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ABSTRACT. A balanced bipartite graph is a bipartite graph
(U,V, E) such that |U| = |V|. Particular balanced bipartite
subgraph problems have applications in fields such as VLSI de-
sign and flexible manufacturing. An example of such problems
is the following: given a graph G and a positive integer m, does
G contain a balanced complete bipartite subgraph with at least
2m vertices? This problem is NP-complete for several classes
of graphs, including bipartite graphs. However, the problem
can be solved in polynomial time for particular graphs classes.
We aim to contribute to the characterization of “easy” classes
of instances of the problem, and to individuate graph-theoretic
properties that can be useful to develop solution algorithms for
the general case. A simple polynomial algorithm can be devised
for bipartite graphs with no induced Ps on the basis of a result
of Bacsé and Tuza. We generalize the result to particular sub-
classes of i) graphs with no odd cycles of given size, ii) paw-free
graphs, iii) diamond-free graphs.
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1 The complete bipartite subgraph problem

1.1 Preliminary definitions

Throughout the paper, a (simple) graph will be denoted as an ordered
pair G = (V, E), where V and E indicate the vertex and the edge set,
respectively. Graphs are assumed with no loops (i.e., irreflexive) and, unless
otherwise specified, undirected. The vertex set (the edge set) of a graph
G will also be denoted as V(G) (as E(G)). For any subset S of V(G), we
let E(S) denote the set of all the edges of G having both endpoints in S.
A graph is called H-free if no subset S of its vertices induces a subgraph
isomorphic to a given graph H.

P,,, C, and K,, stand for path, cycle and complete graph of m ver-
tices. A multipartite graph is denoted as an ordered (k + 1)-ple B =
V1, -+, Vi, F), where {V,..., Vi} is a partition of V(B) into k stable sets,
and F = E(B) is the edge set of B. We set in particular V; = V;(B),
i =1,...,k. The vertex sets Vj,...,V, are called the shores of B. The
complete bipartite graph with m + n vertices is denoted as K;mn. A com-
plete bipartite graph K » is called balanced if m = n.

For m > 2, n 2 3, (Kmn — 2¢) denotes a bipartite graph obtained by
deleting any two non-adjacent edges from Ky n. Since (Kman — 2e) =
(Kn,m — 2e), with-no loss of generality we can from now on assume m < n.
In particular, (K23 —2e) = P, i.e., every Ps-free graph is also (K, n —2€)-
free. A triangle is a complete graph with three vertices. A paw is a graph
with 4 vertices z, ¥, w, z, and 4 edges zy, zw, yw, yz. A diamond is a
graph with 4 vertices z, y, w, 2, and 5 edges zy, zw, yw, yz, wz (see Figure

1).
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Figure 1
a) triangle; b) paw; c¢) diamond; d) Ps = (K23 — 2¢); €)(Kn,m — 2¢)

This work focuses on the problem of finding & maximum size balanced
complete bipartite subgraph of a given graph. More formally:

Given a graph G = (V, E) with n vertices and a positive inte-
ger m < mn, find, if one, a (not necessarily induced) balanced
complete bipartite subgraph H of G with at least 2m vertices.

This problem is here referred to as the complete bipartite subgraph prob-
lem.



1.2 Applications

The complete bipartite subgraph problem deserves particular interest in such
fields as VLSI design [11] and flexible manufacturing {3]. In the former
case, it formulates a class of design problems known as PLA folding [5,
8], which consist of reducing the area of a programmed logic array (PLA)
through an efficient circuit layout (for a more detailed description of PLAs,
see for instance [11]). In the latter, it models concurrent task and resource
assignment problems in bi-processor systems subject to resource constraints
[6].

In most applications, a problem instance consists of a 0 — 1 rectangular
matrix A.

In PLA folding, A represents the so-called topological matriz of the PLA
(see Figure 2a): rows and columns of A correspond to “wires” obtained
by diffusion onto a polysilicon layer, and the element a;; of A situated at
the cross-point of row ¢ and column j is equal to 1 if and only if the two
wires are connected by means of an active device (e.g., a transistor) called
personalization. The row-wires are generally called gates, and each gate of
a PLA is associated with a particular input or output signal.

Minimizing the area occupied by devices and components in an inte-
grated circuit is crucial issue in VLSI design!. In fact, the more compact
the circuit, the faster its electrical transitions. Moreover, the smaller the
semiconductor chip supporting the circuit, the higher the chances that it is
free of impurity that can affect correct circuit response. On the other hand,
the number of personalizations needed to implement a boolean function via
a PLA is usually a very small fraction of all the possible cross-points in the
grid: an analysis due to Wood [16] sets this fraction between 4% and 10%
(since this range depends on the combinatorial nature of the circuits to be
realized, and not on the particular solid-state technology adopted, we can
rely on Wood’s report although it dates back to 1979). This sparse struc-
ture suggests the possibility of reducing the device area through particular
layout methods. One of such methods consists of allowing distinct signals
to share the same track, and is known as folding. In particular, two gates
can share the same horizontal track (which, to this purpose, is interruped
at a suitable point) only if the sets of column-wires they are connected to
do not intersect each other. The problem is to assign as much as possible
gate pairs to horizontal tracks.

