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is exhibited for the first homology epace of a sur-

Abstract: A basis
face over a field. This basis is found by extending a basis of the

boundary cycle space of an embedded graph to the cycle space of the
graph.

1. Introductjon

In homology texts, one common exercise is to find the rank of the

first homolegy group of a surface. If the coefficlent group is a

field, then this homology group is a vector space. In this work, we

exhibit a basis of this vector space, from within a basis for the cycle
space of a graph embedded in the surface; this finds the dimension of

the homology space in a new way. We proceed using the theory of embed-

ded graphs developed by Hoffman and Richter [3] and the cycle space of

a graph over an arbitrary field K.
Let ¢g:G — E be an embedding of a connected graph G in the surface

L so that each face is homeomorphic to the open unit disc. Let c°

denote the geometric dual of G. If d is a subset of the edge set E of
G, then rd denotes the set of edges of G° that are dual to those edges
of G in d. (Precise definitions will be given in the next section.)

Let Z(g,K) denote the cycle space of G and let Q(g,K) denote the

subspace of Z(g,K) spanned by the boundary cycles. In {7], the
following results are established.
Theorem 1: a) If T is a spanning tree of G, then there is a subset °

of E-T such that (T° is a spanning tree of c°.
b) For a spanning tree T of G, let T° ¢ E-T be such that r1° is
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a spanning tree of G°. For e € T, let Zje denote the fundamental cycle
of e with respect to T. If q is any basis for Q(9,Z,), then q u
(zTe | e € :-(Turo)) is a basis for z(g,zz),vhere z, is the set of

integers modulo 2.

Part (b) of Theorem 1 asserts that the cosats zTe + Q, for e € E-
(TUT°) form a basis for the first homology space H = Z/Q, when the

underlying field is Z,. Here, ve generalize (b) as follows.

Theorem 2: Let G, ¢°, T and T° be as in (b) of Theorem 1 and let K be
an arbitrary field. Orient the faces of G so that if e € T°, then e is
traversed once in each direction. Let E denote the subset of E-T

consisting of all edges traversed both times in the same direction.

Let q be any basis for Q(g9,K). Then:
(a) If either E = @ or K has characteristic 2, then qu (Z.e | e

€ E-(TUTO)) is a basis for 2(g,K).
(b) otherwise, for any member e‘ of E, qu (zTe | eeE-(TUTou(e')))

is a basis for z(g,K).

In Section 2, the necessary notation and definitions are given.
Saection 3 develops the basic results concerning chain spaces and boun-
dary maps; with these the cycle and boundary cycle spaces are defined.

Section 4 is devoted to the proof of Theorem 2.

2. ot ons

We assume the reader has a basic familiarity with graph theory. We
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shall use the terminology of [1); loops and multiple edges are allowed.

A purface is a compact, connected 2-dimensional manifold without
boundary; it may be non-orientable.

For a set A, 2)‘ denotes the set of all subsets of A. FPor a sub-
space A of a topological space B, cl(A,B) denotes the closure of A in
B.

An embedding of a graph G in a surface E is a function g: (Wz)-.zn
such that:

i) for x,y € WE, if xsy, then g(x) n g(y) = g;
i1) for each v € V, g(v) is a singleton;
i1ii) for each e € E, g(e) is homeomorphic to the open interval
(0,1):
and iv) if e € E has ends v and w, then cl(g(e),E) = g((e,v,V¥}).

Here, V and E are the vertex- and edge-sets of G, respectively.
For simplicity, we shall write g:G — I rather than g:(WE) — 2E,

A face of an embedding ¢g:G — E is a connected component of E-g(G).
Throughout this work, every face is assumed to be homeomorphic to the
open unit disc.

For an edge e of G and an embedding g:G — L, it can be shown that

there is a continuous surjection £,:00,1) - cl(g(e),L) such that

£,:(0,1) — g(e) is a homeomorphism. Moreover, if e is not a loop, then
fez[o,l] — cl(g(e),E) is a homeomorphism. (For details, see [6).) Let
v and w be the vertices of G such that fe(O)-q(v) and te(l)-g(v).
Define the head h(e) of e to be w and the tajl t(e) of e to be v.

From the results in (3), it is easily shown that, for a face F of
an embedding g:G—I, there is a continuous surjection hF:n(O,l) — cl(F,L)

such that hpzs(o,l) — F is a homeomorphism, where B(0,1) and B(O,1)
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are, respectively, the open and closed unit discs in the plane. we
parameterize the plane vith polar coordinates (r,/), so that, for
example, B(0,1) = [0,1)x(0,2r). Rotate h? it necessary so that h?“"o)
€ g(V).

