CONDITIONS FOR DEGREE SEQUENCES TO BE
REALISABLE BY 3-UNIFORM HYPERGRAPHS

David Billington

ABSTRACT. A degree sequence which is realisable by a 3-uniform
hypergraph is called 3-graphic. Seven necessary conditions, one suffi-
cient condition, and one equivalent condition for degree sequences to be
3-graphic are derived. Moreover, four special classes of degree
sequences are examined. For each class an equivalent condition for the
sequences in this class to be 3-graphic is derived. Using these condi-
tions all the 3-graphic degree sequences of length at most seven have
been determined.

Section 1. Definitions and introduction

A hypergraph is a set of subsets of a finite set of points. The number of
points in the finite set of points is denoted by p. The subsets are called
blocks. Notice that hypergraphs do not contain repeated blocks. If all
the blocks of a hypergraph contain the same number of points then the
hypergraph is said to be uniform. An s-uniform hypergraph, or
s-graph, is a uniform hypergraph in which all the blocks have exactly s
elements. So a 2-uniform hypergraph is just a (simple) graph. The
letter s always denotes the size (number of elements) of the blocks in a
uniform hypergraph. Therefore throughout this paper we shall as-
sume that s and p denote positive integers such that s < p.

The number of blocks which contain a given point is called the
degree of that point. If v is a point of the hypergraph M then the
degree of v in M is denoted by deg(v,M). It is clear that a degree is a
non-negative integer. When the sequence of all the degrees of a
hypergraph is arranged in decreasing order it is called the degree
sequence of the hypergraph. (A sequence of integers is decreasing if
and only if for any adjacent pair of integers the one on the right is less
than or equal to the one on the left.) The length of a degree sequence is
thus p. A hypergraph realises (or is a realisation of) a sequence of
integers if and only if the sequence is the degree sequence of the
hypergraph. A sequence of integers is called s-graphic if and only if
there is an s-graph which realises the sequence.

The general problem with which this paper is concerned is to find
an algorithm to determine whether a given sequence is s-graphic or
not. The history of this problem began in 1955 when Havel [7] solved
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the problem for s = 2. Other key contributions are [2], [3], [4], and
[5]. A detailed history of this problem can be found in Section 1 of
[1]. The case when s = 3 is the smallest for which no satisfactory algo-
rithm, or proof of NP-completeness, has yet been found. Indeed an
anonymous referee quoted Paul Erdos as saying that, even when s =3,
the problem was "probably impossibly hard". For the case when s=3
an algorithm for solving the problem was given in [1]. Unfortunately
this algorithm was not polynomial. So in this paper we restrict our-
selves to polynomial algorithms and see how good they are. These
polynomial algorithms are presented in the form of seven necessary
conditions, one sufficient condition and five equivalent conditions for
degree sequences to be 3-graphic. These conditions are good enough
to determine all the 3-graphic sequences of length at most seven.

It will be convenient to have in mind some standard set of points.
The following definition makes this precise.

Definition of standard realisation.
Let D = (d1,d2....,dp) be a degree sequence. Then the hypergraph M is
a standard realisation of D if and only if

(1) D is the degree sequence of M;

(2) the set of points of M is {1,2,...,p}; and

(3) for alli in M, deg(i,M) = d;.

A standard hypergraph is a hypergraph which is a standard
realisation of its own degree sequence.

Two hypergraphs are isomorphic if and only if there is a bijection
from the set of points of one onto the set of points of the other such that
the image of a block in one is a block in the other. It is easy to see that
any hypergraph is isomorphic to a standard realisation of its degree
sequence. Hence there is no loss of generality in restricting our atten-
tion to standard hypergraphs.

We conclude this section with the following notational conven—
tions. Let P = {1,2,...,p} be the set of all positive integers which are at
most p. Define C = {{ij,k} € P:i<j<k]} tobe the set of all three
element subsets of P. C is called the complete 3-graph on P. For non-

negative integers n and r we define C.‘) as follows. If n2>r2>0, then

n! . n . ..
@)=W; otherwise 0 < n < r and then (r)= 0. If A is any finite

set of integers then minA and maxA denote respectively the minimum
and maximum elements of A.
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Section 2. Partial Sum Conditions

Our first result is one of the simpler partial generalisations of the
Erdés-Gallai result, which can be found in [4] or on page 59 of [6]. If
x and y are non-negative integers then x monus y, denoted by x -y, is
defined by the equation

x =y = max{x-y,0}.

THEOREM 2.1. Let D= d1,d2,...,dp) be a 3-graphic degree sequence,
and let P={1,2,....,p}. Thenforall ne P,

Ydi:1<i<n) € 3[(';)-((“51)4dn)]+

23 (min{d;, G)} :n+1 <i<p) +
Y(min{d;, n(i-n-1)} : n+1 <i<p).

PROOF: Suppose that M is any standard realisation of D and for each
n e Plet N(n) = {1,2,....,n}. The right side of the inequality consists of
three terms. If we can show that each term is i times an upper bound
for the number of blocks of M which intersect N(n) in i points, then
the result will follow.

Consider the first term. Clearly G) is an upper bound for the
number of blocks intersecting N(n) in 3 points. If there are (g) such

blocks then each point in N(n) is in (nél) such blocks. So if dy < (nél)

then (g) may be reduced by (nél) - dn. Hence the stated upper bound.

