Groups & Graphs, a MacIntosh Application for Graph Theory

William Kocay !
Department of Computer Science
University of Manitoba
Winnipeg, CANADA R3T 2N2

Abstract
Groups & Graphs is a research tool for computing with graphs
and their automorphism groups. This note describes the
various kinds of information that it can provide.

Groups & Graphs, a MacIntosh application, is a research tool for
manipulating graphs on a computer screen, and for computing with them
and their automorphism groups. Groups & Graphs can be used by researchers
as a graph- and group-calculator, in a manner similar to the Cayley [4,5]
group-theoretical programming package. It does not have the enormous
scope of Cayley, but it is portable, and it is quite diversified. The purpose of
this article is to describe the structure of the program and some of the
algorithms that it uses.

The package consists of three main parts : graph editing and mani-
pulation, graph algorithms, and group algorithms. The automorphism group
computation is the bridge between the latter two parts. Once the
automorphism group of a graph has been calculated, computation on the
group will often reveal properties of the graph. Graph algorithms which are
currently implemented include : maximum matching, finding a long path,
computing the automorphism group, determining whether two graphs are
isomorphic, computing the line-graph, choosing a subgraph, finding the
cosets of the subgraph, and symmetrizing under the action of a given group.
Group algorithms which are currently available include : finding the group
generated by a set of permutations, listing the elements of the group, finding
the commutator subgroup and point-stabiliser subgroups, finding a block
system for the group, computing the subgroup fixing any given block, finding
the homomorphic image in which the blocks are permuted as "points”,
computing and listing a representative of each coset of a given subgroup, and
listing the elements of a particular coset. The importance of the package is
that it provides easy access to the kinds of computations one normally wants

¥ ¢-mail: BROCAY@UOFMCC bitnet. This work was supported by an operating grant from
the Natural Sciences and Engincering Research Council of Canada.

JCMCC 3(1988), pp. 195-206

to do for graphs and their groups; it acts like a hand calculator designed
especially for graphs and groups. Results of computations are usually
displayed pictorially (a picture is worth 1,000 words [13]).

Let X be a graph with vertex set V(X) and edge set E(X). The graph-
theoretic notation used will mostly follow that of Bondy and Murty [3]. We
shall often just write X for V(X), especially when a group is acting on the
graph, and shall set n=1V(X)|. We only consider simple graphs, that is, no
multiple edges or loops are allowed; thus E(X) < ();), the set of all 2-subsets of
X. Let G be a permutation group acting on a set X of points. X will often be
the vertex-set of a graph, so that vertex and point will be used as synonyms.
Given any xe X and any 6e G, x? denotes the point of x under the mapping 6.
When X also represents a graph, G is a subgroup of the automorphism group
of X if its induced action on 2-subsets fixes E(X), that is, E(X)®= E(X). Aut(X)
denotes the group consisting of all automorphisms of X. It is a subset of the
symmetric group Sym(X) acting on X.

Each graph or group displayed by the program is associated with a
window on the screen. A graph window is illustrated in Fig. 1.
€ File Edit Drawing Subgraph Graph Group Hel
== Graph: Cube =————1 m

%

8 Vertices
12 Edges

Graph Edit:

Subgraph:
8 Edges

? Cosets
#1 Shown

Fig. 1: A typical graph window.

The window shows the name of the graph and the number of vertices and
edges, as well as some other information. It is always possible to highlight a
particular subgraph, as illustrated. The edges of the chosen subgraph are
drawn with thicker lines. The currently chosen subgraph will always be

196

denoted by Z. The graph window also indicates the number of edges in Z and
some other subgraph information. Vertices of the graph can also be selected,
in which case they are drawn in black. The selected set of vertices is denoted
by S. The graph can be edited in several ways:

1) A walk in V(X) is any sequence of vertices vyv,v,...vy. A walk can be
chosen by clicking from node to node. For pairs v; v;,; E(X), that is, those not
defining an edge in X, an edge is inserted, and for pairs v;v;,;€ E(X), the edge
is deleted, as the walk is traced.