More in detail (refer for instance to Figure 2b), one can partition the set
C of the columns of the topological matrix A into 2 parts, C; and Cs. The
row set R can in turn be partitioned into 3 sets, Ry, Ry, R\(R; U Ry), so
that |R;| = |Ry|, and set Ry (set Rp) contains rows i such that a; = 0

1Computer programs for PLA optimization are included as benchmark in SPECS6INT
standards for computer performance.



for all k € C; (for all k € C2). By doing so, matrix A turns out to be
partitioned into 5 blocks, two of which (namely, R; x C; and R, x C5) have
all elements equal to 0 and can be suppressed, thus reducing the device
area. In the example, C; = {4,1}, C2 = {2,5,3}, R1 = {6,7}, R = {4,8}.
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Figure 2
a) Example of topological matrix of a PLA; b) example of layout

The above model can be given a different interpretation in terms of con-
current task and resource assignment (see e.g. [6]). According to this
interpretation, each row of A is associated with a task, and each column
with a resource. Element a;; is equal to 1 if and only if the execution of
task 4 requires resource j. Given a two-processor system, one problem is to
simultaneously assign tasks and resources to processors so to maximize the
workload of the least busy processor (i.e., the system utilization). When
only one copy of each resource is available, two tasks can be executed in
parallel if and only if they require non intersecting resource sets. Figure 2b
illustrates the case of 2 parallel processors with static resource assignment
for constant tasks lengths. In practical cases, the objective is related to
maximizing the time interval between two consecutive tool loading. This
objective is relevant in flexible manufacturing applications (see for instance

[3, 9]), where a wide variety of products is to be manufactured by the same
tool machine group.

The problems described can be formulated as complete bipartite subgraph
by introducing the following notion of compatibility graph G.

Definition 1. A graph G = (V, E) is the compatibility graph of some
rectangular matrix A € {0,1}™*™ if its vertices are in a one-to-one corre-

spondence with the rows of A, and wu; € E if and only if a;x # ajx for
1<k<n.
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Figure 3

a) The compatibility graph of the matrix of Figure 2a;
b) a complete bipartite subgraph

The compatibility graph G of the matrix A depicted in Figure 2a is
shown in Figure 3a, (vertex u; biunivoquely correspond to the i-th row
of A, 1 <17 < 8). The layout of Figure 2b corresponds to the balanced
complete bipartite subgraph of G of Figure 3b.

Observe that in many applications G happens to have a peculiar struc-
ture. For instance, in VLSI layout, wiring requirements derived from the
external circuit layout may impose that, for each row, the associated gate
must lay on a particular side of the PLA. In this case, no two gates assigned
to the same side can be folded, even if compatible. Similarly, in resource
assignment problems, one may have to face situations in which tasks have
been a-priori assigned to the machines (e.g., according to particular ma-
chine capabilities), and one wants to assign the resources so to maximize
the system utilization. In both cases, we can limit our attention to solving
complete bipartite subgraph in a particular bipartite subgraph of G.

1.3 Scope of the paper

As far the complexity of the problem is concerned, we have the following
results:

Theorem 1. (Johnson, 1987). Complete bipartite subgraph polynomially
reduces from clique.

Proof: See [10].



From the proof of Theorem 1, it follows that complete bipartite subgraphis
NP-complete even if G is bipartite. We incidentally observe that complete
bipartite subgraph is NP-complete for other classes of graphs, including
regular graphs of degree 3 or more [13], complement of split graphs [5] and
edge-disjoint graphs of regular graphs [2] (reduction from graph bisection).
Conversely, the problem is in P for graphs with no induced K 3 and (Ks—e)
(in particular, for edge-graphs) [1], for partial k-trees (see [13]) and for other
classes of graphs (see [5, 6]). Other results [15] seem to provide indications
for non-approximability.

Similarly to [1, 5, 6, 13], aim of this paper is to contribute to the charac-
terization of “easy” classes of instances of the problem, and to individuate
graph-theoretic properties that can be useful to devise solution algorithms
for the general case. In particular, we show that, for fixed m > 2, n > 2
integers, complete bipartite subgraph can be solved in polynomial time when
G has no induced subgraph isomorphic to (Km,» — 2¢) and, in alternative:

i) no cycle of a given odd number of vertices, or

ii) no induced paw, or

iii) no induced diamond.

The paper is organized as follows: in Section 2 we introduce some fur-
ther notation and preliminary results, and give a characterization of those
(K'm,n—2e)-free graphs that are also triangle-free or diamond-free; a polyno-
mial algorithm for complete bipartite subgraph on (K, » —2e)- and triangle-

free graphs is described in Section 3; Section 4 is devoted to extend the
result to larger classes of graphs.