Consider the second term. Each point i in PAN(n) can be placed in

at most G) blocks which intersect N(n) in 2 points. Since each point i
is in at most d; blocks, we see that each point i in PAN(n) can be in at

most min[di(;)} blocks which intersect N(n) in 2 points. Hence the

stated upper bound.

Now consider the third term and let i and j be points in PAN(n).
There are at most n(i-n-1) blocks of the form {i,j,k} where n+l <j<i
and k € N(n). Since the number of blocks containing i is dj, there are
at most min{dj,n(i-n-1)} blocks of the above form. Hence an upper
bound on the number of blocks which intersect N(n) in 1 point is
Y(min{dj, n(i-n-1)} :n+1 <i<p). B
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The above result can be generalised to s-graphs. Also the upper
bounds of the theorem can be slightly improved at the expense of
greatly increasing the complexity of the expressions. These improve-
ments seem to have little chance of yielding sufficient conditions be-
cause no account is taken of the interactions between the blocks which
intersect N(n) in 1, 2, or 3 points. Rather than pursuing this un-
promising line of reasoning we shall develop a set of simpler necessary
partial sum conditions.

Let D = (dy,d2,...,dp) be a 3-graphic degree sequence. Let M be any
standard 3-graph which realises D, and let q be the number of blocks in
M. It will be convenient to define Pg = {0,1,...,p}. For each ordered
pair (i,j) € Pgx Pg we define M(i,j) by

M) = {{ijk} € M:i<j<k and ke P}.

The cardinality of M(i,j) is denoted by IM(i,j)l. For each ordered pair
(m,n) € Pgx Py we define s(m,n) to be the following sum.

s(m,n) = 2(M(,j)l:0<i<m,and 0<j<n)

LEMMA 2.2.
(DIf i2j,or i=0,0r j=0 then M(i,)) is empty.
(2) For each ordered pair (m,n) € Pgx Pg, s(m,n) <q.

(3) Foreach ne P, s(n-1,n) < p@ - 2(11;1) :
(4) Foreach ne P, s(n,p-1)< PG) - ;1)'* én) .
(5) Foreach ne P, dj + d2 +..+ dn S s(n-1,n) + s(n,p-1) + G) .

PROOF: Part (1) follows immediately from the definitions.

Part (2) follows from the observation that the M(i,j) partition the
blocks r of M.

Before we prove parts (3) and (4) we need to observe that since
M(,j) s ({i,j,j+1),(i,j,j+2},....{1,j,p}} we have O <IM(ij) < p-j.
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Part (3). Forany ne P,
s(n-1,n) = E(M(@,j))l:0<i<n-l,and 0<j<n)
(MGl 1<isn-1,2<j<n,andi<j)
1(p-2) + 2(p-3) + ... + (n-1)(p-n)
p(l +2+..+(n-1)) - (1¥2+2*3 +... + (n-1)(n))

) A5):

Part (4) is proved similarly. Forany ne P,
s(n,p-1) = L(M(@,j)l:0<i<n,and 0<j<p-1)
= Y(M(,j)l:1<i<n,2<j<p-1,and i<j)
< [1(p-2) +2(p-3) + ...+ (n-1)(pn) ] +
[ n(p-n-1) + n(p-n-2) + ... + n(1)]

= o(3)- 25" )+ n(142+ ..+ pncl)

= 5()- (5 )+ (7).

Part(5). From the definition of M(i,j), for each k e P,
(a) k is a member of every block in M(i,k), where 1<i<k-1;
(b) k is a member of every block in M(k,j), where k+1 <j<p-1;

(c) k is a member of at most one block in M(i,j), where
1<i<k-2 and 2<j<k-1 and i<j.

I IA

Now the number of M(i,j) which satisfy the conditions in (c) on i and j
is

1424...+(k2) = (kél).

Thus forall k € P,
di 2 2(IM@Ek) : 1 <i<k-1)+ Z(IM(k,j)I : k+1 < j<p-1), and

de S ZOMGK! 1 Si<k-1) + (M)l : k+1 <j<p-1) + (ké‘).
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Using the second of these inequalities, for each ne P we have
dy +..+ dg+...+ dp

< TIMGDI:1<i<0)  + SIM(L,jl:2<j<p-1) +((2)) +

................................ F riiitreriireresenececcnsssscsnnrnsse T oeersiiiees
. . . . -1
SOMGK) : 1<i<k-1) + SAM,j) :k+l Sj<p-1) + (“2 ) +
................................ F irerereerernetsirentecsssscesenanss T oreienerees F

Y(IMG,0) : 1 €i<n-1) + S(M@,)l: n+l <j<p-1) +(“il)
= SIMGj)l:1<i<j-land1<j<n) + _

Y(MG,j)l: 1 <i<n and i+l Sj<p-1) + Z(G):OsiSn-l)
= S(MGj):1<i<n-l, 1Sj<nand i<j) +

SAMG): 1<i<n, 1<j<p-land i<j) + 2((3):0€i<nD)
= S(MG,j):0<i<n-land0<j<n) +

Y(MG,j)l:0<i<n and 0<j<p-1) + Z((;):OSiSn-l)

= s(n-1,n) + s(n,p-1) + G) |

THEOREM 2.3. Let D = (dj,d2,...,dp) be a 3-graphic degree sequen-
ce,and let P = {1,2,....p}. Then the following five conditions all hold.
(1) dp +dz +..+ dp = 3q, for some integer q. Moreover, if M is

any 3-graph which realises D then the number of blocks in M

is q.