2) A clique (complete subgraph) Kg can be induced on the selected
vertices S.

3) A bi-clique (complete bipartite subgraph) Kgx.s can be induced
between S and X-S.

4) An anti-clique (independent or stable set of vertices) can be induced
on S.

5) A new vertex can be inserted, joined to all selected vertices.

6) X[S], the subgraph induced by S, can be replaced by its complement,
KS-X[S]

7) The graph can be switched on the set S, that is, the set [S,X-S] of
edges consisting of all edges with one end in S and one in X-S, is removed,
and replaced by the complementary set Kg x.g-{S,X-S].

8) The edges of the subgraph Z can be deleted from X.

9) The edges of Z can all be subdivided by inserting a new vertex of
degree 2 on each edge of Z.

10) The selected vertices S can be identified as one new vertex s ; s then
replaces S. Any multiple edges and loops created are deleted.

The subgraph Z can also be edited :

11) One may choose a walk vgv;v,...v in X so that, for each v, v;,;e E(X),
Vi Vi, is added to E(Z) if v; v;,; € E(Z), and is removed from E(Z) if v; v;,,€ E(2).

12) Z can be chosen as the induced subgraph X[S].

13) The complement of Z relative to X can be chosen as Z, that is, Z :=
X-Z.

14) Z can be chosen as the edge-cut [S,X-S). In case S={v}, this is useful
for finding the neighbourhood v* of v, that is, those vertices adjacent to v.

Graph Algorithms.

Most of the algorithms currently available produce a subgraph Z as the
result of their application to X. This makes the result of applying an
algorithm immediately visible. Balanced incomplete block designs [16] can be

197

conveniently dealt with by representing them as bipartite graphs, with points
versus blocks.

Maximum Matching.

A matching MSE(X) in X is a set of edges such that each ue V(X) is
incident with at most one edge of M. An O(n3) version of the Edmonds
matching algorithm [6] is used to find a maximum matching in X. The
implementation programmed is similar to that desribed in [17]. If X happens
to be bipartite, this is equivalent to the Hungarian algorithm [3].

Hamilton Paths and Cycles.

A Hamilton path in X is a path of length n-1, and a Hamilton cycle is a
cycle of length n. The problem of determining whether X has either a
Hamilton path or a Hamilton cycle is NP-complete, but there is a very simple
O(n2) algorithm [7] which will often find a Hamilton path or cycle if one
exists. Beginning at any vertex, a path P as long as possible is constructed,
without backtracking, until it can no longer be extended. We then know that
the endpoints of this path are joined only to other vertices of P. If the special
configuration involving the endpoints shown in Fig. 2 exists in the graph,
then the path P can be converted into a cycle C. Since X is connected, some
ue C will be joined to ve C; this produces a new path P’ that is longer than P.
We now work with the path P', extending it in both directions and repeating
the above steps as often as necessary, until no further improvement is
possible.

Fig. 2 : Converting a path to a cycle.

Line Graph and Complement.

The line graph L(G) has a vertex for every uve E(G) with two edges uv
and xy adjacent if they share a common endpoint. A window for the line
graph can be constructed, as shown in Fig. 3 for the graph of the cube.
Similarly, G can be replaced by its complement.

198

Help

Fig. 3 : Line graph of the cube.

Automorphism Group.

The algorithm used to compute Aut(X) is a version of that described in
[10] ; it has been rewritten for the MacIntosh to improve the efficiency. It uses
partition refinement (naively called naive refinement by some authors),
which is still the best and fastest method known for general graph
isomorphism [9,14]. It produces generators for Aut(X) and a certificate,
Cert(X), for X. A certificate is an encoding of X, ususally a character string,
such that X is isomorphic to Y (written X=Y) if and only if Cert(X) = Cert(Y).
Cert(X) also appears in the window for X, as illustrated in Flg. 3. Once Aut(X)
has been computed, a group window is created to display it, as described later.

Group Algorithms.

A group window contains a group G. The automorphism group of the
cube is displayed in Fig. 4.

