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ABSTRACT

The cycle rank ,7(G), of a graph G = (V,E) is given by 7(G) =
|E|-{VI+1. Let f(k,r) be the minimum number of cycles possible in a k-
connected graph with cycle rank r. Weshow f(1,7) =1, f(2,7) = ('*2’),

f(3,7r) = r* — 7 + 1 and characterize the extremal graphs. Bounds are

obtained for f(k,r), k > 4; the upper bound is polynomial in r.

0. INTRODUCTION

The cycle rank, r(G), of the graph G = (V,E) is defined by r(G) = |E| -
[V + 1. We wish to determine the minimal number, f(k,r), of cycles possible in a
k-connected graph with cycle rank r.

We denote by ¥(G) the total number of cycles in the graph G and by ¥(G; P)
the number of cycles of G containing the path P of G (P may be just an edge or
a vertex). Consequently, f(k,r) = min ¥(G) where the minimum is taken over all
k-connected graphs G with cycle rank r. We denote the connectivity of G by x(G).

Our graphs will all be finite and simple, i.e., no loops or multiple edges are
allowed. Consequently, if £(G) > k we have [V| > k + 1 and |E| > }k|V| so that
(G) 2 (K - k).

We will determine f(k,r) for k =1,2,3 and r > 1(k%— k) and give bounds when
k>4,

All undefined notation and terminology can be found in Bondy and Murty [4]; we

will, however, denote the complement of a graph G by G. Since vertices and edges
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of our graphs are labeled only for purposes of discussion, we need not distinguish
between equal and isomorphic graphs and will use equality in both situations.

Beginning in Section 3, the wheel W, will be important. We note that W,
has a unique center for r > 4 and call the edges incident with this center the spokes
of W,.;. All other edges are called rim edges.

We preface the next section by noting that if G has s components and cycle rank
r, then by the addition of s — 1 edges, a connected graph H with cyclerank r+s—1
is formed. By Theorem 1 of the next section, we have ¥(G) = ¥(H) > r +s—1.
Thus, graphs with given cycle rank r > 0 but with no connectivity restriction must

be connected if they are to have the minimum number of cycles possible.

1. CONNECTED GRAPHS

Theorem 1. f(1,7r) = r, 7 > 0. If (G) > 1 and 7(G) = r, then ¥(G) = r iff
e € E(G) implies ¥(G;e) < 1.

Proof. Consider the graph H consisting of the path vguy - - - vz, with the additional
edges vgi_ovz, 1 £t < 1, (if r =0, H = K,). Clearly, x(H) > 1 and r(H) = r so
that f(1,7) <r.

If k(G) > 1 and r(G) = r, then choose a spanning tree T of G and label the
edges of G not in T as ¢;, 1 < 7 < r. Since ¥(T + ¢;) = 1 and those cycles are
distinct, we have ¥(G) > r so that f(1,7) =r.

If e € E(G) implies ¥(G;e) < 1, then no ¢, and e;. ¢ # j, lie in the same cycle
of G and ¥(G) = r. On the other hand, if ¥(G;e) > 1 for some e € E(G), then let
T' be a spanning tree of G — e and observe that ¥(G) = ¥(G — ¢) + ¥(G;e) > r.
Thus ¥(G) = r iff e € E(G) implies ¥(G,e) €1. W

The extremal graphs characterized in Theorem 1 are known variously as cacti

and Husimi trees.
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2. 2-CONNECTED GRAPHS

Throughout this section, we use many of the commonly known properties of
2-connected graphs without further reference. Statements and proofs of these prop-
erties may be found in 3, 1, 5, (8], and {11..

A major verter of a graph G is any vertex with degree at least 3. A path
P = (z...y) of G in which z and y are major vertices of G and all internal vertices
of P have degree 2 in G will be called a suspended path (SP) of G if z # y. By
G e P, we mean the graph G’ obtained from G be deleting all internal vertices of P.
We also will refer to G as being obtained from G’ by adding a path. We note that
if P and @ are SP’s of a graph G, then they are edge disjoint. An SP P of a graph
G is called a non-essential suspended path (NSP) if (G & P) > 2. A 2-connected
graph G is said to be minimally 2-connected if e = E(G) implies k(G - €) < 2.