@ a<(%')
® di-dp < (75
(4) Foreach ne P, dj+d2+..+dp < 2q+(g)

(5) Foreach ne P, dj+da+..+dp < q+(p-1)(g)- ;1)

PROOF: Part (1) follows from the fact that each block of any
3-graphic realisation of D contributes 3 to the sum of the degrees.
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Part (2) follows from the observation that the maximum number

. . . . -1
of blocks which can contain a given point is at most (Pz ) . However,

if the inequalities in parts (3) and (4) of Lemma 2.2 are substituted into
the inequality in part (5) of Lemma 2.2 we get

di+d2+..+dy £ n(pél), foreachn € P.

Since D is decreasing, the only useful instance of this result is forn=1.

Part (3) follows from the observation that
di-dp = degreeof 1 - degree of p
= number of blocks containing 1 but not p
+ number of blocks containing both 1 and p
- number of blocks containing p but not 1
- number of blocks containing both p and 1
= number of blocks containing 1 but not p
- number of blocks containing p but not 1
< number of blocks containing 1 but not p

_ (P2
-(2):
Part (4) can be derived by twice substituting the inequality in part
(2) of Lemma 2.2 into the inequality in part (5) of Lemma 2.2.

Part (5) can be derived by substituting the inequalities in parts (2)
and (3) of Lemma 2.2 into the inequality in part (5) of Lemma 2.2, and

noting that (g) = ;1) - G) . a1

Section 3. Weight Conditions

The weight of a sequence D = (d1,d2,...,dp) is denoted by wt(D) and is
defined by the equation

wt(D)=23(idi: 1 <i<p).
If B={i,jk} isany block of a 3-graph then the sum of B, ZB, is de-
fined by XB = i+j+k. Let M = {B1,B2,...,.Bq} be any standard 3-graph
then the sum of M, Y M, is defined by M =X (XB; : 1 <i<q). These
definitions are related by the following lemma.

LEMMA 3.1. If M is any standard 3-graphic realisation of the degree
sequence D then wt(D)=>M.

PROOF: The proof follows immediately from the definitions. ll
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There are @) blocks in C, the complete 3-graph on P = {1,2,...,p}.

Calculate the sum of each of these blocks, and arrange these sums in
increasing order. Now define w(p,q) to be the sum of the first q terms
of this ordered list. The number of terms in a sequence D is denoted
by length(D) and the sum of all these terms is denoted by XD.

LEMMA 3.2. w(p,q) = min{wt(D) : D is a 3-graphic degree sequence,
length(D) =p, and XD = 3q}.
PROOF: Let M consist of the q blocks of C whose sums form the first
q terms of the ordered list used to define w(p,q). Then XM = w(p,q).
Let Dy be the degree sequence of M. If we let
m = min{wt(D) : D is a 3-graphic degree sequence,
length(D) = p, and XD = 3q},
then m < wt(Dm) = 2M = w(p,q), by Lemma 3.1. Conversely, let D
be any 3-graphic degree sequence of length p whose sum is 3q. Let H
be a standard 3-graphic realisation of D. By Lemma 3.1 XH = wt(D).
But by construction XM < ¥H. Thus XM < YH = wt(D). But D was
arbitrary, so XM <m. Hence w(p,qQ)=2M<m. B

Before we can prove our main result we need the following
terminology and result from [1].

Definition of flatter, and steeper.
Let D and D' be finite decreasing sequences of non-negative integers
which are the same length.

D' is flatter than D, and D is steeper than D', if and only if D' can
be obtained from D by a non-empty sequence of elementary
flattenings.

D' is an elementary flattening of D if and only if D' can be
obtained from D by

(1) finding two integers of D which differ by at least 2; and then

(2) transferring 1 from the larger to the smaller; that is, taking 1
from the larger and adding 1 to the smaller; and then

(3) re-ordering the resulting sequence so that it is decreasing.

It should be clear that, since D is decreasing, it is possible to
choose two integers as in (1) so that no re-ordering is necessary. The
integers are chosen so that they will not only produce D' but so that
they are as close together in the sequence as possible.
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LEMMA 3.3. If D is s-graphic then all sequences which are flatter than
D are also s-graphic.

PROOF: See Lemma 2.3 of [1]. H

If two sequences are in the flatter/steeper relationship then their
weights are related as detailed in the following lemma.

LEMMA 3.4. Let D and D' be finite decreasing sequences of non-
negative integers which are the same length. If D is steeper than D'
then

wt(D) < wi(D").
PROOF: It suffices to show that an elementary flattening of D will in-
crease the weight. Consequently suppose D = (d;,d2,...,dp) and d; 2
dj+2. Soi<j. Let D'=(d1'.d2',....dp") where di' =di-1, dj' = dj+1
and dx'=dk forall k € P\{i,j}. Then

wt(D") - wi(D) = idi' +jdj' - id; - jd;

i(dj - 1) + j(dj + 1) - id; - jd;
-it+]

> 0.
Therefore flattening increases weight and steepening decreases weight.