199

&€ File Edit Drawing Subgraph Graph Group Help
F\:(: e e o0 S ,
: =—— Group: Aut(Cube) BVVFicF—7
. |Degree:8 |order:48

~ {non-abelian |4 Generators
o dFixed Pt: 1 |(2,4)(6,8)

)

{Index:8 (2,4,5)3,8,6)
|1 orbit (1,7)2,6,5,8,4,3)
12713865

: 4

i

Fig. 4 : A group window.

The window displays a list of generators for G, the orbits of G, the order of G,
and whether or not G is abelian. We can list the elements of any group of
order < 2°'- 1 in the group window. This is done by representing a group G in
terms of the cosets of a stabiliser subgroup:
PermPtr = “Perm;
Perm = array of Integer;
GroupPtr = *Group
Group = record
Generators: linked list of PermPtr; [generators for the group }
Subgroup: GroupPtr; { a stabiliser subgroup]
Rep: Integer; (the point whose stabiliser is the Subgroup }
Orbit: array of Integer; { the orbit of Rep }
OrbitSize: Integer; { length of Orbit }
Transversal: array of PermPtr { coset reps for Subgroup cosets }
end;

With this data structure, we can recursively list the elements of each coset of

the stabiliser subgroup. It is also very easy to determine whether a given
permutation is an element of a group G. We present the Pascal-like pseudo-

200

code for it.

Function GroupElement(G: GroupPtr; P: PermPtr): Boolean;
var Q: PermPtr;
Begin
GroupElement := true;
if P=IdentityPerm then return; { the identity is in every group }
GroupElement := false;
with G* do begin
If Generators=nil then return;
k :=PA[Rep];
if ke Orbit then return;
Q := P*Inverse(Transversal[k]); { permutation multiplication }
GroupElement := GroupElement(Subgroup, Q)
end
End;

Block Systems.

A block system [8] for a transitive group G acting on X is a partition of
X into disjoint sets By, By, ..., Bx such that every element of G induces a
permutation of By, By, ..., Bx. If a group G has several orbits, they will be
displayed in the window. An orbit can be selected, by "clicking” on it. Once
an orbit O has been selected, we can find a block system for G acting on this
orbit (the transitive constituent, G[O], of G acting on O). It will be displayed
graphically in the window, as shown in Fig. 5 for the line graph of the cube.

201

& File Edit Drawing Subgraph Graph Group Help
Graph: L(Cube) £

12 Vertices 0
24 Edges
T —) 5
Graph Edit:
Subgraph: —
0 é’dgf; : A = Group: Aut(L(Cube)
? Cosets Degree: 12 [Order: 48 K>
®1 Shown s non-abelian (4 Generators
Ticate: | Fixed Pt: 1 |(2,4)(3,5)(7,8)(10,11)
Certificate : / B . '
dp::i_,g‘;;,.:g,_ Index: 12 (2,3X4,5)(6,9)(7,11)(8,10) :
L 1 Orbit (1,12)(2,11)X3,7X4,10)5,8)6,9) K>
296121 |G=Aut(L(Cube)) K|
5781011

(2]

Fig. 5: Window showing a block system for G.

G will induce a group Gy acting on the blocks By, By, ..., By. It may also have a
block system, etc., so that the various hierarchical block systems form a tree.
The tree of block systems will be displayed in the window. If G happens to be
Aut(X) for a graph X, then the block systems of G will often provide insight
into the structure of X, as the vertices of X can only be permuted in blocks.
The algorithm used to find the tree of block systems is an O(n?log n) version
of that presented by Atkinson [1].

Once a tree of block systems has been found, each set of blocks will
appear in the window as orbits of G, and these orbits can also be selected. The
operation to construct the transitive constituent for an orbit O will now
compute Gg, the induced group acting on the blocks. Alternatively, a
particular block B; can be chosen and the subgroup fixing B; can be computed.

Subgroups.

As well as stabiliser subgroups and block-stabilisers, Groups & Graphs
computes the commutator subgroup of G. It is generated by all

202

commutators, [a,bl=a"lb’ab, where a,be G.

