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Abstract. Some interesting implications of the multiplier conjecture are pointed
out in this paper. We show the noncxistence of seven unknown diffcrence sets,
assuming the multiplicr conjecture. If any of thosc difference sets is found by other
means, it would, therefore, disprove the multiplicr conjecture. These difference sets
correspond to seven missing entrics in Lander’s 1able.

1. Introduction.

We refer the reader to (6] and [11] for the basic facts about diffcrence scts and
their multipliers. We state Hall'’s multiplier thcorem.

Hall's multiplier theorem [9). Lct Dbea (v, k, ) difference sct in an abelian
group G. Let p be a prime divisor of £ — X such that (p,v) = 1. Ifp > X, then
p is a multiplicr of D.

There are several gencralizations of the above theorem, all of which require a
hypothesis similar to “p > A" of the above thcorem. All known examples seem
to suggest that this condition “p > X (or its variations thercof) is unnccessary.
However, all the known proofs require this condition very heavily.

The muliiplier conjecture. The condition “p > A" is superflous in Hall’s mul-
tiplier thcorem,

In this paper, we gather some recent resulls which scem to be interesting
implications of the multiplicr conjecture. We also show thc nonexistence of
(189,48, 12) difference scts in Z3 x 23 x Z3 x Z7, (176,50, 14) difference
sctsin Zg x Z4 XZNn,Z2 X%y X 24 x Zyyand Zy x 2, X Zy X 2y x 2y
and (208,46, 10) differcnce scts in Z4 X Zg x 213,22 X 2y X Z4 X Zy3 and
2y X Z3 X Zy X Zy X Zr3, assuming the multiplicr conjecture. Consequently,
the multiplicr conjecture would be disproved if any of these scven difference
scts could be found by other methods. Incidentally, these seven difference sets
arc listed as undecided cases in Lander's table [11].
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2. Some recent results.

The foliowing recent results assume the multiplier conjecture:

Theorem 1. Assume that the multiplicr conjecturc is true. Let 1D bea(uv, k, 2)
difference set in an abelian group G '

() Arasu f1}. Ifk - X =2 (mod 4), thencitherk = 2X or2X + 1,
according as ) is cven or odd. Conscquently, the corresponding design
1s Hadamard (up o complcmentation).

(i) Pott 13]. Assume thatn= k—X is a nonsquarc and(v,n) = 1. Let Il
be a normal subgroup G of order h (G nced not be abelian) and supposc
G/ 11 is abelian. If p is a prime divisor of n, then vh(—1)( -1 sa
squarc modulo p.
In 1], Arasu showed that the multiplicr conjecture implics a conjecture of
Hall and onc of Ryscr, both for the casck — X =2 (mod 4).

In Theorem 1, (i) (resp. (ii)) holds, whenever 2 is a multiplicr of D (resp. p
is a G/ I multiplicr of D).

3. Lander’s table.

In [11], Lander concludes by giving all parameler triples (v, k, A) satisfying
the basic equation k(k — 1) = A(v — 1) and which do not contradict the con-
clusions of Schutzenberger’s theorem and the Bruck-Ryser-Chowla thcorem,
k < 50 and k < v/2. Fora fixed such v, Lander considers all possible abelian
groups of order v and obtains 268 riples. Of these, 65 correspond Lo known
difference scts, 178 arc shown not 1o cxist and 25 arc undecided. Arasu (2]
and [3)]) filled the cntrics 34, 48, 49, 147, 180-183 with answer “no”, Bozikov
(7] independently knocked off entrics 34, 48 and 49, and Jungnickel and Pott
[10) independently supplicd a short but clegant proof to knock off entrics 180-
183. In an unpublished work, Turyn [15} and Arasu and Reis (5] filled cnrics
113 and 115 respectively, both with answer ‘yes’. Recently, Davis [8], in his
Ph.D. thesis, has constructed an infinite family of difference scts the parame-
ters of which include those discovered by Turyn, Arasu and Rcis. Thus, only
15 more cntrics in Lander’s table now need to be fitled. In the rest of this paper
we will show: assuming the multiplicr conjecture, we can fill 7 more entrics in
Lander’s table with a negative responsc.

4. Background material.

In this scction, we lay some ground work.

Let D be a (v, k, A\) differcnce set in an abelian group G. Let /I be a
subgroup of G of index m. Let G/ H = {ilo, 111, H{2,...,Hm_1}. Define
s; = |[DNHy|fori=0,1,...,m — L. The following is wcll-known (for
instance, sce [4] or (11}).
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Proposition 4.1,

m-1
0 2 8=

m-1

(i) Y sT=k-—X+ )|

i=0

Theorem 4.2. (McFariand and Rice {12]). There cxists a transiate of D fixed
by all the numerical multipliers of D.

Proposition 4.3. With notations as above, if -1 is a G| H -multiplier of D,
then all but one of the s; arc = MH| (mod 2) and the remaining s; is =
k—X+XH| (mod 2).

