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Abstract. We prove that for any odd positive integer n > 1 and for any sufficiently
large integer v > vp (), there exists a Nested Steiner n-Cycle System of order v if
and only if v = 1 (mod 2n). This gives rise to many new classes of perpendicular
arrays.

1. Introduction.

In this paper, we are interested in a certain generalization of a Nested Steiner
Triple System. A Steiner Triple System, STS(v), is a partition of the edge
set of K, into triangles (3-cycles); and is said to be nested if one can add
a point to each triangle, obtaining a partition of the edges of 2 K, into Kss.
An n-Cycle System of order v, CS(v,n), is a partition of the edge set of K,
into n-cycles; and is said to be nested if one can add a point to each n-cycle
in the system, obtaining a partition of the edges of 2 K, into ‘wheels with n
spokes’ (the original cycle being the rim and the added vertex, the hub).

These designs have been investigated by Lindner, Rodger and Stinson [3]
and Stinson (5], [7]; and have been shown to exist in almost every case in
which the necessary condition v = 1 (mod 2n) holds.

A Steiner n-Cycle System of order v, SCS(v,n), is a CS(v, n) with the
additional property that for each k with 1 < k < n/2, any given pair of
points is at distance k£ from one another in exactly one of the cycles: In other
words, if {Ci,C, ... ,Cn} are the cycles of the CS(v,n) and C{¥ is the
graph defined by the vemees of C; with edges between vertices t.hat are at
distance k in Cj, then the edges of C{*, C{¥,... Gt form a partition of
the edge set of K, foreachk, 1 < k < n/2 (m fact, a CS(v,r) where r
= nfgcd(n, k)). For example, a SCS(v, 3) is justa STS(v), and a SCS(v,4)
is a CS(v,4). A Steiner 5-cycle system is called a Steiner Pentagon System
and is known o exist if and only if v = 1 or 5(mod 10) and v # 15 (see
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[2]). General Steiner n-cycle systems do appear in the literature as they are
equivalent to cyclic perpendicular arrays: A perpendicular array, PA(v,n),
isa (%) x n array, each ccll containing an integer from the set {1,2,...,v},
such that any given pair of columns contain all (}) unordered pairs from the
set {1,2,...,v}. A cyclic perpendicular array, CPA(v,n), is a PA(v,n)
with the extra property that z3,z3,... , T, ) is a row of the array whenever
T1,%2,... , Tn iS. Thus,aCPA(v, n) has L (3) generator rows, the entire array
being formed by cyclically shifting each generator row = times.

Lemma 1.1, For any odd integern > 1, there exists a SCS(v,n) if and only
if there exists a CPA(v,n).

Proof: The L(2) cycles of an SCS(v, n) can be viewed precisely as the - (;)
generator rows of a CPA(v, n); and vice-versa. [ ]

Cyclic perpendicular arrays have what Stinson refers 10 as the pair-column
balanced property, that is, among all the rows in the array containing a given
pair z and y, each of z and y occurs (n— 1) /2 times in each column. This is
important in constructing certain optimal private-key cryptosystems (for a full
discussion of the relationship between perpendicular arrays and theoretically
secure codes, see Stinson [6]).

A SCS(v,n) is nested if we nest the underlying CS(v,n). Similarly, a
CPA(v, n) is nested if we can adjoin a column to the array and so produce a
PA(v,n+ 1) with the property that z;,z3,... , Zn, %1, Y is a row of the array
whenever z), 72, ... , Ta, y is (the resulting array is called 1-rotational). We
have the following analogue of Lemma 1.1.

Lemma 1.2. For any odd integern > 1, there exists a nested SCS(v, n) if
and only if there exists a nested CPA(v, n).

Example:

1,2,4,0

2,4,1,0

4,1,2,0 5,6,1,4
1,2,4,0 2,3,5,1 6,1,5,4
2,3,5: 1 3,5,2,1 1,5,6,4
3,4,6; 2 5,2,3,1 6,0,2,5
4,5,0; 3 3,4,6,2 0,2,6,5
5,6,1; 4 4,6,3,2 2,6,0,5
6,0,2; 5 6,3,4,2 0,1,3,6
0,1,3; 6 4,5,0,3 1,3,0,6

5,0,4,3 3,0,1,6

0,4,5,3

A nested SCS(7,3)  Corresponding nested CPA(7, 3)
(i.c., anested STS(7)) (i.e., a 1-rotational PA(7, 4))
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In [7] it was shown that there cxists a nested SCS(v,3) ifand only if v = 1
(mod 6); and recently Stinson (5] has constructed SCS( v, 4) forall v = 1 (mod
8) except v = 57,65, 97, 113, 185, 265.

In this paper, we will construct a nested SCS{ v, n) whenever n is an odd
integer and v is a prime power congruent to 1 (mod 2 ). Since, for each n, the
set {v: there exists a nested SCS(v,n) } is PBD-closed, this will enable us to
apply Wilson’s theorem to obtain asymptotic results on the existence of these
designs.

2. Direct constructions for nested SCS(v, n)s.

Theorem 2.1. Forany odd integern > 1 and prime powerv withv = 1 (mod
2n), there exists a nested SCS(v, n).

Proof: Let g be a primitive element in the field F' with v elements and let ¢
= g?™ where m = (v — 1)/2n. Label the vertices of K, with the elements of
F. Foreacha € F and integer 1,0 < i < m — 1,let G, ; be the n-cycle with
vertices a + t/g*,0 < j < n— 1, where a + t/g' is adjacent to a + t/~' ¢* and
a+ t/*1g%; and let B, be the star in which vertex a is adjacent to the vertices
of Ca','.