Let O = ¢

0
€ g(V). For j=0,1,...,n, let hr(l"j’ - q(vj). It can be shown that

< 01 Ceve <, = 2x be those angles ¢ for which hF(l,l)

there is an edge °j such that hP:“’x('j-l"j) — q(aj) is a homeomor-
phism, J=1,2,...,n. (See [3}.) Thus, (v4,8;,Vyscecs0,,V,) is a closed
walk of G, called the boundary walk of G induced by hF'

Note that h':B(0,1) — cl(F,E) defined by h'(r,0) = hp(r,2x-1)
induces the inverse of the above walk.

Consider the edge @ = e. The function !;1hF:(1)x(0j_1,lj) -

(0,1) is a homeomorphism; in particular it is either an increasing or a
decreasing function of ¢. Define e(e,hy) to ba ¢'(e,hy) - ¢ (e,hp),
where ¢' is the number of indices k for which e = ey and t;th is
increasing on (0g—q+%) and ¢ is the number of such k for which the
composition is decreasing.

Observe that e(e,hy) = -c(e,h'), ¢ (e,hp) + ¢ (e,hp) € (0,1,2), for
any edge e and any face F. Moreover, if D is the set of faces of g,
then Lo o (:+(e,hx_.)+¢-(e,hp)) = 2, for every edge e.

We conclude this section by describing the geometric dual of the
embedding ¢g:G — E. This is the graph G° whose vertices are the faces
of g and, for each edge e of G, there is an edge ra of G°. The ends of
re are the two faces of g in whose boundary walks the edge e appears.
We shall

If e occurs twice in some boundary walk, then re is a loop.

use the following fact in this work.

Lemma 3: Let g:G — £ be an embedding of a connected graph G in a sur-
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face E. If T is a spanning tree of G, then r(E-T) contains a spanning

tree of G°.

3. Homology

In this section, we reyiew the basics of the homology of a surface.
Let K be an arbitrary field dnd let g:G —« L be an embedding. Define

the following vector spaces over K:

1) Co - co(g,x) - (Zvev a,v | e, € K):
2) Cl - Cl(g,K) - (zeet-: a8 | a, € K}:

and 3) c2 - Cz(g,x) - (EFED o?F | op € K).

The sums are formal, with (}:x axx) + (zx pxx) and B(Zx cxx) defined to
be Ex (ax+px)x and Zx (pax)x, respectively,

Fix the functions f.e and hF' for each e € E and each F € D, as
described in sSection 2. Define the boundary maps b,:C, — C, and
blzcl -G by:

1) bz(zx-‘ °1-"F) = ZF °F(£e (:(e,hp)e): and

2) bl(}:e a,8) = ):e ay(h(e)-t(e)).

Lemma 4: blbzzc2 — co is identically zero.
Proof: Since D is a basis for ¢, and both bl and b2 are linear, it suf-
fices to show that !:a1 (bz (F)) = O for each face F of g.

Observe that bl(bz(F” - bl():e c(e,hx_.)o) - Ze c(a,hp) (h(e)~-t(e))

= Lo ('(eihp) = ¢ (a,hp)) (hle)-t(e)) = L)y 0 (v4-vy_ 1) = v, -V, = O.m
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Another way to state Leama 4 is to assert that In(bz) c K°r(b1)’

The gycle space Z(g,K) is defined to be Ker(bl) and the:boundary cvcle
gpace Q(9,K) is defined to ba Im(b,). The homology space is the quo-
tient space H(g,K) = 2(g9,K)/Q(g9,K).

Evidently, the cycle space depends only on the oriented graph and
not on the particular embedding. In Chapter 12 of {1] is an exposition
of the basic facts about the cycle space of a graph. We summarize the
relevant pbints here.

For a spanning tree T of G and an edge e € T, m+e" contains a
unique polygon P. Let P+ be the saet of edges from P whose orientations
agree with that of e' in P and let P- be the remaining edges of P. It

is readily verified that }' ., e = Leep- © is in Z = Z(9,K). This

cycle is the fundamental cycle of e" with respect to T and is denoted

ZTe.. It can be shown that (zTe | e e T) is a basis for 2 and if z =

2ee£°ee is in Z, then z = EeeT agZpe. Thus, din(Z) = [E|-|V|+1.

4. Proof of Theorem 2

For this section, let g:G —E be a fixed embedding of a connected
graph G. Let T be a spanning tree of G and let T° ¢ E-T be such that
1° i5 a spanning tree of the geometric dual G° of g. It is easily
shown that there are orientations (hF | P € D) of the faces of g such
that if e € T°, then ZF ¢(a,hF) = 0. Fix these orientations.

Let E = (e € E-T | L e(e,hp) = 22}, so E is the subset of E-
(TUTO) consisting of those edges traversed both times in the same

diraction by the boundary walks induced by the hF{s. (Note that the

218



surface £ is orientable if and only if we can orient the faces so that
’

for each edge e, EF c(e,hr) = 0. It is straightforward to gee that

this is equivalent to E = g.)
We now restate Theorem 2 in a slightly different form. We write z

for 2(g9,K) and Q@ for Q(g,K).

