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Abstract. A binary code has bounded synchronization delay if there exists an in-
teger a such that at most s consecutive bits are required to establish word synchro-
nization in any message. The code whose words are lexicographically least in the
non-periodic orbits determined by cyclic permutation of all words of length n is
called the canonical bounded synchronization delay code. It has the maximal num-
ber of words possible in a synchronizable code of fixed word length. Any code of
fixed word length n can be represented as a set of vertices in the n-cube. We prove
that the canonical bounded synchronization delay code is a connected subset of the
n-cube,

Introduction,

Let Z, denote the set of 2" binary strings over {0, 1} of length n. Consider
the action of the full cycle permutation w = (12 ... n) on X, given by

W' = We(1) We(2) - - Wa(n)

forw = ww;...w, € I, Therelationv ~ wif v = w™ for some
i = 1,2,... ,nis an equivalence relation on X,. The resulting equivalence
classes are sometimes referred to as “circular strings”. In the sequel we are
concerned with just those circular strings that are primitive. A string w is prim-
itive if w # u*, for any substring u and positive integer k. Here the exponential
notation is used to indicate the concatenation of k copies of the substring u. For
example, 01000101 is primitive but (0100)2 = 01000100 is not. Note that if
w is primitive and v ~ w then v is primitive. An easy counting argument using
elementary Moebius inversion (1] shows that the number of primitive binary
strings with fixed length n is

S(n2) =Y p(n/d)2? 6))
where the summation is over all positive divisors d of n and 4 is the Moebius
function of elementary number theory.

It will be convenient to consider the binary strings of length n as ordered by
the usual lexicographical ordering.
Definition 1: A, is the set of binary strings which are lexicographically least
in the primitive equivalence classes determined by ~. From (1) the cardinality
of A, is 1/nS(n,2).
Definition 2: A substring v of a string w is a right factor of w if w = uv for
some substring u of w. The substring v is a proper right factor of w if w = uv
and u is not the empty string. One may similarly define left factors and proper
left factors.

This paper was submitted for inclusion in JCMCC I1 and should have appeared there.

JCMCC 3(1988), pp. 93-96



Lemma 1 (R. Lyndon). A binary string of length n is in A, if and only if it
is strictly less in lexicographical ordcring than each of its proper right factors.

Proof: A proof of this fact for strings over arbitrary alphabets appears in [3;
p. 65].

Lemma 2 (Golomb and Gordon). A, isa code with bounded synchronization
delay. '

Proof: See [2] for a proof over arbitrary alphabets.
Proposition 1. Every word of A, begins with 0 and ends with 1.

Proof: Suppose w = lw; € A,. Since w € A, it contains at least onc 0
because 1* cannot be in A,. Let wy = uOv. Then Ovlu is a conjugate of
w less in the lexicographical ordering than w. The argument is similar if w
terminates in 0.

Notice that Proposition 1 cannot be extended to alphabets other than the bi-
nary alphabet.

Proposition 2. Ifw € A, thenOw and wl € Aps1 .

Proof: It follows easily from the definition of lexicographical ordering for all
binary strings that 0w < w < wl. Let v be a proper right factor of Ow. If
v = w then Ow < v as required. Otherwise, v must be a proper right factor of
w. By Lemma 1, w < v and we can conclude Ow < v. A similar proof shows
that wl € An.

Definition 3: The n-cube is the graph whose vertices are the strings of Z, with
an edge between distinct vertices « and g if d(«, B) = 1, where d(a, §) de-
notes the Hamming distance between o and 8; i.¢., the number of bits in which
« and B differ as binary strings. The weight of a single string is the number of
ones it contains.

Properties of A,

While there are several characterizations of A, available, an efficient algorithm
for the construction of A, is not yet known. A recursive algorithm suggested
in (3], for example, produces duplicates and so requires frequent “lookups™.

Proposition 3. The words in A, of weight 2 are precisely the [ 5% words
0°10°1 0<b<a. )

Proof: The proof depends on Lemma 1.

Case 1. Let w* = 0°10%1 be a proper right factor of a word w of the form (2).
Since i < a we have w < w* in the lexicographical ordering because
the first 1 in w* precedes the first 1 in w.
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Casc 2. By Proposition 1, any w € A, begins with 0. Hence, any w of the form
(2) satisfies w < 10°1.

Case 3. Consider a proper right factor for w € A, of the form 071 with j < b.
Since a > band j < a we have

w=0°10%1 < 0’1
in the lexicographical ordering.

Theorem 1. A, is a connected subgraph of the n-cube.

Proof: If n= 2 then A; is the single vertex 01 and hence connected. Assume
w=w ... w, (n>3) is an arbitrary word of A,.

Let i be the largest integer such that w; = 0. Every word of A, has at least
one Osince 1® = 1.,.1 is notin A,. Define

]
w=w . wim lwie ... wy.

Clearly, d(w,w') = 1. If w = 01*! then w’ = 1® ¢ A,. Otherwise, ' € A,,
since w' is strictly less in the lexicographical order than each of its proper right
factors whenever w is except for w = 01*!, Now define w” = (w')’. Clearly,
d(w',w") = 1 and v’ € A, unless w = 01*!, Continuing in this way, we
obtain a path containing not more than n — 2 vertices between w and 01™!,
each vertex of which is in A,. Now, if v is any other word of A, distinct from
w we find, in the same way, a path from v t0 01™! of length at most n — 2.
Therefore, there is a path all of whose vertices are in A,, of length at most 2 n—4
from v to w.

One reason for interest in Theorem 1 is that it opens the possibility of a listing
for A, in which there is only one bit changed between successive words.

Definition 4: A set of vertices vi,... , vt in the n-cube form a Gray path if
there exists an ordering vg(y), . . . , V(i) Of the vertices such that d( Vo) » Yo(is1))
=1,fori=1,...,k— 1. A gray path is a Gray cycle if there is an ordering
such that d(va(xy, vo(1y) = 1. We observe that

001
Mioon
is a Gray cycle, while
0001
Asa: 0011
0111
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is a Gray path but not a Gray cycle. However, As is:

00001
00101
00111
01111
01011
00011.

Theorem 2. A¢ can be written as a Gray path but not as a Gray cycle.

Proof: In Ag only 051 has weight 1 and only 01° has weight 5. There are two
words, 0411 and 03101, of weight 2 and two words 0214,01013 of weight
4. Finally, 0313,021021, and 021201 have weight 3. Hence, if A is a
Gray path we can order the multiset {1,2,2,3,3,3,4,4,5} in such a way
that adjacent elements differ by 1. Indeed, the essentially unique ordering is
123454323, However, a straightforward argument shows that a circular order-
ing of this multiset is impossible, so Ag is not a Gray cycle. The following is a

listing of Ag as a Gray path:
000001

000011
001011
001111
011111
010111
000111
000101
001101.

We remark in conclusion that our programs have verified that A, is a Gray
path for n= 7,8 as well. We suspect that A3 and As are the only Gray cycles
and for n > 5, A, is a Gray path but not a Gray cycle.
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