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ABSTRACT. Exact designs with n observations and & two level
factors in the presence of autocorrelated errors are considered.
The problem of finding D - and A- optimal designs, is discussed.
An algorithm for constructing such designs, using exhaustive
search for different values of n and k, is developed. The ap-
plication of this algorithm showed, that in the case of positive
autocorrelation, the maximum possible number of interchanges
of the factor levels provides almost optimal designs. On the
contrary, in the case of negative autocorrelation, the minimum
such number provides almost optimal designs. A list of the
exact D- and A- optimal designs is given.

1 Introduction

In optimal design theory we are interested in constructing designs which
are the best, in some sense, among all possible ones. There are many
criteria of optimality which usually assume that the error terms involved,
are uncorrelated with zero mean and common variance. In this paper we
consider exact designs, having k two-level factors, when a given number of
n (n > k + 1) observations must be taken and the errors are autocorrelated.

If we denote by Y the vector of observed responses, we assume the fol-
lowing linear main effects model

Y=Xf+¢ (1.1)
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where X = (z;;) is the » x (k + 1) design matrix (¢ = 1,2,... ,» and
Jj =0,1,...,k) with z;0 = 1 for every ¢ and ;; = +1 or —1 for every i and
J#0,8=(Bo,B,--.,Bk) the vector of the unknown parameters (overall
mean and main effects) and € = (ey,€2,...,6,) the vector of random
errors. By assuming that the error terms are uncorrelated with zero mean
and constant variance, the best linear unbiased estimators (BLUE’s) for
the elements of § are given by

B=(X'"X)'X'Y (1.2)

where C = X'’ X is the information matrix.

Under these assumptions a lot of research has been done on the problem
of finding optimal designs, and miscellaneous results are available. See for
example Ehlich ([8},(9]), Galil and Kiefer ([10], [11]), Cheng ([4]), Moyssiadis
and Kounias ([14]) etc. An extensive review can be found in Shah and Sinha
([15)).

However, in many cases where the observations are taken sequentially, it
may be reasonable to suppose that the successive elements of vector ¢ have
some kind of autocorrelation. Let the ¢; ’s follow a first-order autoregressive
model (AR(1)), i.e.

Ei=pei-1+n,1=12,...n, ¢g=0

where E(n) = 0, V() = a?,I,, and —1 < p < 1. Therefore the vector ¢
must satisfy the following relations:

E(e) =0 and V() = 02V (1.3)
where V' = [v5], v = pl*= for i,5 = 1,2,... ,n.
The BLUE’s for the elements of 3 are then given by
B=(X'V X)) X'VlY (1.4)
and the information matrix is Cy = X'V~1X where
1 —p 0 .- 0 0
—-p 1 -+ p2 -p ) - 0 0
v-1_ 1 0 —p  l14p ... 0 0
-2 i AR
0 0 0 cee 1492 —p
0 0 0 e —p 1

Jenkins and Chanmugam ([12]) studied various kinds of correlation be-
tween errors in the case of a single two-level factor (k = 1). Banerjee ([2])
considered the general case of k factors for some classes of weighing designs
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under AR(1) errors. Constantine ([7]) using an approximation of the in-
formation matrix C developed methods of constructing efficient weighing
and factorial designs starting out from Hadamard matrices. An extensive
research has been done for the case of the complete 2* factorial designs and
the 25— fractional factorial designs (see, for example, [5], [16], [13], [6] and
[2]).

In this paper, we deal with two main questions concerning optimality,
under the assumption that the errors follow a first order autoregressive
model.

1. Given the number of observations n, the number of factors k& and an
estimation of the correlation coefficient p, what is the exact D- or A-
optimal design?

2. What is the relation of an optimal design, under the assumption that
successive observations are autocorrelated, to an optimal design with
uncorrelated observations and with the same n and k ?

For the sake of brevity, we shall denote the D- (or A-) optimal design for
the case where the observations are uncorrelated, as Do- (or Ag -) optimal
design.

2 Theoretical results

It is known that under the assumption of uncorrelated errors, the func-
tions defining the optimality criteria ( Det(C) and T'r (C~!)) are invariant
with respect to some transformations of the design matrix X. Such trans-
formations are the interchange of two rows and/or columns of X, or the
multiplication by —1 of a row and/or column of X. So, if the design ma-
trix X is obtained from X by a number of successive transformations of
the above type, it is considered to be equivalent to X . The corresponding
information matrices are considered as eguivalent too.