]

LEMMA 3.5. Suppose p and q are non-negative integers, and suppose

that 3q = mp+r where 0<r<p. Then ;1) + (Hz-l) =max{wt(D): D

is a 3-graphic degree sequence, length(D) = p, and >.D = 3q}.

PROOF: Let D' be the sequence whose first r terms are all m+1 and
whose remaining p-r terms are all m. Then D' is flatter than any
decreasing sequence of non-negative integers of length p and sum 3q.
So by Lemma 3.4 the weight of D' is greater than the weight of any
other such sequence. Moreover D' is 3-graphic by Lemma 3.3. Since

wt(D") = 1(m+1) + 2(m+1) +..+ r(m+1) + (r+1)m + (r+2)m +...+ p
Im+2m+.+pm + 1 +2+.+1

m(l+2+.+p) + (r;l)

2 )+(2):

the lemma is proved. W

The main result of this section now follows easily.
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THEOREM 3.6. Let D be a 3-graphic degree sequence of length p and
sum 3q. Moreover suppose that 3q =mp +r where 0 <r<p. Then

w(p,q) < wt(D) < m(p;1)+(r;1).

PROOF: The first inequality follows immediately from Lemma 3.2,
while the second inequality follows immediately from Lemma 3.5. B

Section 4. A Sufficient Condition

In this section we give a heuristic for constructing a 3-graph from its
degree sequence. Unfortunately this heuristic does not always work,
however it is a polynomial algorithm. An indication of how well it
works can be seen from the numerical results in Section 6.

The basic idea of the algorithm is as follows.

Given a decreasing sequence of non-negative integers, say D, we
try to construct a 3-graphic realisation of D in a straightforward man-
ner. This attempt yields a sequence of non-negative integers called the
residual sequence of D and denoted by Residual(D). If Residual(D)
contains only zeros then the construction attempt succeeded. Other-
wise the attempt failed and Residual(D) is used to obtain another se-
quence, denoted by Child(D), which is steeper than D.

The process outlined in the above paragraph is now applied to
Child(D). In this way we keep producing steeper and steeper sequen-
ces until either the minimum weight bound of Theorem 3.6 is violated
or a 3-graphic realisation is constructed. Lemma 3.4 guarantees that
unless a 3-graph is constructed the minimum weight bound will be
violated. If a 3-graph is eventually constructed then Lemma 3.3 as-
sures us that D was 3-graphic. Moreover the proof of Lemma 3.3 in-
dicates how to obtain a realisation of D from the constructed realisa-
tion of the sequence which was steeper than D. We shall now give the
details of the above algorithm.

Let D = (d1,d2,...,dp) be a decreasing sequence of non-negative

integers. Suppose that C = {B1,B2,...,Bp}, where b = (g) , is such that

the B; are lexicographically ordered. Thatis, i<j if and only if Bj<
Bj, where Bj < B; is defined as follows. If B € C let B(1), B(2), and
B(3) denote the smallest, middle, and largest elements of B respec-
tively. Now Bj < Bj means that one of the following three conditions
holds.
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(1) Bi(1) < Bj(1).
(2) Bi(1) =Bj(1) and B;i(2) < Bj(2).
(3) Bi(1) =Bj(1) and Bj(2) =Bj(2) and B;(3) <B;(3).

The straightforward attempt to realise D can now be described.
The blocks of C are considered in order. A block is added to the
3-graph we are constructing if and only if its addition will not make
the degree of any point, i say, greater than d;. When all the blocks of C
have been considered the constructed 3-graph, denoted by M(D), will
have (a1,a2,...,8p) say, as its degree sequence. The residual sequence of
D, after the above attempt to construct a realisation of D, is defined by

Residual(D) = (d1-a1,d2-a2,...,dp-ap).

It is clear that Residual(D) is a (not necessarily ordered) sequence
of p non-negative integers. Also Residual(D) consists of p zeros if and-
only if M(D) is in fact a 3-graphic realisation of D.

Suppose that Residual(D) = (r1,r2,...,fp). If Residual(D) has a
positive element then a steeper sequence than D is obtained from D
as follows. Let Position be a function which accepts a residual
sequence and returns a member of P\{1}. (We define Position in the
next paragraph.) If Position(Residual(D)) = m then define the se-
quence D'=(d'1,d"2,...,d'p) by d'm = dm-1, d'm-1 =dm-1+1 and for all
i € P\{m-1, m}, d'j =d;. Since D' may not be decreasing we define
Child(D) to be D' re-arranged into decreasing order.

The definition of Position(Residual(D)) is as follows. Let max
be the maximum of {r2,...,rp}, and define

Posnsl = {i € P\{1} : rj = max]}.
Let mindiff be the minimum of {d;j-1 - dj : i € Posnsl}, and define
Posns2 = {i € Posnsl : dj-1 - dj = mindiff}.
Let min be the minimum of {r;.1 : i € Posns2}, and define
Posns3 = {i € Posns2 : rji-1 = min}.