All subgroups of G computed are saved in a list. If K is a particular
subgroup, then G acts on the right cosets of K by the rule ge G: Ka — Kag. The
resulting permutations of the cosets form the factor group G mod K, (2, Ch. 8],
of degree [G:K]. Once a subgroup K has been selected, G mod K can be
computed, although this computation is currently limited to subgroups of
index [G:K] < 127, because a permutation is stored as an array of signed bytes.
G is first decomposed into cosets: G=Ka; + Ka, + ... + Ka,. The coset
representatives a; can also be listed in the group window. The algorithm used
to compute the coset representatives is a version of Sims's algorithm [15],
which we describe briefly. It is based on the idea of ordering the elements of
G, and choosing the smallest element of a coset Ka as a canonical
representative of Ka. Let G act on X={1,2,...,.n}. Let G4 denote the stabiliser

subgroup of G fixing point xe X, with coset decomposition G = Gyb, + Gyby + ...

+ Gyby. Each coset G,b; corresponds to the point xPi in the orbit of x. If we scan
the orbit of X, which is stored in the data structure representing a group, we

can choose the smallest such point xP in the orbit. This defines an ordering of
the stabiliser cosets Gyb;. We now proceed recursively, and choose the
smallest coset of a 2-point stabiliser Gy y, contained in Gyb;, etc., until we come
to cosets containing only one permutation. This defines the smallest element
of the group G. It can also be used to find the smallest element of any coset Ka
of a subgroup K, just by using the stabiliser subgroups and orbits stored in the
data structure representing K. The Pascal-like pseudo-code for this follows.

CosetRep(K: GroupPtr; g: PermPtr): PermPtr;
(Kisa subgroup of a group G. Computes g', the minimum element of
the coset Kg)
var a, MinPerm: PermPtr;
X, MinPt: Integer;

Begin
CosetRep := g;
with K” do begin

if Generators=nil then return; {K is the identity subgroup)
{ select the min element in the orbit)
MinPt := n;
for each xe Orbit do begin
a := Transversal[x]; { the coset rep for point x }
{ check coset Subgroup.ag }
if g"[a*[Rep]] < MinPt then begin

203

MinPt:= g”[a”[Repl);
MinPerm := a
end
end;
{ the g' we want lies in the coset Subgroup. MinPerm.g }
a := MinPerm * g ; { permutation multiplication }
CosetRep := CosetRep(Subgroup, a))
end
End;

Groups & Graphs will also list the elements of any coset Ga or Ka of a
group G or subgroup K, where a is any element of the symmetric group
Sym(X).

Groups and Graphs.
Once G = Aut(X) has been computed, certain computations in which
the group G and the graph X interact are available.

Listing Isomorphisms.

Computing Aut(X) also causes a certificate Cert(X) to be computed. If
two graphs, X and Y, are on the screen and both automorphism groups have
been computed, then the set of all isomorphisms from X to Y is a coset
Aut(X)0 of G, where 0 is any given isomorphism from X to Y. Groups &
Graphs will compute 6 and then list the entire coset in the window for G.
Now it may happen that X was constructed by deleting one or more vertices
from a larger graph. When vertices are deleted, the remaining vertices are not
renumbered, but preserve their original numbering. So the vertices of X may
not be numbered 1, 2, ..., n, but may be numbered V(X)={u,, u,, ..., uy}; also, the
vertices of Y may be numbered V(Y)={v,, v, .., v;}. So the isomorphism 6 is
not a permutation; thus the mappings Aut(X)0 are not permutations either.
We can treat them as partial permutations(11,12). Each v;e V(X) has no
image under 6. Each u;e&V(Y) is not an image. This means that, unlike
permutations, in which points fall into disjoint cycles, the points of partial
permutations fall into disjoint paths and cycles; for example,
0=<1,3,6,4>(2,5,7) means that (2,5,7) forms a cycle, but that <1,3,6,4> forms a
path for which 4 has no image and 1 is not an image. So every u;e V(Y)
begins a path and every v;€ V(X) ends a path. The mappings of Aut(X)0 are
printed in this disjoint path and cycle notation.

204

Subgraph Cosets.