We will develop and use several properties of 2-connected graphs for determining
f(2,7) and characterizing the related extremal graphs. Of particular importance is
the contraction operation. An edge e = uv of a graph G is contracted to a vertex
z by adding to G — {u,v} a vertex z and all edges zw where w is adjacent to u or
v in G. We denote this operation by G - e or G - uv and note that G - e is simple.
If e does not lie in a C3 of G, then r(G - €) = r(G); in any case, r(G - ¢) < r(G).
We note, further, that ¥(G - uv) < ¥(G) and the equality is strict iff G has a cycle
that contains both u and v but not the edge uv. Finally, we say that the graph G
contracts to the graph H if H can be obtained from G by recursively contracting
edges.

Fact A. If 6(G) > k and (G - e) > k for some e = uv € E(G), then &(G) > k.
Proof. Suppose, to the contrary, that G has a vertex cut S with |S} < k. If
{u,v} € S or {u,v} C V(G)\ S, then (G -¢) < |S| < k. Hence, we may
assume u € S and v is in some component C of G — S. If V(C) \ {v} # 0, then
k(G-e) <|S| < k. Thus, V(C) = {v} and §(G) < S| < k. m

171



Fact B. If H is a 2-connected proper subgraph of the 2-connected graph G, then
G contains a NSP P for which E(P)n E(H) = 0.
Proof. (by induction on [V (G)!). We clearly have {V(G)| > 4 and the theorem is
obvious if V' (G), = 4. We proceed to the inductive step. Thomassen [12, p. 46] has
remarked that, given e € E(G), it is an easy exercise to show that at least one of
G —eand G- e is 2-connected. Thus, if we choose e = uv € E(G) \ E{(H) we have
either (G — €) > 2 and we are done or k(G — e) = 1 (so that {u,v} € V(H)) and
k(G -¢) > 2. f V(G)\ V(H) = v, say, then N(v) = {u,w} for some w in V(H) so
that we may take P = uvw and we are done. Consequently, we may assume that
H is a proper subgraph of G - e. It follows from the inductive hypothesis that G -e
has an NSP P’ for which E(P') N E(H) = 0. Letting z be the vertex to which uv
was contracted, we take P to be P’ or P' with an edge subdivided in case z is an
internal vertex of P’. Certainly E(P) N E(H) = 0 and it follows from Fact A that
k(G-e~ P') > 2 implies k(G — P) > 2,i.e., Pisan NSPof G. ®

Whitney [14] proved and later Hedetniemi [8} gave a different proof that every
minimally 2-connected graph can be constructed from Cs by recursively subdividing
edges and adding paths between distinct vertices. Thomassen {12, p. 45] states that
an easy exercise shows that any 2-connected graph can be obtained from a cycle
by recursively adding paths between distinct vertices. For later use, we require the
following variant of these results.
Fact C. If k(G) > 2, r(G) =r > 1 and P is an SP of G, then there is a sequence
G,,...,G, of 2-connected subgraphs of G such that G, is a cycle containing P,
G, =G and, for 2<i<r, Gi-; = G; © F,; for some NSP P; of G;.
Proof. (by induction on r). The result is vacuously true for r = 1 since G must
then be a cycle. We proceed to the induction step. Let G; be a cycle of G containing
P. By Fact B, there is an NSP P, for which E(P,) N E(G,) = 0. We apply the
inductive hypothesis to G © P, to obtain a sequence G,,...,G,_; which, along with

G, = G, has the requisite properties. B
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It should be noted that a path P; of Fact C, although an NSP of G;, need not

be an NSP of G;;+,. We do, however, have the following result.

Fact D. If x(G) > 2 and r(G) = r > 2, then G has at least r + 1 NSP’s.