Finally we define Position(Residual(D)) to be the maximum of Posns3.
We can now define the function Graf which takes a decreasing
sequence of non-negative integers and returns either TRUE or
FALSE. Let D be a decreasing sequence of p non-negative integers

such that 2D = 3q. Then Graf(D) is defined recursively by the
following three statements.
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(1) If wt(D) < w(p,q) then Graf(D) = FALSE.
(2) If wt(D) = w(p,q) and every term of Residual(D) is zero
then Graf(D) = TRUE.
(3) If wt(D) = w(p,q) and Residual(D) has at least one non-zero
term then Graf(D) = Graf(Child(D)).
LEMMA 4.1. If Graf(D) is TRUE then D is 3-graphic.

PROOF: The result is clear from the above discussion and Lemma 3.3.
|

Section 5. Equivalent Conditions

Recall that C is the complete 3-graph on P = {1,2,...,p}. If M is any
3-graph on P then the complement of M, denoted by MS, is defined by
M®=CWM. If D = (d1,d2,....dp) is a 3-graphic degree sequence then
the complement of D, denoted by D°, is defined by

D°=((%5")- 4. (%) - dpt, o (B ) - .

The following theorem gives the main results about complements.

THEOREM 5.1. Let M be a 3-graph whose degree sequence is D. Then
the following three statements are true.

(1) MCis a 3-graph whose degree sequence is D°.

) (M®° = M, and (D°°= D.

(3) If M has q blocks then MC has (‘3’) -q blocks.

PROOF: (1) That MC is a 3-graph is clear from the definition. Since

each point of C isin (p él) blocks it follows that the degree sequence
of M°® is D

Parts (2) and (3) are immediate from the definitions. W
COROLLARY 5.2. D is 3-graphic if and only if D is 3-graphic.
PROOF: This result follows easily from Theorem 5.1 parts (1) and
2). m

We now consider four special classes of sequences and derive
necessary and sufficient conditions for these classes of sequences to be
3-graphic.
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If H is a hypergraph then it will be convenient to define
H(1)={Be H: 1€ B},
the set of all blocks of H containing the point 1.

THEOREM 5.3. Suppose that p 2 4. Then ((pil) d2, ..., dp) is
3-graphic if and only if (d2-(p-2), d3-(p-2), ..., dp-(p-2)) is 3-graphic.

PrOOF: Let D=((3' )} da, ... dp) and D' = (d2-(p-2), da-(p-2), ..

dp-(p-2)).
Suppose that D' is 3-graphic. Let M' be a 3-graph whose set of
points is {2,3,...,p) and such that deg(i,M’) = di-(p-2), where 2<i<p.
Then M'u C(1) is a 3-graphic realisation of D.
Conversely suppose that D is 3-graphic and let M be a standard

3-graphic realisation of D. Then deg(1,M) =(pil), so C(1) € M.
Thus M\C(1) is a 3-graphic realisation of D'. B

LEMMA 5.4. Let H be a hypergraph. If deg(i,H) > deg(j,H) then
there are deg(i,H) - deg(j,H) blocks, B, such that

(a) Be H,

(b)ie B,

(c) j& B,and

(d) B\{ihw (j} ¢ H.
PROOF: Let By, ..., B be all the blocks in H which contain i but not j.
Let Ay, ..., Ap be the blocks in H which contain j but not i. Since
deg(i,H) is greater than deg(j,H), then m-n = deg(i,H)-deg(j,H). For
each ke {1,..,m}, if the i in By is replaced by j then the resulting
block is eitherin {Af1,...,An} ornotin H. Hence there are at least m-n
blocks which satisfy the required four properties. W

Let M be a standard 3-graph. Define A(M), the absent set of M,
by A(M) = {a e P\[1} : there is a B € C(1)\M such that a € B}.

The cardinality of A(M) is denoted by IA(M)l. For any k €
{0,1.,...,p}, we define W(k) = {p-k+1,p-k+2,...,p}.

The following Lemma shows that we may assume that the absent
set of a 3-graph consists of the points with the smallest degrees.
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LEMMA 5.5. Let M be a standard 3-graphic realisation of D. Let
IA(M)l = k. Then there is a standard 3-graphic realisation, M*, of D
such that A(M*) = W(k).

PROOF: Let M be a standard 3-graphic realisation of D and let
IAM)I=k. If A(M)= W(k) then thereisan ae A(M) anda w e
W) such that ag W(k) and w ¢ A(M). The result follows if we
can construct a standard 3-graphic realisation, M', of D such that
AM) = (AMMNa}) v {w}.

Since M is standard and a < w, we have deg(a,M) = deg(w,M).
Now let n = deg(w,M(1)) - deg(a,M(1)). Then n>0. Soif H =
M\M(1) then deg(a,H) - deg(w,H) 2 n. By Lemma 5.4, there are n
blocks, B1,...,Bn, in H such that forall i e {1,...,n},a e B, we B;j
and if Bj'=(Bi\{a}) U {w] then Bj'¢ H. Moreover, since each B;
contains no 1's, Bi' can not contain any 1's either. Hence Bi' ¢ M(1)
and so Bi'¢ M.

Let A = C(1)\M(1) be the set of blocks which contain 1 but are
absent from M. Then foreach x € P\{1},

deg(x,A) + deg(x,M(1)) = deg(x,C(1)) = p-2.
So deg(a,A) - deg(w,A) =n. But deg(w,A) =0 because we A(M),
and so deg(a,A) =n. Let the n absent blocks which contain a be
(1,a,x1}, ..., {1,a,xp}. Since w ¢ A(M), the blocks {1,w.,x1}, ...,
{1,w,xp} arein M(1) and hence in M. Define M' tobe M with
B1,....Bn and {1,w,x1}, ..., {1,w,xn} replaced by Bj'...,.By' and
{1,a,x1}, ..., {1,a,xp}.