2 Notation and preliminary results
2.1 Notation

Let G be a graph. For any subset S of V(G), the neighbor set N(S) of S is
the set of all the vertices of V(G)\S adjacent to a vertex of S. For brevity,
we set

N(S1,...,Sm,v1,..,0p) = N(S1U---USpr U {vy,...,vp})
We will also make extensive use of the following notation:

D(S)= (| N()

veES

Each element of D(S) is adjacent to every vertex of S (in other words,
each vertex in D(S) dominates S). Of course, also S and D(S) are mutually



disjoint, and similarly to above we set
D(S1,...,8m,v1,...,9) =D(S1U---USp U{vy,...,vp})
and also
d(S1,...,8m,v1,...,7p) = |D(Sy,...,Sm,v1,---,vp)|

For example, in the graph depicted in Figure 3a, {u4,ug} is dominated
by u;, ug, us, ug, uz, hence d(us,us) = 5. In general, we clearly have
D(v) = D(v,v,...,v) = N(v). Notice that, for any § C V(G) with s
elements, S and D(S) are the shores of a (not necessarily induced) subgraph
of G isomorphic to K, 4s)-

For every subset S of V(G), let Vs denote the following subset of V' (G):

Vs ={ue V\S:D(S,u) # 0} (1)

In particular, for S = @, the set V3 = {u € V : N(u) # 0} coincides with
V(G) if and only if G has no isolated vertices. For example, in the graph
depicted in Figure 3a, Viy, us} = {¥ € Viu # ug,u # us,d(ug, us,u) >
0} = {u1,u2, us, us, ur}.

Let us also give the following definition:

Definition 2. (subgraph induced by S and T). Let S and T be disjoint
subsets of V. The subgraph Ggr induced on G by S and T is the subgraph
induced by SUT on the graph G = (V, E\(E(S)UE(T))), i.e., on the graph
obtained from G by deleting all the edges having both endpoints in S or in
T.

Notice that Gg r is bipartite by definition.

2.2 Preliminary results

Graphs with no induced Ps and Cs have been characterized in [4]:

Theorem 2. (Bacsé and Tuza, 1990). In a graph G, every connected
subgraph contains a dominating clique if and only if G is Ps-free and Ci-
free.

The absence of induced Pj can help solving hard graph problems such as
mazimum stable set [12] or, as we will see later, complete bipartite subgraph.
It is therefore interesting to individuate cases in which such a property
holds:

Theorem 8. If for p > 2, q > 2, q > p integers a bipartite graph G is

(Kp,q—2e)-free, then for any H = (Vi, Va, F) contained in G and isomorphic
to Ky-2,4-2 the subgraph induced by D(V1) U D(V3) is Ps-free.



Proof: Let G(H) denote the subgraph of G induced by D(V;) U D(V;).

Suppose that G(H) contains an induced Ps with vertices u,,...,us and
edges u;u;4 for i =1,...,4. With no loss of generality, assume u; adjacent
to W; for i even. Let X = ViU {u,,us,us}, Y = VaU{uz,us}. Then, Gxy
is isomorphic to K414 — 2¢, and hence G contains a Kp ; — 2e. O

(Kp,q — 2e)-free graphs that are also triangle-free can be characterized
through the following theorem:

Theorem 4. Let G be triangle-free. Then, for any two integers p > 2,
g > 2, G is (Kp,q — 2e)-free if and only if for every subset S of V(G) such
that |S| > p — 2 and any u,v € V(G) such that d(S,u,v) > q —2, either
D(S,u) 2 D(S,v), or D(S,v) 2 D(S,u).

Before proving the theorem, let us point out what follows.

Observation 1. Theorem 4 cannot be extended to the case p = 2 (S = 0),
and in particular to Ps-free graphs. In fact, consider the Ps- and K3-free
graph of Figure 4. One has D(uy,us) # @ (that is, d(uy,u3) > ¢—2=1),

but neither D(u;) 2 D(us), nor the opposite. ]
U “s Ue
U, U, U,

Figure 4 A counterexample to Theorem 4 with p = 2

Proof of Theorem 4: (if part). Assume that for every subset S of V
with at least p — 2 elements and for any u,v € V(G) such that d(S,u,v) >
g — 2, one has either D(S,u) 2 D(S,v) or the opposite. By contradiction,
assume then that G contains an induced (Kp q — 2¢), say H. Let w; # 2; €
Vi = Vi(H), i = 1,2, and wyw,, 22, be the missing edges of H. The set
S = Vi\{w1, 21} has p — 2 vertices. The vertices w;, 21, and those in S are
all adjacent in H to a subset T of V, with g —2 vertices, i.e., d(S,w;,21) =
|D(S,wy) N D(S,21)| 2 q — 2. Moreover, since wyws, 2122 ¢ E(H), one
has wp € D(S, z1)\D(S,w;) and 22 € D(S,w1)\D(S, z1). Hence neither
D(S,un) N V2 D D(S, z1) N Vo, nor the opposite, which is a contradiction.
(Only if part). The theorem is obvious for d(S) < 2. Assume d(S) > 2,
IS| 2p—-2,and let J = {u € V | D(S,u) # 0}. Since G is triangle-free,
JNN(S)=0: in fact, w € JN N(S) implies the existence of two vertices
v € S, w € D(S) (and hence w € N(S)) both adjacent to u; but, by

10



definition of D(S), (v,w) € E(G), i.e., G contains a triangle (contradiction).
Observe also that, for the same reason, both S and D(S) are stable sets of
G.

