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ABSTRACT

Ideas are described that speed up the lattice basis reduction algorithm
of Lenstra, Lenstra and Lovész [11] in practice. The resulting lattice
basis reduction algorithm reduces the multiprecision operations
needed in previous approaches. This paper describes these ideas in
detail for lattices of the particular form arising from the subset sum
(exact knapsack) problem. The idea of applying the L® algorithm to
the subset sum problem is due to Lagarias and Odlyzko [8]. The algo-
rithm of this paper also uses a direct search for short vectors simul-
taneously with the basis reduction algorithm. Extensive computa-
tional tests show that this algorithm solves, with high probability,
instances of low density subset sum problems and has two major
advantages over the method of Lagarias and Odlyzko: running time is
an order of magnitude smaller and higher density subset sum prob-
lems are solved.

1. Introduction
The subset sum problem is:

given a vector of posttive integers a = (a,a;, *°° ,a,) and a
positive integer M, find a (0,1)—vector x = (x1,X3, ...,Xy ), such that

n

rax =M (1)

i=1

The existence of a solution to (1) is in general an NP-complete problem, similar to
the related knapsack problem, Garey and Johnson [4]. The subset sum problem was
one of the first problems discovered to be NP-complete and is consequently very
well known. Its importance increased dramatically when several public-key cryp-
tosystems, whose security are based on the practical intractability of solving (1),
were proposed and discussed [2,13].

The problem of solving (1) can be reformulated as finding a particular short
vector x in an integer lattice L=L(a,M). Although one could use any known
method for finding short vectors in integer lattices [1,10,11], in this paper we use the
so called the L* basis reduction algorithm of Lenstra, Lenstra and Loviész [11], with
some additional features. The initial idea of our algorithm is taken from the paper
of Lagarias and Odlyzko [8). In this paper they gave a method based on the L? algo-
rithm, called the SV (short vector) algorithm, for solving, with high probability, low
density instances of (1). The density of a subset sum problem (1) is defined as
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d(a) = logy(max{a; : 1<i<n}) (2)

and represents the information rate of the corresponding knapsack code.

They suggest on the basis of extensive computational tests, that their method
works for densities d <d,.(n), where d.(n) is a cutoff value that is substantially
larger than the best up to now theoretical estimation of 1/n. They observed, that
some of the practical upper bounds for the cutoff value d.(n) , using their method,
are d.(30) <0.60 and d.(40) <0.50. Our method, as will be shown in section 5, sig-
nificantly improves these bounds (for example, for our algorithm d,(42) =0.62). A
nice analysis of the method of Lagarias and Odlyzko can be found in (3].

Another algorithm, constructed by Brickell [1], for solving the same problem
can be expected to have smaller cutoff values for similar data. Schnorr [12] presents
a hierarchy of polynomial time basis reduction algorithms, which are refinements of
the L3 algorithm. Although, each algorithm in this hierarchy runs asymptotically in
the same time as the L3 algorithm and theoretically finds shorter vectors, it was not
shown in practice that they are superior.

Our LS (L® applied to Subset sum) algorithm uses the method of Lagarias and
Odlyzko as one of its basic steps. Among the most important new features we have
added to the SV algorithm are:

F1: Avoidance of the many of the multiprecision operations that are required
in previous approaches as in [1,8,11],

F2: The use of the L® algorithm jointly with other methods for finding short
vectors in integer lattices.

The above improvements produce an algorithm that finds shorter vectors than
13 does, solves higher density knapsack problems as used in cryptography, and
furthermore, it is faster than the SV algorithm. We were unable to give a rigorous
proof of the fact that the LS algorithm is better (faster and more powerful). How-
ever, extensive computational tests described in section 5 confirm the advantages
stated above. We give some intuitive consideration which at least partially explain
why the LS algorithm performs so well in practice.

Section 2 describes briefly the idea of the L and SV algorithms, section 3
presents the mechanisms of the new features F1 and F2 mentioned above and the
LS algorithm is stated in section 4. Next, in section 5 we describe in detail experi-
ments done and compare it to previous work. Finally, section 6 contains concluding
remarks.

2. Tools
Before describing .the LS algorithm, we introduce the basic concepts about
integer lattices and the L® algorithm we use.