Proof. (by induction on r). Using either Fact B or Fact C, we conclude that G has
an NSP P =u...v. If r = 2, then G — P is a cycle and G obviously has 3 NSP’s.
Hence, we may assume r — 1 > 2 so that, by the induction hypothesis, G ~ P has a
set R of r NSP’s. If none of these NSP’s contains u or v as an internal vertex then
R U {P} is the required set. Otherwise, there are two cases to consider.

Case 1. One or both of u and v are internal vertices of NSP’s of G — P and, if
both, the two NSP’s are distinct. We replace each of these NSP’s of G — P by an
NSP of G that is not an NSP of G — P as follows.

Let P' = (z-.-y) be an NSP of G — P that contains u as an internal vertex.
We replace P' in R by the subpath P" of P' with end vertices z and u. Since
k(G © P o P') > 2, we see that the graph G © P’ with the path y+-u---v added
has connectivity at least 2. Thus, since v and z are major vertices of G, P" is an
NSP of G but not of G— P. Applying similar arguments at v if necessary, we obtain
aset of r+1 NSP’s of G.

Case 2. Both u and v are internal vertices of the same NSP P’ of G — P. We
replace P' in R by the subpath P" of P’ that has end vertices u and v. Since P" is
clearly an NSP of G, we again obtain aset of r +1 NSP’sof G. m

In the following result, the subscripts ¢ in C; are for indexing purposes only and

do not necessarily indicate the length of a cycle.

Fact E. If (G) > 2, r(G) =r > 1 and P is an SP of G then ¥(G;P) > r.

Proof. Let G,...,G, denote the sequence described in Fact C. Let C; = G, and,
for 2 < ¢ < r, let C; be a cycle containing P and P, (such a cycle exists since

&(Gi) 2 2). Since C; # C; for i # j, the proof is complete. W
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Our characterization of the extremal graphs in this section will be in terms of
forbidden subgraphs one of which is Ky and the other is a graph we denote by F.
The graph F consists of the cycle tyvarstytsts together with the triangle vyvsvs.

A contraction of a graph G to a graph H is said to be cycle rank preserving
(CRP) iff r(H) = r(G). We note that cycle rank is preserved iff none of the edges
contracted to obtain H lies in a triangle. Equivalently, if the edge uv is contracted to
the vertex z, then d(z) = d(u) ~d(v)—2. We see, in particular, that a graph G has a
CRP contraction to K, iff G is a subdivision of K; and G has a CRP contraction to
F iff G consists of a cycle v, ... v, together with the added internally vertex disjoint
paths vouy ... u, v, vywy ... wovgand vezy ... L Wherel1 <1 < j<k<E€<m<n.
Fact F. If k(G) > 2, P is an SP of G and G contains a subgraph H that has a
CRP contraction to K4 or F'then G contains a subgraph /' that contains P and
has a CRP contraction to iy or F.

Proof. (outline) Either E(P) C E(H) and we are done or we may assume E(P) "
E(H) = 0. In the latter case, we choose any e € E(I) and observe that £(G) > 2
implies e and P = (u...v) liein a cycle. Thus, G contains vertex disjoint paths @ =
(u...z)and R = (v...y) with V(H) " V(Q) = {z} and V(H)"V(R) = {y}. It can
be verified, by examination of the various cases determined by the relative positions
of z and y in H, that if I/ has a CRP contraction to K, then a subgraph H' that
contains P and has a CRP contraction to K, exists and if H has a CRP contraction
to F then a subgraph H' of G that contains P and has a CRP contraction to K

or F exists. &

Theorem 2. f(2,7) = (';'), r>1. [ x(G)>2,7(G) =r>1and e & E(G) then
V(G;e) > r, and ¥(G) = (';’) iff no subgraph of G has a CRP contraction to K
or F.

Proof. The theorem is obvious when r = 1 so we may assume r > 2. But then

every edge e of G lies in an S22 so that, by Fact E, ¥(G;e) > r.
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Let H be the graph obtained by appending to the path P,.; of length r a vertex
v adjacent to all vertices of P,-;. It is easily verified that ¥(H) = (';') and
U (H;e) = r for all edges e incident with v. Thus, f(r,2) < (';’) and the inequality
V(G;e) > r is sharp for r > 1.