Let u;,u9 € V(G) be such that T = D(S, u;, up) has at least ¢ — 2 ele-
ments, and assume by contradiction that there exist wy € D(S, u1)\D(S, u2),
we € D(S,u2)\D(S,u1), w1 # wp. Observe that the existence of such
vertices imply uj,us € S. Also, u; and up are non-adjacent, since G is
triangle-free and T contains at least one vertex adjacent to both u; and
ug. Thus, U = S U {u;,us} has at least p elements and is stable. On the
other hand, |T'| > ¢ — 2, and w;, w2 € T. Hence, W = T U {w;, w2} has at
least ¢ elements and, as a subset of D(S), is stable as well. But then Gy,w
contains a subgraph isomorphic to (Kp 4 — 2€). O

From the proof of Theorem 4, it turns out that the assumption of G
triangle-free is not necessary to prove the if part. Under different assump-
tions on set S and vertices u, v we can characterize (Kp , — 2¢)-free graphs
also in the class of diamond-free graphs:

Theorem 5. Let G be diamond-free. Then, for any two integers p > 2,
g 22, G is (Kp g — 2e)-free if and only if for every stable subset S of V(G)
such that |S| > max{p — 2,2} and any u,v € V(G) such that d(S,u,v) >
max{q — 2,2}, either D(S,u) 2 D(S,v), or D(S,v) 2 D(S,u).

Observe that in this case S is still non-empty, but stable.

Proof of Theorem 5: The if part follows from the proof of Theorem 4.
To prove the converse, let us proceed as follows. The following three facts
immediately follow from G being diamond-free. First, since S is stable and
contains at least 2 elements, also N(S) is stable. Secondly, d(S,u,v) >
max{q — 2,2} implies u,v ¢ N(S): if not, as d(S,u) > d(S,u,v) > 2 and
N(S) is stable and contains D(S,u), G would admit an induced diamond.
Third, for any u,v g€ N(S) such that d(S,u,v) > 2, w ¢ E(G). Hence,
for such vertices u,v, X = SU {u,v} and Y = D(S, »,v) are both stable.
Then, with an argument similar to that used in the proof of Theorem 4,
one can show that if there exist w € D(S, u)\D(S,v), z € D(S,v)\D(S, u),
then Gx,y is an induced (K, 4 — 2¢) of G.

Consider the following binary relation between elements of Vs:
V u,v € Vg, u\w if and only if D(S,u) 2 D(S,v) (2)

For example, referring to the graph of Figure 3a and assuming S =
{u4’ u8}1 we have VS = {u1!u2,u5,u61u7}3 and D(Sru7) = {ulru2au6}s
D(S,uy) = D(S,u2) = D(S,us) = D(S,us) = {ur}: hence no pair of
elements in Vs are in the relation (2). If on the other hand we let S = {u;},
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we see that in Vs = V(G)\{u1} one has:

up\ub ugluo uz, ug\us, uz ug, ug\ u4, us, ug
ug\ur uz\uz  ug\us\uglug.

We can prove the following:

Theorem 6. If a bipartite graph G is Ps-free, then for any non-empty
subset S of V the relation ‘\’ is a total order of the elements of V.

In other words, under the assumptions of Theorem 6, for any subset S of
V(G) there exists a total order of the elements of V/(G)\S. The proof can
easily be obtained through arguments similar to those used in Theorem 4,
and is left to the reader. It is not difficult to see that, if G is connected,
then Theorem 6 also holds for S = 0. We have in particular:

Theorem 7. If a connected bipartite graph G = (Vi, Vs, E) is Ps-free, then
the relation *\’ is a total order of the elements of both Vp\V; and Vp\ V5.

Let us now focus on graphs without odd cycles of a given size. The fol-
lowing lemmas will be used in Section 4 to limit the search of the maximum
Kmm of G to particular bipartite subgraphs of G. The first result gives a
straightforward property of graphs with no Cox4.

Lemma 1. Let G be a graph with no cyles of 2k + 1 vertices and H a
balanced complete bipartite subgraph of G with 2m vertices, m > k. Then,
H is an induced subgraph of G.

The next lemma applies to non-adjacent disjoint subsets S and U of
V(G), and gives a sufficient condition for U and D(S)N N(U) being stable.

Lemma 2. Let G contain no cycle with 2k + 1 vertices, k > 1. Then, for
any two disjoint subsets S and U of V(G) such that

)IS|zk-1
ii) forany ue U, v € S, (uv,v) € E(G)
iii) Vue U, d(S,u) >k
U and D(S)N N(U) = Uyev D(S, u) are stable sets of G.

