{11},2^{14},2^{17},2^{20},2^{23})$ and an adder for a complement is $(2^{35},2,2^4,2^7,2^{10},2^{13},2^{16},2^{19},2^{22},2^{25},2^{28},2^{31})$.
- (iii) m=43. We define a starter in \mathbb{Z}^*_{43} . Let $M=\{1,3^{14},3^{28}\}$. A starter S for a complementary (1,2;3,43,1)-frame is $(M,M3^3,M3^6,...,M3^{59})$. An adder for S is $(1,3^3,3^6,...,3^{59})$ and an adder for a complement is $(3^{14},3^{17},3^{20},3^{23},3^{26},3^{29},3^{35},3^{36},3^{38},3^{41},3,3^4,3^7,3^{10})$.
- (iv) Consider GF(7²) generated by $f(x) = x^2 + x + 3$ and let α be a primitive element such that $f(\alpha) = 0$. If $M = \{\alpha^0, \alpha^1, \alpha^{14}\}$ then $(\alpha^{3i} M: 0 \le i \le 15)$ is a starter and $(-\alpha^{3i} (\alpha^0 + \alpha^1 + \alpha^{14}): 0 \le i \le 15)$ is an adder. A complementary adder is $(\alpha^{3i+1}: 0 \le i \le 15)$.

We can now prove our main result for (2,4;3,m,1)-frames.

Theorem 4.2. For $m=1 \pmod{12}$ there is a (2,4;3,m,1)-frame.

Proof. Let m = 12n + 1. There exist (2,4;3,12n + 1,1)-frames for n = 0,1,2 and 3 (Lemma 4.1). If there exists a (2,4;3,n,3)-frame, then since there is a (2,4;3,13,1)-frame and three mutually orthogonal Latin squares of side 4, we can construct a (2,4;3,12n + 1,1)-frame by applying Theorem 2.2.

Let $N_1 = \{10,12,14,18,22,24,32,34\}, N_2 = \{24,27,39\}$ and $N_3 = \{20,28\}$. Let $N = N_1 \cup N_2 \cup N_3$.

Since there exist (2,4;3,n,3)-frames for $n \ge 5$ and $n \notin N$ (Theorem 3.9 (i)), we can construct (2,4;3,12n+1,1)-frames for $n \ge 5$ and $n \notin N$.

Since there is a (2,4;3,25,1)-frame and three mutually orthogonal Latin squares of side 8, we apply Theorem 2.2 to construct (2,4;3,24n+1,1)-frames for $n \ge 5$ and $n \notin N$. This will construct (2,4;3,12n+1,1)-frames for $n \in N_1$. Similarly, using a (2,4;3,37,1)-frame and three mutually orthogonal Latin squares of side 12, we construct (2,4;3,36n+1,1)-frames for $n \ge 5$ and $n \notin N$. This will provide (2,4;3,12n+1,1)-frames for $n \in N_2$.

We now consider the remaining two values: n=20 and n=28. There exist a (2,4;3,16,3)-frame, a (2,4;3,16,1)-frame and three mutually orthogonal Latin squares of side 5. We can apply Theorem 2.2 to construct a (2,4;3,16.3.5+1,1)-frame. This is a (2,4;3,20.12+1,1)-frame. There exist three mutually orthogonal Latin squares of side 7, a (2,4;3,8,6)-frame and a (2,4;3,43,1)-frame. We apply Theorem 2.2 once more to construct a (2,4;3,8.6.7+1,1)-frame or a (2,4;3,12.28+1,1)-frame.

Finally, we note the following asymptotic result for (2,4;3,m,1)-frames.

Theorem 4.3. There exists a constant m_1 such that for all $m \ge m_1$ and $m = 1 \pmod{3}$ there exists a (2,4;3,m,1)-frame.

Proof. This follows immediately from the existence result for DR(2m+1,3,1)-BIBDs [8] and Theorem 2.4.

References

- 1. Colbourn, C.J. and Vanstone, S.A., Doubly resolvable twofold triple systems, Congressus Numerantium 34 (1982) 219-223.
- 2. Colbourn, C.J. and Vanstone, S.A., A recursive construction for Kirkman squares, (preprint).
- 3. Colbourn, C.J., Manson, K.E. and Wallis, W.D., Frames for twofold triple systems, Ars Combinatoria 17 (1984) 69-78.
- 4. Fuji-Hara, R. and Vanstone, S.A., On the spectrum of doubly resolvable designs, Congressus Numerantium 28 (1980) 399-407.
- 5. Hanani, H., On balanced incomplete block designs with block size having 5 elements, J. Combin. Theory (A) 12 (1972) 184-201.
- 6. Lamken, E.R. and Vanstone, S.A., The existence of $KS_3(v;1,2)$ for $v=3 \pmod{12}$, Australian J. of Math. (submitted).
- 7. Lamken, E.R. and Vanstone, S.A., Existence results for $KS_3(v;2,4)s$ (preprint).
- 8. Rosa, A. and Vanstone, S.A., Starter-adder techniques for Kirkman