Let n be a positive integer. A subset L of the n-dimensional real vector space
R" is called a lattice iff there is a basis B = {b;,b,,...,b,} of R" such that every
member of L is an integer linear combination of the vectors in B. Recall that given
a basis B = {b,,b,,...,b,} of R" an orthogonal basis B = {b;,b;,...,b:,} of R"
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may be obtained inductively via the Gram-Schmidt process of orthogonalization as
follows:

* i-1 s
bi =bi_2uijbj’ for ISiSn, (3)
j=1
wy = (bi,b;)/(by,b), for 1<j<i<n, (4)

where (-,) denotes the ordinary inner product on R". An ordered basis
B = [b;, by, ..., by] for a lattice L will be said to be y-reduced (or reduced) if the fol-
lowing two conditions hold:

(i) lui| <% for 1<j<i<n,
(i) 1bi +pioabiog |22y |biy |? for 1<i<n,

where y, 4 <y <1 is a constant and |‘| denotes ordinary Euclidian length (or
absolute value). Lenstra et al. [11] describe an algorithm, which when presented
with y, % <y < 1 and an ordered basis B = [by, by, ..., by] for a lattice L as input,

produces a reduced basis B’ = [b{, b3, ..., b;] as output. The L3 algorithm consists
of applying a finite number of two kinds of linear transformations:

T1: Interchange vectors b; and bi_; if |b; + py_;1bi_; [2>y|bi_|® does

not hold, for some 1 <i<n, and the global constant y € (%,1).

T2: Replace b; by b; — rb;, where r = round(y;;) is the integer nearest to g,

and || > %, for some 1<j<i<n.

The efficient implementation of a sequence of transformations T1 ‘a.nd T2 in
the L3 algorithm relies mainly on the fact, that old values of i and |by |? can be
easily updated after each transformation without using the full process of orthogo-
nalization. The L algorithm performs the transformations T1 and T2 using a
strategy resembling somewhat the bubble-sort, however as H.W.Lenstra [10]
remarks, any sequence of the these transformations will lead to the reduced basis.

The L3 algorithm terminates when neither T1 nor T2 can be applied and such
a situation implies that conditions (i) and (ii) are satisfied. The resulting reduced

basis B’ is an integer approximation to the basis B’ defined by the Gram-Shmidt
orthogonalization process and as a consequence contains short vectors, as can be
seen in the following proposition of Lenstra et al. [11, prop. 1.11]:

PROPOSITION 1: Let B’ = [b{,bs3,...,b;] be a reduced basis of a lattice L. Then

|bi |? < 2°'-min{ |b|2:bEL and b=£0}.

They also give the following polynomial worst-case running time for its performance
(11, prop 12.6):
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PROPOSITION 2: Let B = [by, by, ..., by] be an ordered basis for an integer lattice L
such that |b;|? < Max for 1 <i< n. Then the L* algorithm produces a reduced

basis B’ = [bf,bs,...,b;] for L using at most O(n*logMax) arithmetic operations,
and the integers on which these operations are performed have length at most
O(n log Max).

Finally we describe the SV algorithm of Lagarias and Odlyzko. In the remain-
ing sections to simplify notation lattices will have dimension n+1. Given an integer
vector a = (a;,a,...,a,) and target integer M as in (1), define the basis B to be the
n+1 row vectors of the matrix that follows:

(100 -0 —a]
010---0 —a
001 -0 —a
B= (5)

000 -1 —a,
000---0 M

n
We can assume that 1 <M < 3} a;, otherwise if there is a solution to (1) it is trivial.
i=1

The SV algorithm
SV1: Define the lattice L=L(a,M) by the basis B in (5);
SV2: Find a reduced basis B’ = [b{,b3,...,bs4,] of L using the L* algorithm;

SV3: Check if any b{ =(b{j,...,b{41) has all bjj=0o0r X for fixed A equal to 1
or -1 and for all j, 1<j<n. For any such b/, check whether

x=(X1,...,Xp), X; = | bjj | for 1<j<n, gives a solution to (1), and if so, ter-
minate;

n
SV4: Repeat steps SV1 - SV3 with M replaced by M’ =y a; —M. Then ter-
i=1
minate.

If algorithm SV produces a solution to (1) then it succeeds, otherwise it fails.
The SV algorithm has ‘the same guaranteed running time as the L algorithm. In
practice, however, Lagarias and Odlyzko (8] observed that it behaves much better
then the worst case estimation of O(n®(logMax)?) obtained from proposition 2, if a
standard implementation of arithmetic operations is assumed. They claimed that it
uses instead about O(n(logMax)?) bit operations. The SV algorithm also finds
much shorter vectors than could be concluded from proposition 1. In section 5 we
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give a comparison of the success rate for the SV algorithm and the LS algorithm for
some densities and different dimensions. This comparison shows that the LS algo-
rithm behaves even better.