Proof: With no loss of generality, let S = {v1,...,vk-1}. Let us first show
that U is stable. Let therefore u;,us € U, and assume by contradiction
that u; and ug are adjacent. Since d(S,u;) > k, i = 1,2, G contains at
least k vertices wy, ..., w, adjacent to each vertex of S. Moreover, u; and
uq are respectively adjacent to two distinct vertices of N(S), say w; and
wg. Then, G contains a cycle {'u.z,'u.l, W, U1, W2, V2, . .., Wk—1, Vk—1, Wk, U2 }
with 2k + 1 vertices.

12



Now assume by contradiction that two vertices of D(S) N N(U), say
w; and wy are adjacent. Let in particular w; € D(S,u), u € U. Since
d(S,u) > k > 1, there exist k — 1 vertices ws, ..., wr4+1 adjacent to all of
the vertices of S, and one of them, say w1, is also adjacent to u. Then,
G contains a cycle {wy, wa,v1,ws, v2,Ws, . .., Vk—1, Wk+1, ¥, w1 } With 2k+1
vertices. (]

3 The complete bipartite subgraph problem on triangle- and
(Kp,q — 2e)-free graphs

In this section we will show that if G is triangle- and (K, — 2€)-free,
then complete bipartite subgraph can be solved in O(|V(G)|*) time, where
h = max{p, ¢ — 3}.

Let us give the following definition:

Definition 3. Let S be a subset of V(G). A bipartite subgraph B of G
is said to be supported by S if Vi(B) 2 S.

For any graph G, let S denote a subset of V(G), and consider a parti-
tion of V(G)\S into equivalence classes A;, where A; corresponds to some
vertex u; € V(G)\S and contains all the v € V(G)\S such that D(S,v) =
D(S, u;) # 0. Recalling that D(S) 2 D(S,u) for any u € V(G)\S, we can
construct a directed acyclic graph s with node set {uo,u:,, %iy, ..., i},
where u;, represents set A;,, k=1,...,t, and node up represents Aq = .

The arc set of Qg is such that the transitive closure of Qg draws the
partial order relation ‘\’ defined by (2) between pairs u, w of vertices of
Qs representing distinct A;’s. In practice, excluding the nodes u; such that
D(S,u;) # 0, Qs is a strongly connected tree with root in ug.

Example 1. Consider the Ps- and triangle-free graph G of Figure 5a, and
set S = {ug}. One has

D(S) = {uz,us,us},  D(S,u;) =0 for i = 2,4,6.
D(S,w1) = {u2}, D(S,u3) = {U‘Z: ug,us}, D(S,us) = D(S,u7) = {uq,us}

We can partition V(G)\S into A; = {u1}, A3 = {us}, As = {us, u7} and
Ay = {uo,uq,us}: Qu,g) Will contain exactly one node for each of them,
plus one root associated with Ao = 8. Graph Qy,,} is drawn in Figure 5b:
each of its nodes carries the indication of the corresponding sets A; and
D(S,u;) ({2,4,6} is a shorthand for {ug,us, ug}, etc.). O

13



Figure 5 Sample graphs G and Qg

Let us point out a first consequence of Theorem 4:

Corollary 1. Let G be triangle- and (Kp q — 2e)-free withp > 2, ¢ > 2.
Then, for any subset S of V(G) with at least p — 2 vertices and any two
nodes u;, u; of Qg that cannot be reached from ug through the same path,
d(S,u,w) < g —2 for any u € A;, w € A;.

Let (ui,, %y, - - -, %, ), With i; = 0, be a path of Qs originating in 4o, and
let Ty, = D(S, Aiy,. .., Ai), 1 < k < r. For instance, referring to Figure 5b
and to the path (uo, us,u;), one has Ty = D(S) = {ug, ug,us} = T3, Ty =
D(S, Ao, A3, A1) = D(S, A1) = {u2}. The following is another immediate
consequence of Theorem 4.

Corollary 2. D(S) = D(S, A;,) 2 D(S,Ai,) 2 ... 2 D(S, Ay,) = Tk

Consider the complete bipartite graph B, = (S,, Ty, Sy x T;) induced by
the above defined set 7, and by the set S, = SU A;, U---U A;, (recall
that, since G has no loops, S, and T are mutually disjoint). Based on the
above Corollaries 1 and 2, let us prove the following theorem:

Theorem 8. Let G be triangle- and (Kp o —2¢)-free, withp > 2, ¢ > 2. Let
S be a subset of V(G), and H be the maximum K, m of G supported by
S (if one). Then, either m < q—2, or there exists a path (ui,, ui,, ..., ui,)
of Qg originating in u;, = ug such that B, 2 H.

Proof: Let Vi(H) = SUU, with SNU # 0@ and |SUU| = m. Clearly,
Gsuu,p(s,v) 2 H. Consider the set A= {ve V(G)\S:Vue U, D(S,v) =
D(S,u)}. From the definition of A, one has SUA 2 SUU and D(S, A) =
D(S,U). Hence Gsua,p(s,a) 2 H, and for every two subsets W and Z of A
and D(S, W) with m — |S| and m vertices, respectively, Gsuw,z = Km,m.-

Let A be partitioned into equivalence classes Ay,, ..., Ai, as previously
described, and let A = {uy,,...,u,} denote the set of nodes of {25 corre-
sponding to Ay,,...,A;,. Consider the minimum subtree of {25 that spans
AU{up}, and let N D AU {ug} denote the node set of such a subtree. From

14



Corollary 2, we have D(S, N) = D(S, A) and therefore Gsun,p(s,n) 2 H.
Moreover, for every two subsets W and Z of N and D(S, W) with m — |S]|
and m vertices, respectively, Gsuw,z = Km,m.