Now M' is a standard 3-graphic realisation of D such that
AM)=(AMNM\a})D)u {w}. R

Before we state the next three theorems we shall need the follow-
ing definition. Suppose that p=>4 and that D = (dy, d2, ..., dp) is a se-
quence of integers. Let (t1, t2, ..., ta) be a sequence of at least two
positive integers. Define D(ti, ..., tn) to be the sequence of p-1 terms
as follows.

If n2p then D(ty,...ta) is not defined.

If n=p-1 then D(t},...,tn)

.= (d2-(p-2) + t1, d3-(p-2) + t2, ..., dp-(p-2) + tp).

If 2<n<p-2 then D(t1,...,tn)

= (d2-(p-2), ..., dp-n-(p-2), dp-n+1-(p-2) + t1, ...,
dp-(p-2) + tn).
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That is D(t1,...,tn) is formed from D by deleting the first term,
subtracting p-2 from the remaining terms, and then adding ti,...,tn to
the last nn terms.

THEOREM 5.6. Suppose that p=>4. Let D = (p é )-1, d2,...,dp) and
let D' be D(1,1) arranged in decreasing order. Then D is 3-graphic
if and only if D' is 3-graphic.
PROOF: Suppose that D' is 3-graphic. Let M' be a 3-graph on the set
of points {2,3,...,p} such that deg(i,M’) = d; - (p-2), where 2 <i <p-2,
and deg(p-1,M") = dp.1-(p-2) + 1 and deg(p,M’) =dp-(p-2) + 1. If
H=CON{(1,p-1,p}} then M'UH is a 3-graphic realisation of D.

Conversely suppose that D is 3-graphic. In any 3-graphic reali-
sation, M, of D there will be exactly one block in C(1)\M, and so
IA(M)! = 2. By Lemma 5.5, there is a standard 3-graphic realisation,
M, of D such that A(M) = W(2) = {p-1,p}. Then M\M(1) is a
3-graphic realisation of D'. W

The following lemma says that the points with the lowest degrees
may be assumed to occur more often in the absent blocks.

LEMMA 5.7. Let M be a standard 3-graphic realisation of D. Then
there is a standard 3-graphic realisation, M*, of D such that A(M*) =
A(M) and if a,b € A(M) and a < b then deg(a,M*(1)) = deg(b,M*(1)),
and so deg(a,C(1\M¥*) < deg(b,C(1\M*).

PROOF: Let M be a standard 3-graphic realisation of D. Take any a,
b € A(M) and suppose that a <b. If deg(a,M(1)) = deg(b,M(1)) then
there is nothing to prove. So suppose that deg(a,M(1)) < deg(b,M(1)).
The result will follow if we can construct a standard 3-graphic realisa-
tion, M, of D such that A(M") = A(M), deg(a,M'(1)) > deg(b,M'(1))
and for all x € P\{a,b} deg(x,M'(1)) = deg(x,M(1)). We shall now
construct such an M'.

Since M is standard deg(a,M) = deg(b,M). Let deg(b,M(1)) -
deg(a,M(1)) =n. Soif H=M\M(1) then deg(a,H) - deg(b,H) 2n. By
Lemma 5.4, there are n blocks, Bi,...,Bn, in H such that forall i e
{1,...n}, a € Bj,bg Bjand if Bi' = (Bj\{a}) U {b} then Bi'¢ H.
Moreover, each such Bj' is not in M.

Let A = C(1)\M(1) be the set of blocks which contain 1 but are
absent from M. Then deg(x,A) + deg(x,M(1)) = deg(x,C(1)) = p-2
for each x € P\{1}. So deg(a,A) - deg(b,A) =n. By Lemma 5.4, there
are n blocks, {1,a,x1},{1,a,x2},...,{1,a,xn}, in A such that, for all
ie {l,.,n},b=xjand {1,bxi} ¢ A. So,forallie {l,..,n},
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{1,b,xi}) € M. Define M' to be M with By,...,Ba and {1,b,x1},...
{1,b,xn} replaced by By',....Bn’ and {1,a,x1 },eer{1,3,Xn}.

Now M' is a standard 3-graphic realisation of D such that
deg(a,M'(1)) - deg(b,M'(1)) = n, and deg(x,M'(1)) = deg(x,M(1)) for
all x e P\{a,b}. Moreover, since a,b € A(M) and n > 0, we have
abe AM) andso AM)=AM). R

THEOREM 5.8. Suppose thatp > 4. Let D= ((Pél }2, da,...4p), D' be

D(1,1,1,1) arranged in decreasing order, and D" be D(1,1,2) arranged
in decreasing order. Then D is 3-graphic if and only if either D' or D"
is 3-graphic.

PROOF: If D' is 3-graphic then there is a 3-graph M’ on the set of
points {2,3,....p} such that deg(i,M") = di-(p-2), where 2 <i <p-4, and
deg(j,M) = dj-(p-2) + 1, where p-3<j<p. If H= CON{{1,p-3,p-2},
{1,p-1,p}} then M' U H is a 3-graphic realisation of D.