3. New Features

3.1. Handling Multiprecision

In the case of an initial basis of the form in (5), we have
B = [b,by, * * - ,byy], where

0 if 1<i#j<n,
by =< 1 f1<i=j<n,
-3 if 1<i<j=n+1,

bp41i =0, for 1<i<n,
batrnet = M.
Note that in this case the equality
(a,(bisy * - ,bin)) = kM + by pyg, (6)

holds for k; = 0 if 1<i<n, and ky4; = -1. The only operations done in the L? algo-
rithm over the basis B are the transformations T1 and T2, and condition (6) is an
invariant of both of them. Thus, after the execution of the L3 algorithm there will
exist integers ki, 1<i<n+1, such that equality (6) remains true for all i,
1<i<n+l. Let S =L3(B) =[s;,8;, *** ,8,41] be the resulting reduced basis
after running L* with input B. If for some iy, 1< ib<ntl,s; jisOorl(ors; ;isO
or -1) for all j, 1<j<n, s; ,41=0 and k; =1, then the equality (6) becomes

Y a =M, where I={j:1<j<nands ;70}, (7)
je1

i.e. the io-th row of the basis S represents a 0-1 solution to the subset sum problem
given by vector a and target integer M.

The integer M and the coordinates of a are usually big numbers and a stan-
dard approach would require, that most calculations in the L? algorithm be done in
multiprecision. Hence, our main attack in this direction consists of applying a
divide and conquer technique with respect to the binary length of M and the coordi-
nates of a. Roughly speaking, we run the L? algorithm some number, say s, times
for the n+1 dimensional basis, but with numbers in the column n+1 of B of binary
length 1/s of the original length.

The above idea is achieved by substitution for step SV2 in the SV algorithm
the MP (multiprecision) algorithm.
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MP1:

MP2:

The MP Algorithm

Let t be an integer somewhat smaller than the machine word size (say t=28
for a 32-bit computer).

Max ~ max{a;:1<i<n}; Max « max{Max,M};
top « |logsMax| + 1; k «— max {top—t,0};

Set S =|s]1<i,j<n+1 to be a basis of an integer lattice of the form found in
(5), but with the single precision approximation to the last column of B.

S « B; sint1 «—round(b; n41/2%), for 1<i<n+1;

Before each iteration of this step, S will satisfy (6) for the integer

M’ =round(M/2¥) and the vector a’ = (round(a; /2¥),...,round(a, /2¥)), i.e.
for the original data rounded after dropping k least significant bits. Finally,
for k=0 we will obtain the same situation as after step SV2 in the SV algo-
rithm, since in this case S will span the same lattice as B. The step MP2
will be iterated s ~top/t times.

while k>0 do
begin
S «— L3(8);
{ adjust basis S to span the same lattice as basis B }
for i1 to n+1 do
begin
Sin+l < (a’(sil:"'tsin));
{ represent s; n41 as in (6) }

.

calculate integers c;, k; such that s; 41 =ki'M + ¢;, and |¢; | <M/2;

Si,n+1 < €
end;
{ calculate maximal size of numbers in the new last column of § }
Max « max{ |s;n41 | :1<i<n+1};
top « |logoMax] + 1;
k  «— max{top—t,0};
{ take the first block of t bits of the last column of § }
for i1 to n+1 do s; 4 — round(s; n41 /2%)
end;

MP3: Rearrange the order of rows in the matrix S by shifting up to the first posi-

tions those vectors s; for which the value k; in the last iteration of step MP2
was nonzero. As we noted in the comment to (7) the iy-th row of §
representing a solution to (1) will have k; =x1. This property is strongly
propagated by the L3 algorithm to rows with higher indices. Consequently,
the above arrangement of rows will increase the algorithm chance of success.

MP4: B « L3(S).
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If the MP algorithm terminates, then B will be a basis for the original lattice, hence
the correctness of the updated SV algorithm follows directly from the correctness of
the SV algorithm.