We next prove, by induction on r, that f(r,2) > (';1). Since r > 2, Fact B
implies that G contains an NSP P. By the inductive hypothesis ¥(G & P) > (:)
and so, by Fact E, ¥(G) = ¥(G S P) + ¥(G; P) > (;) +r= ("21). We conclude
f(r,2) = (';1), r > 1 and next show that ¥(G) > (';’) if G contains a subgraph
H that has a CRP contraction to K, or F.

We may assume «x(H) > 2. Il H = G, it immediately follows that ¥(G) > (';l)
so we may assume H is a proper subgraph of G and, by Fact B, choose an NSP P
satisfying E(P) N E(H) = 0. By the induction hypothesis ¥(G & P) > (I) so that
¥(G) 2 ¥(GeP)+¥(G;P)> ;) +r> (3.

It remains to show that if G contains no subgraph that has a CRP contraction
to K4 or F, then ¥(G) = (';'). We may assume k(G) = 2 since, as is easily
shown, every 3-connected graph contains a subdivision of X,. Furthermore, it is an
exercise [4, p. 124] to show that G has a vertex v with d(v) = 2. Our proof will be
by induction on |E(G}|, it being obvious for |[E(G)| = 3, 4 and 5. Let u and w be
the two vertices of G adjacent to v. We have two cases to consider.

Case 1. uw € E(G). The graph G — v + uw is 2-connected, has cycle rank r
and contains no subgraph that has a CRP contraction to X, or F. Thus, by the
induction hypothesis, ¥(G) = ¥(G — v + uw) = (';').
Case 2. uw € E(G). We have two subcases to consider.

Subcase 2.1. x(G — v — uw) > 2. Since neither G — v nor G — v — uw contains

a subgraph that has a CRP contraction to K, or F, we have, by the induction

hypothesis,

Y(G) = 1+4+2¥%(G—-vjuw)+ ¥(G—v—uw) =1+2[¥(G -v) — ¥ (G - v— uw)]

+\I/(G—v—uw)=1+2(;)—(r;1) =(";1).
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Subcase 2.2. k(G ~v—uw) = 1. Let z be a cut vertex of G — v —uw. We observe
that v # z # w and that u and w lie in different components of G — v —uw — z. Let
G', be the component of G — v —uw — z containing v and let G, be the remainder of
G-v—uw—z. Nowset G, = G—v—uw—V(G,) and G, = G—v—uw —V(G,) so
that V(G,) "V (G.) = z. Since G contains no subgraph that has a CRP contraction
to F, it cannot simultaneously be that G, contains distinct u-z paths and that G,
contains distinct w-z paths. Thus, we may assume the u-z path P in G, is unique.
Now it is easily argued that G, = P. Let e be an edge of P; the induction hypothesis
implies ¥(G) = ¥(G -¢) = ("}'). 3

Two observations are now in order. First, it follows from Theorem 2 that if
k(G) 2 2,r(G) =r, ¥(G) = ('}') and P is an NSP of G then ¥(G; P) =r.

Secondly, if K(G) > 2, 7(G) = r and u and v are distinct vertices of G then G
contains at least » + 1 u-v paths. If uv € E(G), this follows immediately from the
fact, Theorem 2, that ¥(G;uv) > r. If uv € E(G) then, again from Theorem 2,

¥(G + uv;uv) > r + 1 so that G contains at least r + 1 u-v paths.

3. 3-CONNECTED GRAPHS

Theorem 3. f(3,r)=r*—r+1,r >3. If&(G) 2 3,7(G) =r > 3 and ¢ € E(G)
then ¥(G;e) > 2r —2,and ¥(G) =r* —r +1if G =W,,,.