Proof: Sec Corollary 6.1 in [4].

5. (189, 48, 12) case.

Proposition 5.1. (189, 48, 12) difference sets do not exist in Z3 x 23 x 23 x
Z7, admitting 2 as a multiplier. Thus, the validity of the multiplier conjecture
establishes their nonexistence.

Proof: Let D be a hypothetical (189, 48, 12) difference setin G = 23 x 23 X
23 X Z7 with multiplier 2. Let Jf = (0) x(0) x(0) x Z7. Since 2 is a multiplier
of D, it follows that 2 is also G/ H -multiplier of D. But G/H= Z2yx2Zy%x 23
and 2 = ~1 (mod exponent of G/H). Thus —1 is a G/H multiplier of D.
With s; (1 = 1,...,26) as in Scction 4, it follows from Proposition 4.3 that
cach s; iseven. Since 22 = 4 isalsoa multiplier of D, we may assume D is a
union of orbits of G under (z — 4 z) (using Theorem 4.2). We nole that 4 fixes
cach coset ; of H sctwise and forms the orbits {0}, {1,2,4} and {3,5,6}
on Z7. Hence, each s; = 0 or4. Thus, D picks up 12 such orbits of size 4. But
cach of these orbits forms a (7, 4, 2) difference set in Z;, thereby producing
24 differences for each clement of H, contradicting A = 12. Hence, D cannot
CcXI1Sst.

6. (176, 50, 14) case.

Proposition 6.1. The unknown (176, 50, 14) difference sct in G = 2, x
Zy X Zp X Z x Zy cannol admit 3 as a multiplicr, Hence, if the multiplier
conjecture is true, then such a difference set cannot exist.
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Proof: Let D be a (176, S0, 14) difference sct in G having 3 as a multiplicr.
Assume that D is fixed by the multiplicr 3. Let Jf = (0) x(0) x Z3 x Zy x 7.
Define /i, 8; (1= 0,1,2,3) be as in Scction 4. Then by Proposition 4.1,

so+ 31 +382+383=50

St + 8% 435 + 85 =652,

Solving these equations, we find 4 scts of solutions for the s;, viz,

i) (14,14, 14,8)

(i) (17,11,11,11)

(iii) (16,14, 10, 10)

(iv) (15,15,11,9).

Each H; is fixed seiwise by (z — 3z). The orbits of G under (z — 3z) arc
of the form: ({1,12,13,14,0), (41,12,13,14) x S, where S = set of nonzero
squares in Zy; or set of nonsquares of Zy; . [Note: there are 16 singleton orbits,
4 in each H; and 32 orbits of size 5, 8 in cach f[;). In any case, S forms a (11,
5, 2) difference set in Zy; .

If the solutions of s; are (ii), (iii) or (iv), D must pick up 9 orbits of size 5,
in which case differences within the same orbit yicld (0,0,0,0,z),z € Z},,
twice, for a total of 18 times as d — d', (d,d’ € D), contradicting A = 14.

It remains to consider the casc (s;) = (14,14, 14, 8). In this case, D picks
up 7 orbits of size 5 and 15 singleton orbits. The singleton orbits form a (16,
15, 14) difference set in Z; x Za x Z» x Z2 x (0). But then it can casily
be seen that some nonzero clement of Z3 x 23 x Z» x Zz x (0) occurs as a
difference d — d', (d,d’' € D) at lcast once more, again contradicting A = 14.
Thus, D does not exist, completing the proof of Proposition 6.1.

Remark: Proof of Proposition 6.1 uses idcas of [14].

Proposition 6.2. Thc unknown (176, 50, 14) difference scts in Za x Za X Zn
and Z4 X Z, x 23 x Zy, cannot admit 3 as a multiplier. Thus, the validity of
multiplier conjecture would establish their noncxistence.

Proof: Identical to the proof of Proposition 6.2, considering more cascs, how-
cver.

7. (208, 46, 10) case.

Proposition 7.1. The unknown (208, 46, 10) diffcrence scis in 24 x 24 % 213,
Zy %X Z3 % 24 x 213 and Zy x Zy x Zy x 2y x Z,3 do not admit 3 as a multiplicr.
Hence, the validity of multiplicr conjecture would prove their noncxistence.
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Proof: Along the lincs of Proposition 6.1, noting that the cquations

so + 81 + s2 + 53 =46 and
s(z,+sf+s§+s:2,=556
havc 4 scts of solutions, viz,

@ (13,13,13,7)

(i) (15,13,9,9)

(iii) (14,14, 10, 8) and

(iv) (16,10, 10, 10).
Even though the nonsquares of Zy3 do not form a difference sct in Z§; (unlike
in Zy,) arguments similar (o thosc in the proof of 6.1 (with minor changcs)
work 10 finish the proof. We omit the details.
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