We observe that if & # 0 and z and y are any two vertices of F then exactly
one of (z ~ y)/d and (y — z)/d may be wrilten in the form t/¢* where
0<i<m—1(as—1=g™ =¢(=D/2gm)

Fix d, and for any two vertices z; and z; let y, z be the permutation of z;
and z, such that y — z may be written in the form dt/¢f where 0 < i< m—1.

Ford=1wehavey = z + t/¢* so that the edge (y, z) exists in B, ;.

Foreachk,1 < k < n/2, let Cﬁ) be defined from C, ; by joining the
vertices at distance k, and let d = t* — 1. Theny = z + (t* — 1)t/¢*, and if
a=z-t/g'theny = a + t/**g' and s0 the edge (y, z) exists in Cf,'?

Thus, for any pair of distinct vertices zy, z, in K, the edge (z,, ;) appears
in cach of the sets of graphs {B,;:a € F,0 <i< m—1}and {Cﬁj’:a €F,
0 <i<m—1}foreachk, ! < k < n/2. Bul each of these scts of graphs
contain exactly (;) edges, and so it is clear that no edge is counted twice and,
thercfore, they each partition the edge set of K. [ |

Remark 1: The nested SCS(v,n) constructed in the above theorem has the
additive group of F' as a point-transitive group of automorphisms.

Remark 2: We may replace the set {1,g,9%,... ,¢™! } in the construction of
the C, ;s by any set of representatives of the cosets of the subgroup {—t) in F*
to get another, often non-isomorphic, construction.
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Examples:

A nested SCS(11,5): 1,4,5,9,3 0 (modll)

1,2, 4, 8,16; 0
A nested SCS(31,5): 3,6,12,24,17;, 0 {(mod 31)
5,10,20, 9,18; O

3. Asymptotic existence of nested SCS(v, n)s.

Lemma 3.1, If there exists a nested CS(v, n) thenv = 1 (mod 2 n).

Proof: As the cycles of a CS(v, n) form a decomposition of th edges of K, so
every vertex appears in these cycles equally often; and so, as the edge set of the
wheels forms a decomposition of 2 K, thus, every vertex appears as the hub
of the wheel equally often, say ¢ times. Therefore, vt = the number of wheels
= (1/n) () sothatt = (v — 1)/2n and we see that v = 1 (mod 2 ). (This
Lemma was stated, without proof, in [3]). 1

We have already shown, in Section 2, that this condition is sufficient when-
ever v is a prime power. More examples of these designs can be obtained by
applying MacNeish’s Theorem [4]:

Theorem 3.2. For any odd integern > 1, and positive integerv, a product of
prime powers, which are each congruent to 1 (mod 2n), there exists a nested
SCS(v,n).

Proof: Let v= q1q> ...qr be the prime power decomposition of v where ¢
> g2 > ... > ¢,. By MacNeish's Theorem there is a transversal design with
gi groups of size q1¢2 ...¢q;—1 foreachi,2 < i< r.

In this way we can construct a pairwise balanced design on v points with
block sizes ¢1, g2, .. ,¢r. Constructing a nested SCS on each block yields a
nested SCS(v, n), as desired. [ |

In the remainder of this section we will show that the necessary condition of
Lemma 3.1 is sufficient, provided that v is large enough compared to n. We do
this by applying Wilson’s Theorem (see [1]):

Theorem 3.3, [Wilson] Let K be any set of integers, and define o K)

= gcd{k — 1:k € K} and B(K) = gcd{k(k — 1):k € K}. There is an
integer cx such that ifv > cx,v—1=0 (moda(K))andv(v-1) =0
(mod B( K) ), then there exists a pairwise balanced design on v points having
block sizes from the set K .
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Lemma 3.4. Given any positive even integerm there exist primes p and q for
whichp = ¢ = 1 (modm), and gcd{p(p—1),q(g— 1)} = m.

Proof: By using Dirichlet’s Theorem on the existence of primes in arithmetic
progressions choose p to be any prime with p = m+ 1 (mod m?). Observe that
(p—1)/m =p =1 (mod m) so that gcd{p(p— 1) /m, m} = 1; therefore, by
the Chinese Remainder Theorem, we may select an integer r with r = 1 (mod
m) and r = —1 (mod p(p — 1)/m). By again applying Dirichlet’s Theorem
we choose g to be any prime satisfying ¢ = r (mod p(p — 1)) sothat ¢ = 1
(mod ). It remains to be shown that gcd{p(p — 1),q(g - 1)} = m.

Now ¢ = r = —1 (modp(p—1)/m) sothat ¢g(¢g—1) =2 (modp
(p—1)/m). Butp = (p—1)/m = 1 (mod m) so that p(p — 1) /m is odd
and, therefore, ged{q(q — 1), p(p—1)/m} = 1. Recalling that ¢ = 1 mod m,
we have gcd(p(p — 1), ¢(g — 1)) = m as required. |

We can now prove

Theorem 3.5. For any odd positive integern > 1 there exists an integer c,
such that if v > c, then there exists a nested SCS(v, n) if and only ifv = 1
(mod2n).

Proof: From Lemma 3.4 we can chose primes p and g such thatp = ¢ = 1
(mod 2n) and ged{p(p — 1),q(q — 1)} = 2n. Applying Wilson’s Theorem
(3.3) with K = {p,q}, (so that a( K) = B(K) = 2n), there exists an integer
cn Such that whenever v > ¢, and v = 1 (mod 2 n) then there is a pairwise
balanced design on v points with block sizes p and ¢. Since p = ¢ = 1 (mod
2n) we can construct a nested SCS on each block (Theorem 2.1), to obtain a
nested SCS( v, n) as desired. |
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