Proof. We first prove, by induction on |E(G)|, that ¥(G;e) > 2r — 2. This is
obvious for |E(G)| = 6 so we proceed to the inductive step. Choose &' € E(G) so
that e # ¢ and ¢' is not adjacent to e. Thomassen [12, p. 46] has shown that either
G - ¢ is a subdivision of a 3-connected graph or x(G - ¢') > 3. We consider these
two cases.

Case 1. G —¢' is a subdivision of a 3-connected graph G'. Since r(G') = r(G—¢') =
r—1, the induction hypothesis implies ¥(G — ¢';€) > 2(r — 1) — 2. Since, as is easily
proven by induction on k, any two edges e and ¢ of a k-connected graph, k > 1, lie

in at least k — 1 common cycles, we have ¥(G;e) = ¥(G —e';e) + 2 > 2r — 2.
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Case 2. k(G -¢€) > 3. If € does not lie in a triangle then, by the inductive
hypothesis, ¥(G;e) > V(G - ¢';¢) > 2r — 2. Suppose, finally, that ¢ = uv lies in
t > 1 triangles uw;vr, 1 <7 <t. Thenr{G-€') = r—tsothat ¥V(G-¢;e) > 2(r—t)—2.
Now let z be the vertex of G - ¢ to which uv was contracted. Each cycle of G - ¢'
containing e and w;z for some ¢ (there are at least two such cycles) corresponds
in a natural way to a pair of cycles of G; one containing e and w;u but not v (or
w;v but not u) and the other containing e and w;vu (w;uv, respectively). Thus,
¥(G;e) > V(G- e';€) + 2t > 2r — 2 in this case also.

We now show that this bound for ¥(Gj;e) is sharp. It is easily verified that
r(Wea) =7, ¥(W,4y) = r? —r+ 1 and ¥(W,41;€) = 2r — 2 for every edge e incident
with the center of W,,,, r > 3. Consequently f(3,7) < r? ~r+1 and we next show,
by induction on |E(G)|, that ¥(G) > r? —r + 1.

This last inequality is obvious if [E(G)| = 6 and we proceed to the inductive
step. Barnette and Griinbaum [2, or see 12, p. 46] have shown that G contains an
edge e such that G — e is a subdivision of a 3-connected graph G'. Since r(G') =
r(G — e} = r — 1, the inductive hypotheses and our earlier result give ¥(G) =
V(G —e)+V(G;e) = V(G)+U¥(Gie) > (r—1) = (r—1)+1+2r—2=r2—r+1.
Thus, f(3,7) = r? —r+1 and we now show, by induction on |E(G)|, that this bound
is achieved only by W, ;.

Suppose «(G) > 3, r(G) = r > 3, ¥(G) =r* —r+ 1 and |E(G)| > 6. If
r =3, then G = K, = W,. Ifr = 4, then G = W;, K33 or K; X K;. But
U(Ws) = 13 < 14 = ¥(K,; x K3) < 15 = ¥(K33). Thus we may assume r > 5.
There are two cases to consider.

Case 1. Thereis an e € E(G) for which k(G —e€) > 3. Since f(3,r—1) < ¥(G—e) =
¥(G) — ¥(G;e) < f(3,r) — (2r — 2) = f(3,r — 1) it follows that ¥(G;e) = 2r — 2
and ¥(G —e) = f(3,;- —1). By the induction hypothesis, G — e = W,. Since e is not
incident with the center of W,, easy calculations show that ¥(G;e) > 3(r?—r—2) >

2r — 2 = ¥(Gje). Consequently, this case canaot happen.
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Case 2. G is minimally 3-connected. If G = W,,,, we are done. If not, we use a
result of Tutte [13, or see 3, p. 46] stating that G contains an edge e, not in a K,
for which x(G -€) > 3. Thus, r(G -€) = r and f(3,7) < ¥(G -¢) < ¥(G) = f(3,7)
so that, by the inductive hypothesis, G-e =W, ;.