- squares and Kirkman cubes of small sizes, Ars Combinatoria 14 (1982) 199-212.
- 9. Rosa, A. and Vanstone, S.A., On the existence of strong Kirkman cubes of order 39 and block size 3, Annals of Discrete Math., to appear.
- Stinson, D.R., Some Classes of Frames and the Spectrum of Skew Room Squares and Howell Designs, Ph.D. Thesis, U. of Waterloo, 1981.
- 11. Stinson, D.R. and Vanstone, S.A., A Kirkman square of order 51 and block size 3, preprint.
- 12. Stinson, D.R. and Vanstone, S.A., Orthogonal packings in PG(5,2), Aequationes Math., (submitted).
- 13. Vanstone, S.A., On mutually orthogonal resolutions and near resolutions, Annals of Discrete Math. 15 (1982) 357-369.
- Vanstone, S.A., Doubly resolvable designs, Discrete Math. 29 (1980) 77-86.

Department of Combinatorics and Optimization University of Waterloo Waterloo, Ontario N2L 3G1

Starters and adders for complementary (1,2;3,m,3)-frames for m=5,7,8.9

and 11

Table 3.1

m=5							
Frame	S	1 12 13	2 9 11	3 4 7	6 8 14		
	A	1	7	4	13		
Complement	\bar{s}	-5					
	Ā	-S	8	11	2		
m=7							
Frame	S	1 2 5	3 8 20	4 13 15	6 9 19	10 12 18	11 16 17
	A	4	12	9	10	13	1
Complement	<u>5</u>	S					
	Ā	11	19	16	17	20	8
m=8							
Frame	S	123	4 7 13	5 12 23			
	A	2	18	7	20	1	13
		11 15 18					
		3					
Complement	\bar{s}	- s					
Complement	Ā	-A					
m=9	_						
Frame				5 15 19			
	A	2	15	5	10	6	17
		12 17 20					
		23	12				
Complement	\bar{s}	-5					
	\overline{A}	25	12	22	17	21	10
		4	15				
m = 11							
Frame		123	469	5 8 15			
	A	15	30	16	28	2	1
				16 20 32			
		27	13	10	12		
	<u> </u>	_ c					
	$\frac{\overline{S}}{A}$	-s -A					
	A	- 7		148			

Starters and Adders for complementary (1,2;3,m,3)-frames for m=13,15

and 17

Table 3.2

m = 13							
Starter	S	2 3 27	6 8 17	7 10 15	16 34 38	4 14 20	9 21 28
	A_1	8	38	2	20	33	12
	A_2	3	21	10	16	17	14
m = 15							
Starter	S	134	8 13 17	10 21 27	7 14 36	6 25 33	5 19 29
	A_1	2	9	8	40	32	27
	A_2	1	11	25	6	28	4
		2 22 34					
		19					
		29					
m = 17							
Starter	S	1 2 37	3 5 24	13 20 23	12 21 25	6 11 35	9 15 29
	A_1	2	40	12	44	25	15
	A_2	1	3	43	46	41	13
		8 33 41	4 32 44				
		20	18				
		29	37				

m=5							
Frame	S	123	4 8 12	6 18 29	7 21 24	9 16 22	11 14 23
	A	1	19	8	22	2	28
		13 19 27	17 26 28				
		9	21				
Complement	\bar{s}	s					
• • • • • • • • • • • • • • • • • • • •	$\frac{\overline{S}}{A}$	<i>S</i> 6	24	13	27	7	3
		14	26				
m=6							
Frame	S	123	479	5 8 28	10 19 32	11 15 26	13 23 33
	A		13	5	19	8	14
		14 22 29	16 21 35	17 25 34	20 27 31		
		21	10	27	1		
Complement	$\frac{\overline{S}}{A}$	-S -A					
m=7							
Frame	S	3 16 22	18 30 36	4 19 24	5 10 34	11 27 31	2 6 33
	A	31	33	37	1	3	5
		17 26 29	1 32 40	20 37 39	15 23 25	12 13 38	8 9 41
		6	20	24	25	26	27
Complement	$\frac{\overline{S}}{A}$	-S					
•	\overline{A}	8	9	10	11	15	29
		30	32	34	40	2	4

Table 3.4 Starters and adders for complementary (1,2;3,m,6)-frames for m=8,9,13

m = 8							
Starter	S	2 11 17	25 29 39	4 6 41	3 15 22	1 18 21	5 10 28
	A_1	19	22	11	35	4	9
	A	18	34	45	47	21	2
	_	14 35 36					
		6					
		17					
m = 9							
	S	124	3 7 13	5 10 31	6 21 40	8 25 37	11 24 35
	A_1	6	21	38	11	15	14
	A_2		30	25	7	49	44
	-		15 22 38				
		41	20				
		32	1				
m = 13							
Starter	S	2 16 27	4 19 28	1 23 30	8 24 29	5 22 25	17 18 36
	A_1	74	70	76	35	48	27
	A_2		3	11	69	20	66
	_	32 44 67	20 47 57	7 15 43	3 9 41	6 10 40	12 14 45
		5	28	17	59	21	24
		25	23	31	7	49	15