In the implementation of the L algorithm we use (as did the authors of the
SV algorithm) floating-point approximations to the rational values of y;; and |b: |2
The accumulation of errors in floating-point u’s in the MP algorithm: is negligible,
since at each iteration of step MP2, u’s are initialized directly from the definition
and all integer variables defining y;; fit in single precision. All the calls to the L3
algorithm in steps MP2 and MP4 are executed entirely in single precision arith-
metic. Only a small number of multiprecision operations are done in step MP1 and
in updating the basis S in the for-loops in the step MP2.

This approach appears to give the same, or even better, results than the origi-
nal SV algorithm, but for a wide range of data in time approximately s® times
smaller, where s is the number of iterations of step MP2. This technique enables us
also to perform the majority of calculations in single precision arithmetic, dropping
most of the time consuming multiprecision operations. A similar method for han-
dling multiprecision calculations was used by Lehmer [9] in his greatest common
divisor algorithm.

The theoretical estimation given in proposition 2 does not explain this reduc-
tion in time. On the other hand, the experimental time estimation obtained by
Lagarias and Odlyzko, O(n(log Max)3), at least confirms our experiment, since the
divide and conquer technique with a partition into s groups should give running
time proportional to

3 . 3
s_n'[logMax] _ n-(log Max) )

) 52

3.2. Weight Reduction
If B is the reduced basis produced by the L® algorithm, then there will often
exist pairs of indices i and j, 1 <i,j<n+1, i]j, and a choice of ¢ such that
v="b +¢eb;, e==1, and |v| < max{|b],|b;|}. (8)

A pair (i), ij, satisfies the last condition if and only if
max{ |b;|%,|b;|%} < 2-|(b;,b;)}|. In such a case we can choose ¢ to have a dif-
ferent sign from (b;,b;) and substitute the longer of b; and b; by v, obtaining a new
basis with decreased total weight

n+l 2
w(B) = ¢ |bp| .
p=1

In the process of finding successive pairs of indices (i,j) satisfying (8) it is not
necessary to recalculate |v|% and (v,by) from the definitions, instead we can keep
track of the integers |b;|? and inn;; = (b;,b;), for 1<j<i<n+1, using formulas:

[vI? = Ib;]*+ [b;|* —2|inng ],
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(v,by) = inmj + einny, for 1<k<n+1, ki and k<.

A simple algorithm for finding all such pairs can be designed and implemented in
time O(n?) for each reduction, producing as output a basis with smaller welght
This algorithm, let us call it Weight-Reduction, is a useful complement to the ) Ad
algorithm. When used as follows, the algorithms L3 and Weight-Reduction jointly
tend to produce much shorter vectors than using L3 or Weight-Reduction alone:

« L3(B);
repeat
Weight-Reduction;
sort basis with respect to |b;|?;
B « L}(B);
until (w(B) does not decrease);
Weight-Reduction.

The L3 algorithm can remove the vector b, from the basis B only by replacing
it with a shorter vector, since for i=2 if the transformation T1 can be applied then
[b;|% < by |? (note that this is not true when i > 2). Hence sorting the basis
with respect to |b; | guarantees that the shortest vector in the basis B will not
disappear in the next iteration, unless a new shorter vector is found.

Following the above approach one can try in general to find a k-tuple of dis-
tinct vectors b;, -+ * ,b; , for some k>2, in the basis B, such that the vector

k
v =3 &b, for some choice of ¢, = 1, 1<p<k,
p=1

is shorter than b; , where b;, is the longest vector in the k-tuple. In the latter case
the weight of basis B can be decreased by substituting b; by v. Note that

v < by, | iff |v]? = z: by |*+ 2 61..6- (b, ,by;) < [by, |2 ()
j=1

and a necessary condition for (9) is

E by |2 < 2 I(b.h,bn,)l

j=1

Consequently, our approach is to search for such k-tuples of vectors by consid-
ering the complete graph G, whose vertices are the basis vectors b; and whose edges
are labeled by edge weight | (b;,b;)|. The endpoints of edges with large weight are
“less” orthogonal, hence they are good candidates for the desired k-tuple. We can
try to construct it by finding subgraphs of G with large edge weight.
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Obviously, the complete analysis of all subgraphs in the graph G would be too
expensive, however we are satisfied with heuristic search for just a few of them of
relatively small size. They are used to decrease the weight of basis B similarly as
before. This technique leads to the generalization of the Weight-Reduction algo-
rithm and improves further the behavior of the LS algorithm.