If D" is 3-graphic then there is a 3-graph M" on the set of points
(2,3,....p} such that deg(p,M") = dp-(p-2) +2, deg(p-1,M") = dp.1 -
(p-2) + 1, deg(p-2,M") = dp-2-(p-2) + 1, and deg(i,M") = di-(p-2),
where 2<i<p-3. If H=C(N{1,p-2,p}, (1,p-1,p}} then M"UH
is a 3-graphic realisation of D.

Conversely suppose that D is 3-graphic. In any 3-graphic reali-
sation, M, of D there will be exactly two blocks in C(1)\M. These two
absent blocks have one of the following two forms.

(1) (1,a13,a2} and (1,a3,a4}.
(2) (1,122} and {1,a1,a3}.

We consider these two cases separately.

CASE 1: The absent blocks are {1,a1,a2} and {1,a3,a4}, where aj = 3;
if and only if i = j. By Lemma 5.5, there is a standard 3-graphic
realisation, M, of D such that A(M) = W(4) = {p-3,p-2,p-1,p}. Then
M\M(1) is a 3-graphic realisation of D'.

CASE 2: The absent blocks are {1,a1,a2} and {1,a1,a3}, where aj = a;j
if and only if i = j. By Lemma 5.5, there is a standard 3-graphic
realisation, M, of D such that A(M) = W(3) = {p-2, p-1, p}. By
Lemma 5.7, there is a standard 3-graphic realisation, M*, of D such
that C(1)\M* = {{1,p-1,p}, {1,p-2,p}}. Then M*¥*\M*(1) is a
3-graphic realisation of D". W
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THEOREM 5.9. Suppose that p=>4.LetD = ((p él )-3,d2,...,dp), D1 be

D(1,1,1,1,1,1) arranged in decreasing order, D2 be D(1,1,1,1,2)
arranged in decreasing order, D3 be D(1,1,2,2) arranged in
decreasing order, D4 be D(2,2,2) arranged in decreasing order, and
DS be D(1,1,1,3) arranged in decreasing order. Then D is 3-graphic if
and only if one of D1, D2, D3, D4, or D5 is 3-graphic.

PROOF: If D1 is 3-graphic then there is a 3-graph M1 on the set of
points {2,3,....,p} such that deg(i,M1) = dj-(p-2), where 2 <i<p-6,
and deg(jM1)=d;j- (p-2) + 1, where p-5<j<p. MIUH isa
3-graphic realisation of D if H = C(1)\{{1,p-5,p-4}, {1,p-3,p-2},
{Lp-1,p}}.

If D2 is 3-graphic then there is a 3-graph M2 on the set of
points {2,3,....,p} such that deg(i,M2) = dj-(p-2), where 2 <i<p-5,
deg(j,M2) = dj-(p-2) + 1, where p-4 < j < p-1, and deg(p,M2) =
dp'(P‘z) +2. If H= C(l)\{ [ lsp'4’p'3}’[ l,p'z:P}s{ l,P‘l,P} } then
M2 U H is a 3-graphic realisation of D.

If D3 is 3-graphic then there is a 3-graph M3 on the set of
points {2,3,....,p} such that deg(i,M3) = di-(p-2), where 2 <i<p-4,
deg(j,M3) = dj- (p-2) + 1, where p-3<j<p-2,and deg(k,M3)=d-
(p-2) + 2, where p-1 <k <p. If H=C(I\{{1,p-3,p-1}, {1,p-2,p},
{1,p-1,p}} then M3 UH is a 3-graphic realisation of D.

If D4 is 3-graphic then there is a 3-graph M4 on the set of
points {2,3,....p} suchthat deg(i,M4) =d; - (p-2), where 2<i<p-3,
and deg(j,M4) = dj- (p-2) + 2, where p-2<j<p. MAUH isa
3-graphic realisation of D if H = C(I)\{{1,p-2,p-1}, {1,p-2,p},
{Lp-L,p}}.

If DS is 3-graphic then there is a 3-graph M5 on the set of
points {2,3,....,p} such that deg(i,MS) = dj-(p-2), where 2 <i<p-4,
deg(j,MS) = dj- (p-2) + 1, where p-3<j<p-1,and deg(p,MS5) = dp-
(p-2) + 3. If H=C(I\{{1,p-3,p},{1,p-2,p},{1,p-1,p}} then MSU H
is a 3-graphic realisation of D.

Conversely suppose that D is 3-graphic. In any 3-graphic reali-
sation, M, of D there will be exactly three blocks in C(1)\M. These
three absent blocks have one of the following five forms.
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(1) (1,a1,a2}, {1,a3,a4}, and {1,a5,a6}.

(2) {l,a1,a2}, {1,a1,a3}, and {1,a4,a5}.

(3) {l,aja2}, (1,a1,a3}, and {1,a2,a4}.

(4) {l,a1,a2}, {1,a1,a3}, and {1,a2,a3}.

(5) {l,a1.a2}, {1,a1,a3}, and {1,a1,a4}.
We consider these five cases separately.