Let 7y,..., 7 denote all the paths originating in ug and spanning the
nodes of N. Let us prove that m > ¢ — 2 implies s = 1. Suppose not. Let
= {u,-l, . .,'u.;,}, Y = {uk,,. .. ,’U.k,}, iy = k; = 0. Since m; # mg, there
exist at least two distinct vertices u;,, uk; that are not connected by any
directed path of Qs. Hence, by Corollary 1, | D(S,u,v)| < g—2for any u €
A;y,, v € Ai;. Let W be a subset of N with m — | S| elements that contains
u and v and is such that W S = . For any subset Z of D(S, W) with m
elements, we have Gsuw,z = Km,m. Since D(S,u,v) 2 D(S,W) 2 Z, we
have also m = |Z| < g — 2, which is a contradiction. O

Let us associate two weights a; and b; with each node u; of Qg, with
a; = |A;| and b; = d(S, A;). From Theorem 8 and the definition of T}, S;,
it follows:

Corollary 3. Let G be triangle- and (K, ; — 2¢)-free (p,q > 2), and S be
a subset of V(G) with |S| > p — 2. Let (ui,,ui,, - ..,u; ) denote a path of
Qg originating in u;, = uo. Then the maximum K, ., supported by S and
contained in B, has size

m(iy) = min{JS| + D _ |As. |, d(S, A;,)} (3)
k=1

Proof: It suffices to observe that, for every positive integer k < r, Tk 2
Tik41 and Skyy 2 Sk. As A,y,..., Ai, are mutually disjoint, |Sk| = |S| +
2_j=1.k |4i;l, and, by definition and by Corollary 1, |Tk| = d(S, A:) O

From Theorem 8 and Corollary 3, one can derive an algorithm to find, if
one, a Km m supported by a given subset S of the vertices of a triangle- and
(Kp,q — 2e)-free graph with 2 < p < ¢ < m + 2. The algorithm organizes a
depth-first search on Q25 starting from node ug. For each node u; visited, the
algorithm computes m(7) through equality (3), i.e., the size of a maximum
balanced complete subgraph of B;, and updates, if necessary, the maximum
size m* found so far. The visit of the subtree rooted in the current node is
abandoned if the value m(%) of its root is less than or equal to m*.

To find the maximum K, ,, contained in G, one can proceed as follows:

Algorithm 1.

1. Construct and search a graph Qg for each subset S of V with p — 2
elements.

2. If step 1 has failed, then by Theorem 6 m < ¢ — 2: in particular,
either no Ky, of G is supported by any S with p — 2 elements
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(i.e., m < p—2), or G contains one such K, (and in this case
p—2<m<qg-2).

For any subset S of V with p — 2 elements, step 1 of Algorithm 1 can be
organized into two phases as follows:

Phase 1. (PartitionV\S = {uy,...,un} into equivalence classes A;)
(initialization) Assigned := @; for 0 < i <ndo A; :=0;
for i,7 & Assigned, j > ¢ do
if D(S,u:) = D(S,v;)
then A; := A; U {u;}; Assigned := Assigned U{j}.

Phase II. (Search graph Q¢)

(initialization) m* := 0; a(0) := |S|;
search(0); output m*

where procedure search(?) is recursively defined as follows:

procedure search(i)
begin
for any j that minimizes | D(S, A;)\D(S, A;)| with
D(S, A)\D(S,A;) # 0
do begin
a(j) = a(3) + |4;;
m(J) = min{a,(j), d(S) u’j)};
if m(3) > m*
then begin m* := m(j); search(j) end;
end;
end search

The complexity of searching Qs (phase II of step 1) is linear in the number
of nodes of Qg, i.e., in |V(G)|. This bound is however dominated by the
complexity of constructing Qs (phase I of step 1) which is O(|V(G)[?).
Summarizing, step 1 of Algorithm 1 takes O(|V(G)|?) time. As for step 2,
the search for & maximum K, ., takes in any case O(|V(G)|93) time.

In conclusion, we have the following result:

Theorem 9. For p > 2, q > 2, if a graph G is triangle- and (K, q — 2¢)-
free, then finding in G an optimum solution to complete bipartite subgraph
requires O(|V(G)|™2x{Pa=3}) time.