3.3. Other Modifications

Let us mention two more improvements that increase the chances of success of
the LS algorithm. Both of them consist of changing the original lattice L=L(a,M) to

some other lattice L, such that L’ contains the same solution vector to (1) as L (if

any), but at the same time L’ does not contain some of the short vectors belonging
to L, that do not solve (1).

OM1: Take L’ =L(c'a,c'M), for some integer c¢>1, so if x is a solution to (1) then

the vector (x,0) belongs both to L and L’. Also, to each vector
b=(by,..,bp41) with by,;50, bEL there corresponds a longer vector

b’ =(by,...,by,cby41)EL’. Experiments show that for random instances of
(1) of dimension n in the range between 26 and 66, a good choice for ¢ is
10 < ¢ <30.

OM2: If we can estimate the length len= |x|? of the solution, then we consider

n+1 dimensional lattice L’ CR™"* whose basis is given by row vectors of the
following matrix:

100 -0 —a —1]
010:--0 —a —1

000:---1-a -1
000 -0 Mlen

If the estimation len is exact then the lattice L’ has similar properties as in
OML. If there is only a small error in the estimation of len we will still obtain
an improvement in the performance of the LS algorithm. In OM2 we can
also use two different integer multipliers ¢;>1 and ¢,>1 for columns n+1
and n+2, as in OM1.

4. The LS Algorithm

The LS algorithm comprises the facts and procedures described in section 3
together with the SV algorithm.
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LS1:

LS2:

LS3:

LS4:

Initialize with step MP1 (section 3.1).

In this step one can include the improvements OM1 and OM2 described in
section 3.3. If the modification OM2 is used then in all subsequent calcula-
tions the (n+2)-nd coordinate has to be handled additionally in all vector
operations.

Execute the remaining steps of the MP algorithm: MP2, MP3 and MP4 (sec-
tion 3.1).

Let B be the reduced basis produced by step LS2. The basis B now contains
only relatively short vectors and thus all calculations in this step can be done

in single precision. Apply Weight-Reduction together with the L3 algorithm
(section 3.2).

repeat

{ check for solution (section 2) }
execute step SV3 of the SV algorithm;

calculate w(B), the weight of B;

Weight-Reduction;
execute step SV3;

sort basis with respect to |b;|%;
B — L’(B);

until (w(B) does not decrease);

Weight-Reduction;
execute step SV3;

n
Similarly as in the SV algorithm, we can assume that 1 <M< ¥ a;. Repeat
i=1
n
steps LS1 - LS3 with M replaced by M’ = 3} a; —M (if modification OM2 is
i=1
used, change appropriately len, the solution length estimation). Then ter-
minate.

5. Experiments

To perform multiprecision calculations a special package of routines was

developed, generally following the algorithms described in Knuth [5]. In tests on a
super-microcomputer MASSCOMP MC-500 (Motorola 68000 based system) we
obtained on average running times of 21 minutes CPU time, for n=50, s=3,
a.p§21°°, 1<p<n, with a random (0,1)-solution vector of length 25 (in this section
by the length of vector b we mean (b,b) ). A sample of 20 instances of subset sum
problem with these parameters was randomly generated and all of them were
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solved, giving a success rate of 100%. This is an improvement in performance and
in speed over the SV algorithm. Lagarias and Odlyzko do mention, that for their
SV algorithm on data of this size, a CRAY-1 took about 14 minutes of CPU time
with a success rate of only 33%. We claim on the base of experiments described
below, that a machine like a CRAY-1 using the LS algorithm, should solve almost
all instances of the subset sum problem of size 100 with density 0.3 in just a few
minutes of CPU time.

In the implementation of the LS algorithm the following technical modifica-
tions were used:

1) An explicit bound on the number of iterations of the loop in step LS3 was
enforced. The execution of the LS algorithm was aborted after 15 unsuc-
cessful iterations or after 9 iterations when the basis contained vectors of
length smaller than n/2.

2) Step MP3 was also executed inside loop LS3 if the vectors with k;=%1, the
candidates for solution, appeared only at higher indices of the basis. The
performance of the algorithm is sensitive to this modification.

3) Inside the loop LS3, the Weight-Reduction algorithm searched for all possi-
ble reductions based on pairs and triplets of vectors, and used heuristics to
find almost all reductions based on 4-tuples of vectors (see the end of sec-
tion 3.2).

4) Step LS4 was not executed, for although this step increases the probability
of finding the solution, it makes the execution time about twice as long.

5) Modifications OM1 and OM2 were tested only occasionally and no evident
improvement in the performance of the algorithm was observed. They
were not included in the experiments reported below.