Since e does not lie in a triangle of G, e contracted to the center of },.,. Thus,
G consists of a cycle of length r, C,, and two adjacent vertices u and v, not in
C,, with u adjacent to some number a of the vertices of C, and v adjacent to the
remaining r — a vertices of C,. But then G has a cycle containing neither u nor v,
2(;) cycles containing u but not v, 2(';“) cycles containing v but not u, 2a(r — a)
cycles using edge e and at least one cycle containing z and v but not e. We conclude
that ¥(G) > r? —r +2 > f(3,r). Since this is impossible, G = W,,,. m

We remark, in closing this section, that although the wheels W,,., are not the
3-connected planar graphs on 2m edges with the least number of spanning trees as
conjectured by Tutte [4, p. 248}, they are the 3-connected graphs with cycle rank r

that have the least number of cycles.

4. BOUNDS FOR f(k,r), k>3

C. A. Barefoot has calculated the numbers of cycles in the set of eighteen 4-
connected graphs with cycle rank 6, 7, 8 or 9 with the following results. Let e;,e;
and e3 be pairwise independent edges of K¢. Then f(4,6) = ¥(K;) = 37, f(4,7) =
U(Ks—e1—e;—e3) =63, f(4,8) = U(Kg—e,—e;) =91 and f(4,9) = ¥(Ks—¢) =
133. In all cases, the extremal graphs are unique. No other exact values of f(k,r)
are known to us. We do, however, have the following bounds for f(k,r), k > 4.

Clearly k(K¢ m) = k and r(Kim) = (k — 1)(m — 1) so that f(k,r) < U(Kym)
when r = (k — 1)(rn — 1). Easy calculations show that, for 4 < k < m,

k k'm! ek!m! LA )
¥ Ham) = z:22‘(16 —m =) = Am -k Zgj(m_J tu

=2
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Certainly j(m —j+1) < (k= 1)(m—1) for 2 < j < k-3 and, if 4 < k < m, then
1< (1 - i) (k — 1) so that m < (k — 1)(m — 1). Furthermore, if 4 < k < m then

_f[ jm-3+1) < (k-1)*m-1)°

J

so that for r = (k — 1)(m — 1) we have

Fk,r) < U(Kim) < g(k —Dkm-1)* = zr" .

Mader [9] has shown that if p > 4, t(p) = 3-2°73 - 3, |V(G)| > t(p) and

‘ tp) +1
Bz v El- (P
then G contains a subdivision of K,. We use this result to give a lower bound for
the number of cycles in dense graphs. Suppose «(G) > k, |V(G)| = n, |[E(G)| =m

and r(G) = r where k > 2n® for a € (0,1). For sufficiently large n, choose an

integer p satisfying

———— — 2 < m < .
l < < l (SO /n n)

By the result of Mader, G contains a subdivision of K,, and hence, for suffi-

ciently large n,

U(G) > V(K,.) > p!>pi > mplose/(zlosm)

> mplogp/(qlogn) > mzﬁlog(sﬁlogn) > mﬁloglogn > rﬁ]oglogn

where 8 = o/(8log4) and the sixth inequality holds since m > notl,

5. CONCLUDING REMARKS
We expect the lower bound given in Section 4 to be very weak. The upper
bound, however, may be the correct order of magnitude. Without attaching much
significance to it, we note that the graphs K,,4,; are extremal graphs for f(2,r).
The authors, along with C. A. Barefoot [1] had earlier considered a similar

extremal problem where the restraint on cycle rank was replaced by the requirement
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that the graphs be cubic. There also we were able to give exact results only for
connectivity less than 4.

The second author and P. J. Slater [6] have studied the related extremal problem
of determining the maximum number of cycles possible in graphs with given cycle
rank. There it was shown that the extremal graphs were cubic. We conjectured that
the cubic graphs of given order with the maximum number of cycles were precisely
those with maximum girth. This conjecture has been disproved by Guichard [7}
who discovered, by computer, a cubic graph of order 16 that has one more cycle
than the unique cubic graph of order 16 that has girth 6.

Finally, we mention that Perl [10] has studied digraphs with the maximum

number of cycles.
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