Observation 2. Recalling that (K23 — 2e) = Ps, Theorem 9 implies in
particular the existence of an O(|V(G)|?) solution algorithm for bipartite
Ps-free graphs. For such graphs, however, a polynomial algorithm can be
directly derived from Theorem 2. In fact, if G is bipartite and Ps-free, then
by Theorem 2 G contains a dominating edge e = wv. If we delete » and v
from G, together with all the edges incident on them, we obtain a new graph
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consisting of several connected components Hj, ..., Hp, all dominated by e
and, as subgraphs of G, bipartite and Ps-free. We can therefore recursively
apply the same argument to each component H;, and construct in this way
a directed strongly connected tree T, in which the root of each subtree is
associated with a pair (H, f), where H is a connected component of G,
and f € E(H) dominates H. With an argument similar to that used in
Theorem 4, one can prove that every maximal Ky, m of G is individuated
by the edges f associated with the nodes of a path from the root to any leaf
of T. Moreover, based on Theorem 3, one can extend the above solution
approach to bipartite graphs with no induced (K, 4 — 2¢). 0o
Example 2. Let us find a maximum K, ,, in the Ps- and K3-free graph
of Figure 5a. Recalling that a Ps-free graph is also (K33 — 2e)-free, we can
apply Algorithm 1 with p = ¢ = 3. Sets D(S, u) are listed in Table 1 for
S ={uj}, u =, 1 <1 <j < 8 (sets with ¢ > j are not indicated, as
D({w},u3) = D({us},w))-

{ur}  {u2} {us} {uq} {us} {us} {ur} {us} S/u
[} u2 us [] 1] [ u2

UUs u
U u3u7Us [] uguyug u1 uguU7us 0 [ uz
U2UqUG [ UqUG [ uguque | ususue | us

uzusuzug| © |uausuzus| O P 1 ug

U1U4UG [ Ugue | uqus | us

UUSUTUS 4] P | us

U2U4UE | U2U4UE | U7
U2U4U6 | Ug

Table 1

From each column of the table, it is immediate to derive a directed rooted
tree 5. These trees are depicted in Figure 6. Similarly to Figure 5a,
their nodes carry the indication of both sets D(S,u;) and A;. Nodes with
D(S,u;) = 0 have however not been drawn, since unnecessary by equality
(3).

For each tree, we compute m(r) by equality (3) for every path with
r 2> 1 nodes and root in ug (in the present case, |S| = 1). Consider
for instance Qy,) (the second tree in Figure 6): the paths (uo), (uo0,u4),
(uo, us) respectively yield m(1) = 1, m(2) = 3, m(2) = 1. Hence, G admits
a K33 with shores {us,us,u¢}, {us,u7,us}. The same subgraph can be
obtained from Q{ug)» Q{,"}, Q{ua}- (m]
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Figure 6
Trees to be searched to find a maximum K, . of the graph of Figure 5a

4 Extensions of the method

4.1 Extension to diamond- and paw-free graphs

Algorithm 1 can be extended with similar arguments to diamond-free graphs
with no induced (K,,q — 2¢). Let ¥s denote the rooted digraph obtained
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by suppressing the nodes u; of Qs (leaves) such that d(S,u;) = 1. Based
on Theorem 5, Corollary 1 and Theorem 8 rewrite as follows:

Corollary 4. Let G be diamond- and (K, , — 2¢)-free. Then, for any
stable subset S of V(G) with at least p — 2 > 2 vertices and any two
nodes u;, uj of U5 that cannot be reached from ug through the same path,
d(S,u,w) < max{q — 2,2} for any u € A;, w € A;.

Theorem 10. Let G be diamond- and (K, o — 2¢)-free, withp > 2, ¢ > 2.
Let S be a stable subset of V(G) with at least 2 elements, and H be
the maximum Ky, ., of G supported by S (if one). Then, either m <
max{2, g — 2}, or there exists a path (u;,, ui,, ..., ui,.) of ¥s originating in
up, = up such that B, D H.

Observe that if G is diamond-free, then, for m > 2, every Kpmm of
G is contained either in a clique, or in an induced bipartite subgraph of
G. In fact, let G 2 B = Ky m with m > 2, and let {u),u2,us,uq}
be a Cy contained in B, with u;,us € Vi(B) and ug,us € Vo(B): then,
ujug € F(G) if and only if uou, € E(G), otherwise G contains a diamond.
If the maximum K,, ,,, is contained in an induced bipartite subgraph of G,
then we can apply Algorithm 1, provided that ¥g is constructed from a
stable set S with at least 2 vertices. Otherwise, we simply observe that the
maximal cliques of a diamond-free graph G are O(|V(G)|?).

Observation 3. Olariu [14] proved that G is a paw-free graph if and only
if is triangle-free or complete multipartite. This suggests an immediate
extension of Algorithm 1 to paw-free graphs with no induced (K, , — 2¢).
In fact, if G is complete multipartite with shores Vj,..., V, a maximum
balanced complete bipartite subgraph of G is obtained by partitioning the
set {1,...,k} into 2 classes ©, and ©3 such that the absolute value of the
difference between | U;ece, Vi| and | Uico, Vi| is minimum. Finding ©, and
©; is a polynomially solvable instance of subset sum. m]

4.2 Extension to graphs with no odd cycles of given length

After the proof of Lemmas 1 and 2 (Section 2), and of Theorem 9, we are in
a position to extend Algorithm 1 to (Kp, q — 2e)-free graphs with no Caxy4,
for any fixed & > 1.

