CONNECTIVITY OF SYNCHRONIZABLE CODES IN THE N-CUBE

L. J. Cummings

University of Waterloo

Abstract. A binary code has bounded synchronization delay if there exists an integer a such that at most a consecutive bits are required to establish word synchronization in any message. The code whose words are lexicographically least in the non-periodic orbits determined by cyclic permutation of all words of length n is called the canonical bounded synchronization delay code. It has the maximal number of words possible in a synchronizable code of fixed word length. Any code of fixed word length n can be represented as a set of vertices in the n-cube. We prove that the canonical bounded synchronization delay code is a connected subset of the n-cube.

Introduction.

Let Σ_n denote the set of 2^n binary strings over $\{0,1\}$ of length n. Consider the action of the full cycle permutation $\pi = (1 \ 2 \ ... \ n)$ on Σ_n given by

$$w^{\pi} = w_{\pi(1)} w_{\pi(2)} \dots w_{\pi(n)}$$

for $w = w_1 w_2 \dots w_n \in \Sigma_n$. The relation $v \sim w$ if $v = w^{*i}$ for some $i = 1, 2, \dots, n$ is an equivalence relation on Σ_n . The resulting equivalence classes are sometimes referred to as "circular strings". In the sequel we are concerned with just those circular strings that are primitive. A string w is primitive if $w \neq u^k$, for any substring u and positive integer k. Here the exponential notation is used to indicate the concatenation of k copies of the substring u. For example, 01000101 is primitive but $(0100)^2 = 01000100$ is not. Note that if w is primitive and $v \sim w$ then v is primitive. An easy counting argument using elementary Moebius inversion [1] shows that the number of primitive binary strings with fixed length n is

$$S(n,2) = \sum \mu(n/d) 2^{d}$$
 (1)

where the summation is over all positive divisors d of n and μ is the Moebius function of elementary number theory.

It will be convenient to consider the binary strings of length n as ordered by the usual lexicographical ordering.

Definition 1: Λ_n is the set of binary strings which are lexicographically least in the primitive equivalence classes determined by \sim . From (1) the cardinality of Λ_n is 1/n S(n, 2).

Definition 2: A substring v of a string w is a right factor of w if w = uv for some substring u of w. The substring v is a proper right factor of w if w = uv and u is not the empty string. One may similarly define left factors and proper left factors.

This paper was submitted for inclusion in JCMCC II and should have appeared there.

Lemma 1 (R. Lyndon). A binary string of length n is in \wedge_n if and only if it is strictly less in lexicographical ordering than each of its proper right factors.

Proof: A proof of this fact for strings over arbitrary alphabets appears in [3; p. 65].

Lemma 2 (Golomb and Gordon). \wedge_n is a code with bounded synchronization delay.

Proof: See [2] for a proof over arbitrary alphabets.

Proposition 1. Every word of \wedge_n begins with 0 and ends with 1.

Proof: Suppose $w = 1w_1 \in \Lambda_n$. Since $w \in \Lambda_n$ it contains at least one 0 because 1^n cannot be in Λ_n . Let $w_1 = u0v$. Then 0v1u is a conjugate of w less in the lexicographical ordering than w. The argument is similar if w terminates in 0.

Notice that Proposition 1 cannot be extended to alphabets other than the binary alphabet.

Proposition 2. If $w \in \wedge_n$ then 0 w and $w1 \in \wedge_{n+1}$.

Proof: It follows easily from the definition of lexicographical ordering for all binary strings that 0 w < w < w1. Let v be a proper right factor of 0 w. If v = w then 0 w < v as required. Otherwise, v must be a proper right factor of w. By Lemma 1, w < v and we can conclude 0 w < v. A similar proof shows that $w1 \in \Lambda_n$.

Definition 3: The *n*-cube is the graph whose vertices are the strings of Σ_n with an edge between distinct vertices α and β if $d(\alpha, \beta) = 1$, where $d(\alpha, \beta)$ denotes the Hamming distance between α and β ; i.e., the number of bits in which α and β differ as binary strings. The weight of a single string is the number of ones it contains.

Properties of \wedge_n .

While there are several characterizations of Λ_n available, an efficient algorithm for the construction of Λ_n is not yet known. A recursive algorithm suggested in [3], for example, produces duplicates and so requires frequent "lookups".