If the graph X has a subgraph Z specified, then the automorphism
computation calculates K = Aut'(X), the subgroup of G = Aut(X) that maps Z
to Z. Each coset Ka of K in G now consists of all mappings taking the

subgraph Z to an isomorphic subgraph Z%. This is called a subgraph coset.
Groups & Graphs will also compute a list of all the subgraph cosets of Z and
will display them, one after the other.

Symmetrization.

If a graph X and a group G are both on the screen so that every point of
the group is also a point of the graph, then in certain cases we can allow G to
act on X, so as to symmetrize it. Groups & Graphs will compute the orbit,
E(X)C, of the edge-set of X under G and will add all these edges to X if they are
not already present. Thus Aut(X) will now include G as a subgroup. Suppose
that there are one or more points v of X which are not also points of G. Let v*
denote the neighbourhood of v, that is, all points adjacent to v, and suppose
that every point of v* is also a point of G. The orbit (v©) of the
neighbourhood will be computed, and a new point u will be added to X for
every new set Ue (v*)© in such a way that u*=U. This can be useful for
extending graphs in a symmetric way or for producing block designs using
difference sets. For example if we begin with a graph X with 7 vertices,
{1,2,..,7}, and no edges, and then add a point adjacent to (1,2,4), allowing the
group G generated by the cycle (1,2,3,4,5,6,7) to act on X, we produce the
Heawood graph (3], which is the point-block incidence graph of the Fano
plane. Once the right regular representation of a group G has been computed,
symmetrizing can also be used to construct Cayley graphs for G.

There are a great many other features which would be convenient in a
program for calculating with graphs and their groups. Some of these are
currently being added to the program. Addition of several others is in the
planning stage. Clearly there is a practical limit on the size to which the
application can reasonably grow. This note is published for the convenience
of those who may be interested in the program. The actual application is
available upon request from the author.

205

References

1. M. Atkinson, An algorithm for finding the blocks of a permutation group,
Maths. of Computation 29, 1975, pp. 911-913.

2. B. Bollobas, Graph Theory, an Introductory Course, Springer-Verlag, New
York, 1979.

3. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, American
Elsevier Publishing Co., New York, 1976.

4. Greg Butler and John Cannon, The Cayley system for discrete algebraic and
combinatorial structures, preprint, Department of Computer Science,
University of Sydney, 1988.

5. J.J. Cannon, An introduction to the group theory language Cayley, in
Computational Group Theory, edited by M.D. Atkinson, Academic Press,
London, 1984, pp. 145-183.

6. J. Edmonds, Paths, trees, and flowers, Canadian J. Maths. 17, 1965, pp. 449-
467.

7. Shimon Even, Graph Algorithms, Computer Science Press, Potomac,
Maryland, 1979,

8. Marshall Hall, Jr., The Theory of Groups, Chelsea Publishing Co., New
York, 1976.

9. Andrew]. Kirk, Efficiency Considerations in the Canonical Labelling of
Graphs, B.Sc. Thesis, ANU, Canberra, 1985.

10. William Kocay, Abstract data types and graph isomorphism, J.
Combinatorics, Information, and System Sciences, 1984, pp. 247-259.

11. W.L. Kocay, Graphs, groups, and pseudo-similar vertices,]. Austral. Math.
Soc. (A) 37, 1984, pp. 181-189.

12. W.L. Kocay, Hypomorphisms, orbits, and reconstruction, J. Comb. Th. (B),
1987, to appear.

13. K'ung Chiu (Confucius), The Analects, circa 500 B.C.

14. Brendan McKay, Practical graph isomorphism, Congressus Numerantium
30, 1981, pp. 45-87.

15. Charles C. Sims, Computation with permutation groups, ACM Second
Symposium on Symbolic and Algebraic Manipulation, Ed. S.R. Petrick, 1971

16. Anne Penfold Street and Deborah]. Street, Combinatorics of
Experimental Design, Oxford University Press, New York, 1987.

17. Robert Endre Tarjan, Data Structures and Network Algorithms, SIAM,
Philadelphia, 1983.

206