In systematic tests on a MASSCOMP MC-500 we ran the LS algorithm for n
= 26, 34, 42, 50, 58, 66, 74, 82, 60 and 98. For each choice of n the experiment was
done for different values of density d lying close to the cutoff value d.(n) of the LS
algorithm. For each fixed pair (n,d), 20 (for n<82) or 10 (for n>82) random
instances of the subset sum problem together with a randomly distributed solution
of length n/2 were created. For all experiments the value of t (in the MP algo-
rithm) was 28 and the value of y (in the L? algorithm) was 0.99.

The results and execution times are gathered in table I. For example, the first
line of data in table I means: for n=26, 20 random instances of the subset sum prob-
lem with a; <2%7 (i.e. problems with density 26/27=0.963, see also equation (2)),
each with a random 0-1 solution vector of length n/2=13 were generated. For all of
them the step MP2 (multiprecision phase) was executed once and the time spent by
the MP algorithm was on average 0.41 minutes CPU (24.6 seconds). The total time
spent by the LS algorithm was on average 4.35 minutes CPU time (including unsuc-
cessful runs). The overall average of lengths of vectors in the final basis was 10.3.
Finally, 1 out of 20 instances were solved giving a success rate of 5 percent.
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Test Results Using the LS Algorithm
20 trials for each density d for each size n

size | density | bits | MP2 MP LS average | number of | % success
n d n/d | times | CPUmin. | CPUmin. | length successes rate
0.963 27 1 0.41 4.35 10.3 1 5
0.926 28 1 0.42 441 10.3 2 10
0.897 29 2 0.66 3.19 13.3 9 45
0.867 30 2 0.70 2.60 14.5 14 70
26 0.839 31 2 0.71 2.74 15.3 13 65
0.813 32 2 0.74 2.66 15.7 14 70
0.788 33 2 0.76 1.76 17.0 18 90
0.765 34 2 0.77 1.79 18.0 18 90
0.743 35 2 0.79 1.42 19.1 20 100
0.895 38 2 1.63 9.26 16.7 6 30
0.872 39 2 1.68 9.93 17.3 7 35
0.850 40 2 1.72 8.96 18.5 10 50
0.829 41 2 1.77 9.17 18.8 8 40
0.810 42 2 1.79 9.43 19.4 7 35
0.791 43 2 1.82 8.41 20.7 8 40
0.773 44 2 1.85 8.09 21.6 11 55
34 0.756 45 2 191 6.80 23.5 13 65
0.739 46 2 1.96 7.42 24.4 14 70
0.723 47 2 1.97 7.49 25.3 14 70
0.708 48 2 2.02 7.18 26.9 18 90
0.694 49 2 2.04 6.94 28.0 16 80
0.680 50 2 2.13 5.59 29.6 19 95
0.667 51 2/3 241 6.21 31.1 18 90
0.654 52 3 2.64 4.53 32.9 20 100
0.642 53 3 2.71 5.35 33.1 20 100
0.778 54 3 4.80 19.54 270 6 30
0.750 56 3 441 20.25 28.9 4 20
0.724 58 3 4.45 25.35 31.0 6 30
0.700 60 3 4.71 19.22 346 15 75
42 0.677 62 3 4.80 20.90 373 14 70
0.656 64 3 4.95 15.97 40.9 17 85
0.636 66 3 5.16 15.96 44.9 18 90
0.618 68 3 5.31 12.00 49.1 20 100
0.600 70 3 5.44 12.81 51.3 20 100
0.714 70 3 7.84 54.65 40.5 5 25
0.685 73 3 8.20 54.34 44.7 5 25
0.667 75 3/4 9.08 48.14 49.1 9 45
0.641 8 4 9.54 46.48 54.2 9 45
0.617 81 4 10.04 40.28 58.5 14 70
50 0.595 84 4 10.53 45.44 62.6 13 65
0.574 87 4 11.09 33.03 71.8 18 90
0.556 90 4 11.33 27.16 82.5 19 95
0.538 93 4 11.76 24.46 89.1 20 100
0.521 96 4 12.05 24.05 98.7 20 100
0.500 100 4/5 14.07 21.73 1129 20 100
Table I
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Test Results Using the LS Algorithm
20 trials for each density d for each size n
size | density | bits | MP2 MP LS average | number of | % success
n d n/d | times | CPUmin. | CPU min. | length successes rate
0.624 93 4 16.2 95.0 70.8 4 20
0.604 96 4 16.7 90.9 76.4 6 30
0.586 99 4/5 20.1 95.4 81.3 6 30
0.569 102 5 20.8 86.1 88.7 7 35
58 0.552 105 5 19.6 74.3 98.8 15 75
0.537 108 5 20.3 82.7 104.9 12 60
0.523 111 5 20.9 68.7 118.9 16 80
0.509 114 5 21.8 49.0 133.1 19 95
0.496 117 5 22.2 46.6 144.6 20 100
0.569 116 5 28.4 144.3 117.5 8 40
0.550 120 5 29.5 150.1 125.2 4 20
0.532 124 6 384 142.8 138.5 8 40
0.516 128 6 33.7 151.0 148.4 5 25
66 0.500 132 6 35.7 132.6 168.3 12 60
0.485 136 6 36.4 122.1 187.0 15 75
0.471 140 6 37.9 1214 203.8 16 80
0.458 144 6/7 40.0 91.9 239.9 20 100
0.446 148 7 46.7 83.1 276.7 20 100
0.463 160 7 58.8 2414 270.9 3 15
0.446 166 7/8 63.1 222.7 313.8 8 40
74 0.430 172 8 70.3 198.8 360.2 17 85
0.416 180 8 69.4 193.9 434.1 16 80
0.402 184 8 72.6 139.6 538.9 19 95
0.389 190 8/9 83.4 133.4 609.5 20 100
10 trials for each density d for each size n
0.445 184 8 89.9 361.3 412.6 2 20
0.427 192 9 110.7 372.4 471.5 4 40
0.410 200 9 100.4 307.8 568.5 6 60
82 0.402 204 9 104.9 304.7 624.1 5 50
0.394 208 9 107.7 281.1 693.1 8 80
0.387 212 9/10 127.7 238.6 789.8 10 100
0.380 216 10 121.9 323.5 762.0 8 80
0.369 222 10 116.8 231.4 960.2 10 100
0.360 250 11 171.2 472.9 1319.2 6 60
90 0.349 258 | 11/12 196.6 413.2 1627.8 8 80
0.338 266 | 12/13 197.1 398.9 1789.1 10 100
98 0.301 326 | 15/16 320.0 529.7 4548.9 10 100