Proposition 3. The words in \wedge_n of weight 2 are precisely the $\lceil \frac{n-2}{2} \rceil$ words

$$0^a 10^b 1 \qquad 0 \le b < a.$$
 (2)

Proof: The proof depends on Lemma 1.

Case 1. Let $w^* = 0^i 10^b 1$ be a proper right factor of a word w of the form (2). Since i < a we have $w < w^*$ in the lexicographical ordering because the first 1 in w^* precedes the first 1 in w.

- Case 2. By Proposition 1, any $w \in \Lambda_n$ begins with 0. Hence, any w of the form (2) satisfies $w < 10^b 1$.
- Case 3. Consider a proper right factor for $w \in \Lambda_n$ of the form $0^j 1$ with $j \le b$. Since a > b and j < a we have

$$w = 0^a 10^b 1 < 0^j 1$$

in the lexicographical ordering.

Theorem 1. \wedge_n is a connected subgraph of the n-cube.

Proof: If n=2 then \wedge_2 is the single vertex 01 and hence connected. Assume $w=w_1\ldots w_n \ (n\geq 3)$ is an arbitrary word of \wedge_n .

Let i be the largest integer such that $w_i = 0$. Every word of Λ_n has at least one 0 since $1^n = 1 \dots 1$ is not in Λ_n . Define

$$w'=w_1\ldots w_{i-1}\,1\,w_{i+1}\ldots\,w_n.$$

Clearly, d(w, w') = 1. If $w = 01^{n-1}$ then $w' = 1^n \notin \Lambda_n$. Otherwise, $w' \in \Lambda_n$, since w' is strictly less in the lexicographical order than each of its proper right factors whenever w is except for $w = 01^{n-1}$. Now define w'' = (w')'. Clearly, d(w', w'') = 1 and $w'' \in \Lambda_n$ unless $w = 01^{n-1}$. Continuing in this way, we obtain a path containing not more than n-2 vertices between w and 01^{n-1} , each vertex of which is in Λ_n . Now, if v is any other word of Λ_n distinct from w we find, in the same way, a path from v to 01^{n-1} of length at most v = 1. Therefore, there is a path all of whose vertices are in λ_n of length at most v = 1.

One reason for interest in Theorem 1 is that it opens the possibility of a listing for Λ_n in which there is only one bit changed between successive words.

Definition 4: A set of vertices v_1, \ldots, v_k in the *n*-cube form a *Gray path* if there exists an ordering $v_{\sigma(i)}, \ldots, v_{\sigma(k)}$ of the vertices such that $d(v_{\sigma(i)}, v_{\sigma(i+1)}) = 1$, for $i = 1, \ldots, k-1$. A gray path is a *Gray cycle* if there is an ordering such that $d(v_{\sigma(k)}, v_{\sigma(1)}) = 1$. We observe that

 $\Lambda_3: \begin{array}{c} 001 \\ 011 \end{array}$

is a Gray cycle, while

0001 ∧₄: 0011 0111 is a Gray path but not a Gray cycle. However, \wedge_5 is:

Theorem 2. \wedge_6 can be written as a Gray path but not as a Gray cycle.

Proof: In \wedge_6 only 0^51 has weight 1 and only 01^5 has weight 5. There are two words, 0^411 and 0^3101 , of weight 2 and two words 0^21^4 , 0101^3 of weight 4. Finally, 0^31^3 , 0^210^21 , and 0^21^201 have weight 3. Hence, if \wedge_6 is a Gray path we can order the multiset $\{1,2,2,3,3,3,4,4,5\}$ in such a way that adjacent elements differ by 1. Indeed, the essentially unique ordering is 123454323. However, a straightforward argument shows that a circular ordering of this multiset is impossible, so \wedge_6 is not a Gray cycle. The following is a listing of \wedge_6 as a Gray path:

We remark in conclusion that our programs have verified that Λ_n is a Gray path for n = 7, 8 as well. We suspect that Λ_3 and Λ_5 are the only Gray cycles and for $n \geq 5$, Λ_n is a Gray path but not a Gray cycle.

References

- 1. L.J. Cummings, Aspects of synchronizable coding, The Journal of Combinatorial Mathematics and Combinatorial Computing 1 (1987), 67-84.
- 2. S.W. Golomb, *Codes with bounded synchronization delay*, Information and Control 8 (1965), 355-372.
- 3. M. Lothaire, "Combinatorics on Words," Addison-Wesley, Reading, Massachusetts, 1983.