Consider two disjoint subsets S and U of V(G) such that S is stable with
k — 1 elements, and U contains all the vertices u that are neither in S nor
adjacent to any element of S, and are such that d(S,u) > k, i.e.

U ={ue VG\(SUN(S)) : d(S,u) > k}

Consider also the subgraph G(S) of G induced by SUUU(D(S)NN(U)).
Based on Lemmas 1 and 2, we can prove the following:
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Theorem 11. Let G be a graph with no cycles of 2k+1 vertices, S a stable
set of G with k — 1 vertices, and H a maximum K, ,, of G supported by
S, if one. Then, either m < k, or G(S) D H.

Proof: By Lemma 1, H is an induced subgraph of G. By Lemma 2,
and since S is stable, G(S) is bipartite with shores SU U, D(S) n N(U).
Assume m > k+1. Let v € Vi(H). If v € S, then v € U: in fact, v ¢ N(S)
(otherwise H would not be induced) and d(S,v) > k+ 1. Let w € Vo(H).
Then w € D(S)N N(U): in fact, as H is supported by S, w is adjacent
to all the vertices in S; moreover, since m > k+ 1 and |S| = k — 1, there
exists some v € V) (H)\S such that (v,w) € E(G), and we just proved that
v € Vi(H)\S implies v € U. The thesis follows. o

By Theorem 11, finding a maximum K, mm supported by a stable set S in
a graph G without cycles of 2k + 1 vertices polynomially reduces to finding
a maximum K, » in a suitable bipartite subgraph G(S) of G. If G has no
induced (Kp,q — 2€), then G(S) has no induced (Kp 4 — 2e) either, and we
can therefore apply Algorithm 1 to G(S). The whole solution algorithm is
as follows:

Algorithm 2.

1. For every stable set S of G with k—1 vertices, find through Algorithm
1 a maximum K,y ,,, (if one) contained in G(S).

2. If step 1 has failed, then by Theorem 11 m < k: in particular, either
no Ko m of G is supported by any S with k—1 elements (i.e., m < k),
or G contains one such K, ,» (and in this case m = k).

For each stable set S of G with k—1 vertices, step 1 takes in the worst case
O(|V(Gs)|™>{P9=3}) time. In case of failure, the search for a maximum
Km,m required by step 2 takes O(|V(G)|*¥) time. Apparently, the complex-
ity of Algorithm 2 is therefore O(|V (Gs)|F+max{r.9=3}-1) However, we can
prove the following theorem:

Theorem 12. Ifa graph G is (K q — 2¢)-free and without cycles of 2k+1
vertices (p,q = 2,k > 1), then the time required to find in G an optimum
solution to complete bipartite subgraph is O(|V (G)|™ax{kpa—3})

Proof: Suppose k—1 < p—2,i.e., k < p—1. For every stable set S of G with
P — 2 vertices, construct and search graph Qs to find a maximum K, , if
one, supported by S. This takes O(|V(G)|P) time. If the search succeeds,
then the K, mm found is the maximum supported by any stable set A of G
with k — 1 elements. If in fact A is a not contained in S, then A cannot
support a maximum Ky, since, by Lemma 1, any balanced complete
bipartite subgraph of G with 2(p — 2) vertices is an induced subgraph of G.
If the above search fails, then m < ¢ — 2, and we have to apply step 2 of
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Algorithm 1, which takes O(|V(G)|973) time. Hence, in this case the time
bound is O(|V (G)|m2x{ra=3}) = O(|V (G)|™ax{kp,a-3}),

Assume now k > p — 1. To find whether G contains a Ky, ,, with m =
k-1, we apply an exhaustive search on G: this takes O(JV(G)|*~!). If the
search fails, then we stop. Otherwise, we must check whether G contains a
Kym,m with m > k. To this aim, we observe that, since G is (Kp, q — 2¢)-free,
G is also (K q — 2¢)-free. Then we can apply Algorithm 1 starting from
stable sets S with k — 2 elements. This takes O$|V(G)|"‘°"‘{'°""‘3}). The
overall complexity is therefore again O(|V (G)|™>x{*:p.a—3}), O

Conclusions

In this paper we showed how to solve in polynomial time, for any fixed
integers m > 2, n > 2, k > 0, the complete bipartite subgraph problem for
graphs with no induced (K, » — 2¢) that either i) do not contain Coj41, or
ii) are paw-free, or iii) are diamond-free. The proposed algorithms are based
on an orderability property enjoyed by V(G) under the above assumptions.
The proposed algorithms yield a feasible solution to the problem also if
V(G) does not enjoy the orderability property expressed (provided that a
restricted definition of graph Qg is given). This characteristics make the
algorithms suitable to construct good heuristics for the general case.

Further investigation is needed to evaluate the implications of the above
results on other combinatorial problems, such as maximum clique or max-
imum stable set. In particular, it is easy to see that, if G is bipartite, then
complete bipartite subgraph can be formulated in terms of maximum stable
set with additional constraints on the bipartite complement of G.
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