Table I (cont.)

For n>50 and all densities the solution vector was always the shortest one in
the constructed basis. Moreover, when the LS algorithm failed all of the vectors in
the basis were longer than n/2. On the other hand for n = 26, n = 34 and all den-
sities there were cases when the basis contained vectors of length smaller than n/2.
When n was 42 the solution vector was always the shortest one for densities d <0.7.
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Several regularities in the results of experiments can be observed. For example
for fixed n, as the density decreases the multiprecision phase (the MP algorithm)
takes more time, the overall time spent by the LS algorithm decreases and more
solutions are found. Some exceptions from these rules can be noticed around densi-
ties for which the number of iterations of the step MP2 changes. Another reason for
some irregularities is the early abortion strategy of our implementation.

The total CPU time used in the experiments reported in table I was 11 weeks,
3 days, 14 hours and 19 minutes.

The most important observation of the results gathered in table I is that the
average time of the multiprecision phase has growth rate slightly smaller than
n-(logsM)?. This is an order of magnitude better than the experimental time for the
SV algorithm.

8. Closing Remarks

We believe that if more care is taken in further refinement of the Weight-
Reduction algorithm then the LS algorithm would succeed for higher densitics.
Weight-Reduction algorithm has a common point with the method of Schnorr [12],
namely looking simultaneously at more then two vectors during the reduction pro-
cess. Incorporating ideas of Schnorr could also improve the performance of our algo-
rithm.

In section 2 we have mentioned that the implementation of the L* algorithm
resembles the sequence of comparisons in the bubble-sort algorithm. It may be
worthwhile to analyze other basis reduction algorithms with the sequence of
transformations T1 and T2 based on some more efficient sorting method.

Finally, let us mention one application of the LS algorithm in solving several
subset sum problems simultaneously, appearing in the theory of t-designs. A ver-
sion of the LS algorithm was used to solve the system of 99 Diophantine equations
in 132 unknowns for a (0,1)-solution vector, leading to the discovery of a much
sought after new geometry, a simple 6-(14,7,4) design [6]. This version of the LS
algorithm is described in [7].
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