Theorem 5: 1) 1If either E = ¢ or K has characteristic 2, then dim(Q)

= |D] - 1 and (Zpe + Q| ec€ E-(TVT®)} is a basis for H(g.K).
2) It E s+ ¢ and K does not have characteristic 2, then dim(Q)

= |D| and, for any e' € E, (Zre+ Q| ec E-(Tut®u(e”}))} is a basis

for H(g,K).

This result is proved in Propositions 7 and 8. First, we require

the following result.

Lemma 6: If ZPeD aPF € Ker(bz), then there is an « such that ep = a

for all F € D.

Proof: 1If bz(ZF agF) = 0, then ZP °F(Ze ¢(e,h?)e) = 0. Reversing the

order of summation, this is the same as Ze(Z% “5‘(°'hy))e = 0. But E

is a basis for cl, 50 we must have Z% °F‘(°'hF) = 0 for each edge e.
If e € T°, then there are distinct faces F and F' such that c¢(e,F) = 1

and ¢(e,F') = -1. For every other face F", ¢(e,F") = O, sO ap = ap,.

Since this is true for every edge of T, and T° is a spanning tree of

G°, the result follows.m

Now for the dimension statements of Theorenm S.
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Proposition 7t 1) If either E = @ or K has characteristic 2, then

dim(Q) = (D} - 1.
2) Otherwise, dim(Q) = [D}.

Proof: Suppose EF aF € Ker(bz). By Lemma 6, there is an e such that
ap = a, for all F. Hence, ZF oFF - ZF F and either a = 0 or ZFF €
Ker(bz).

Now b, (Lp F) = Lo (Ip e(ejh;))e = Leer (Lp e(e,hp))Zge =
Tocg (L ¢(e/hp))2pe, since e @ TUE implies T ¢(e,hy) = O.

For e ¢ E, Tp ¢(e,hy) = 22, 80 b,(Lp F) = O if and only it either
§ = ¢ or K has characteristic 2. It follows from Lemma 6 that if E #
@ and K does not have characteristic 2, then (b, (F) | F € D) is a basis
for Q. Otherwise, the only dependency among the bz(F) is zp bz(F) = 0,
which inmplies that (bz(F) | P e D—(F.)) is a basis for Q, where F' is

any member of D.®

Finally, we prove the assertions about the basis for H.

Proposition 8: Let q be any basis for Q. Then:
1) If either E = ¢ or K has characteristic 2, then qu (zTe | e €

E-(TVT®)} is a basis for z.
2) If £ ¢+ # and K does not have characteristic 2, then q u (ZTe |

e € E-(TuT®u(e’}))) is a basis for 2z, where e' is any member of E.

Proof: Using Proposition 7, we see that in each case the indicated set

has |E|-|V|+1 elements, so it suffices to prove that it spans 2. To

this end, let z = Z; a.e € z.
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Claim: There are p, € K such that, for each e € T°, Tp Ppe(e.hy) =

Proof: Let A-(ao'r) be the (|D|-1)x|D| matrix whose rows are
indexed by the edges in T° and whose columns are indexed by the faces
of g, such that %,F = ¢(e,hF). The set-up is such that each row of A
has exactly two non-zero entries, one of which is 1 and the other is

-l. Thus Al = O, where ] and Q are the vectors of all 1's and O's

respectively.
Lemma 6 implies Ker(A) = (al | @ € K), 8o that A has rank |D|-1.

Thus, if g = (ae) is the given (|D|-1)xl vector, there is a solution g

to AX = g, as claimed.m

To prove Proposition 8, observe that z - bz():F ﬁFP) - Ze‘g a.e -
(ZeeTo age + Z§¢T° #oe), for some y, € F. Thus, z = ZeeTo (ae-pe)e +
bz(}:F BpF} = Z@e(TUT°) (ag=hg)Zpe + bz(Zb PpF) . which proves (1).

To coumplete the proof of (2), we know that bz(ZF F) =

* * -
Toi (Tp ¢le,hp))Zie. Therafore, Zpe’ = (T c(e”,np)) Yb,(5p F) -
z;uﬁ-(e') ([& c(e,hF))zTe). ~Plugging this into our previous
expression for z shows z to be a linear combination of the elements

zTe, for e € E-(TUT°u(e*)) and members of q, as required.®m

5. Copcluding Rem s

The decomposition of £ described in Sections 2 and 3 shows L to be

a4 normal CW-complex of dimension 2 (see (4])). Since the homology of

CW-complexes is the same as simplicial or singular homology, the space
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H(g,K) is the first homology space of L; it is independent (up to
isomorphism) of the choices of g and G.

Since £ is orientable if and only if E = @, 1f K does not have
characteristic 2, then dim(H) distinguishes between the orientable and

non-orientable surfaces having the same Euler characteristic |V|-

IE[+1D].
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