CASE 1: The absent blocks are {1,a1,a2}, {1,a3,a4}, and {1,as,a6},
where aj = aj if and only if i=j. By Lemma 5.5, there is a standard
3-graphic realisation, M, of D such that A(M) = W(6) = {p-5.p-4,
p-3,p-2,p-1,p}. Then M\M(1) is a 3-graphic realisation of D1.

CASE 2: The absent blocks are {1,a1,a2}, {1,a1,a3}, and {1,a4,a5},
where aj = aj if and only if i=j. By Lemma 5.5, there is a standard
3-graphic realisation, M, of D such that A(M) = W(5) = {p-4,p-3,p-2,
p-1,p}. By Lemma 5.7, there is a standard 3-graphic realisation, M*,
of D such thatif A =C(1)\M* then deg(p,A) =2, and forall we
WG\ p), deg(w,A) = 1. Then M*\M*(1) is a 3-graphic realisation
of D2.

CASE 3: The absent blocks are {1,a1,a2}, {1,a1,a3}, and {1,a2,a4},
where aj=a;j if and only if i=j. By Lemma 5.5, there is a standard
3-graphic realisation, M, of D such that A(M) = W(4) = {p-3.p-2,
p-1,p}. By Lemma 5.7, there is a standard 3-graphic realisation, M*,
of D such that if A=C()\M* then deg(p,A) = 2 = deg(p-1,A), and
deg(p-2,A) = 1 = deg(p-3,A). Then M*\M*(1) is a 3-graphic reali-
sation of D3.

CASE 4: The absent blocks are {1,a1,a2}, {1,a1,a3}, and {1,a2,a3},
where aj =aj if and only if i=j. By Lemma 5.5, there is a standard
3-graphic realisation, M, of D such that A(M) = W(3) = {p-2,p-1,p}.
Then M\M(1) is a 3-graphic realisation of D4.

CASE 5: The absent blocks are {1,a1,a2}, {1,a1,a3}, and {1,a1,a4},
where aj = aj if and only if i=j. By Lemma 5.5, there is a standard
3-graphic realisation, M, of D such that A(M) = W(4) = {p-3,p-2,
p-1,p}. By Lemma 5.7, there is a standard 3-graphic realisation, M*,
of D such that if A = C(I)\M* then deg(p,A)=3,and forall we
W(4\(p}, deg(w,A) = 1. Then M*\M*(1) is a 3-graphic realisation
of D5. W
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Section 6. Numerical Results

In sections 2, 3, 4, and 5 we have presented some conditions for degree
sequences to be 3-graphic. Some idea of the power of these conditions
can be gained by using them to find all the 3-graphic sequences of a
given length. The table below shows the results that were obtained
when the lengths of the sequences were very small.

The top ten rows record the number of sequences which might
still be 3-graphic after applying some condition or combination of
conditions. The next two rows record the number of sequences which
can be proved to be 3-graphic after applying some condition or com-
bination of conditions. The last row shows the number of 3-graphic
degree sequences. We shall now explain the condition or conditions
with which each row is associated.

p=3| p=4| p=5 | p=6 | p=7 p=8
A 4 35 462 | 8008 [170544 | 4292145
AB 2 13 156 | 2676 | 56862 | 1430739
ABC 2 5 31 445 | 8390 | 190534
ABD 2 5 35 476 | 8869 | 210176
ABE 2 5 32 406 | 7246 | 164837
ABCD 2 5 31 399 | 7249 | 164451
ABCE 2 5 31 379 | 6728 | 151336
ABDE 2 5 31 384 | 6709 | 148552
ABCDE 2 5 31 372 | 6480 | 143166
ABCDEF | 2 5 31 371 | 6432 | 141988
G 2 5 31 369 | 6190 [ 130677
GF 2 5 31 369 | 6204 | 132441
2 5 31 369 | 6204 ?

Only decreasing sequences of non-negative integers are consi-
dered. Each letter from A to G denotes a particular condition as indi-
cated below.

A denotes the condition in Theorem 2.3(2).

B denotes the condition in Theorem 2.3(1).

C denotes the condition in Theorem 3.6.

D denotes the condition in Theorem 2.1.

E denotes the condition in Theorem 2.3(4 & 5).
F denotes the condition in Corollary 5.2.

G denotes the condition in Lemma 4.1.
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The conditions with which each row is associated are indicated by the
letters in its first column.

It can be shown that, for every p, the numbers in the top row are

('p;m) where m =(pil) Also the table shows that each of the condi-

tions C, D, and E is needed. For each value of p, we note that the num-
ber in row ten will always be greater than or equal to the number in
row twelve. If these two numbers are equal then this must be the num-
ber of 3-graphic degree sequences. When p 2 6 these two numbers are
not equal. When p = 6 the two unclassified sequences can be shown not
to be 3-graphic by applying the condition in Theorem 5.3. Whenp=7
the 228 unclassified sequences can be shown not to be 3-graphic by ap-
plying the conditions in Theorems 5.3, 5.6, 5 .8, and 5.9. Thus we can
determine all the 3-graphic sequences of length at most seven. How-
ever when p = 8 the 9547 unclassified sequences can not be classified
by applying the conditions in Theorems 5.3, 5.6, 5.8, and 5.9. They
could be classified by proving more theorems similar to 5.3, 5.6, 5.8,
and 5.9. However, the complexity and speciality of such theorems
means that they are probably not warranted.
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