Unfortunately, the above is not true if the errors in the model (1.1)
are correlated. In fact the interchange of any two observations (rows of
the design matrix), may give a completely different design with respect to
optimality. In this case we have the following.

Proposition 2.1 Let X be the design matriz of the main effects of the
model with autocorrelation and V the covariance malriz of the errors.
Then:

a) The interchanging of any two columns of X and/or the multiplication

of any column(s) by —1, gives a matriz X, which is equivalent to X,
with respect to A- and D-optimality criteria.
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b) The interchanging of any two rows of X and/or the multiplication
of any row(s) by 1, gives a mairiz X, which, in general, is not
equivalent to X.

Proof: a) Let T be a matrix obtained from the identity matrix I follow-
ing the same transformations as the ones giving matrix X from X. Then
it is easy to see that X = X - T, so, we have:

Cv=XV1X=(X-TV V' (X-T)=T'X'VXT=TCyT.

Hence .
Det (cv) = Det (T'CyT) = Det (Cv)

and -
Tr (0;1) =Tr (T7'cy? T)) =Tr (G3")
i.e. the information matrix remains invariant with respect to D- and A
-optimality criteria.
b) If T is defined analogously as in (a), we have X =T - X, so:

Det (&v) = Det (X'T'V™'TX)

which is, in general, different from Det (Cy ).
Similarly T'r (C’; l) #Tr(Cy 1), in general, which completes the proof. O

As a consequence of the above proposition, we need to modify, in the
presence of autocorrelated errors, the definition of the equivalence of designs
or of information matrices. We give the following definition:

The design matrix X which is obtained from X by a number of successive
interchanges of columns or by multiplying some columns by -1, will be called
c-equivalent to X . The corresponding information matrices, will be called
c-equivalent too.

From the first part of the proposition 2.1, we obviously have:

Corollary 2.1 Every c-equivalent design of a D- (or A-) optimal design,
is D- (or A -) optimal too. o

There is a special case, where the row transformations produce D-, or A
-optimal designs. This is the case of saturated designs where the following
proposition holds.

Proposition 2.2 Let n =k +1 i.e. the design is saturated. Then:

a) If X is Do-optimal design, it is also D-optimal for every p # 0.
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b) If X is Ao-optimal design and, in addition, X is a Hadamard matriz,
then it is A-optimal for every p # 0 too.

Proof: Using the previous notation and since X is a square matrix it holds:
Det (év) = Det (Cv) = Det(X)?/Det(V),

which proves (a).
It is easy to see that if X is a Hadamard matrix, ie. X'- X =n-1I,,
then
Tr (C';l) =Tr(Cy') =n-Tr(V)

which completes the proof. ]

Proposition 2.3 Let D(X) be the class of the design matrices consisted
of the c-equivalent to X design matrices and of the matrices obtained by
interchanging the rows of the matrices in the class!. Then, the classes
D(X,) and D(X;) corresponding to different design matrices X; and X,,
are either identical or they do not have any common element.

Proof: It is obvious that the class D(X) is “closed” under the interchanging
of the rows and/or columns of its elements, or by multiplying the columns
of its elements by —1. In fact, if A € D(X) then A is obtained from X
by interchanging the rows of X or of some c-equivalent to X. So, X can
be obtained from A by using the same transformations in an inverse order.
Hence the class D(A) is identical to the class D(X).

So, if A is a common element of the two classes D(X;) , D(X3), then
D(A) is identical to each one of the classes D(X) and D(X3), which proves
the proposition. o

The above proposition means that in order to compare the two classes

D(X1), D(X2) it is sufficient to check whether the matrix X; (or X3) be-
longs to the class D(X?2) (or D(X1)).

Proposition 2.4 Let X = (R}, R,...,R,), where R;,i = 1,2,...,n
denotes the i-th row of X, be the design matriz under the presence of au-
tocorrelated errors. Let also Z = (R, R,_,,..., R’l)' be the design matriz
obtained by reversing the order of the rows of X. Then the information
malrices corresponding to X and Z, are the same, i.e.

X'vix=2v-1lz.

1Note that if the matrix X3 is obtained from X by multiplying some row(s) by —1,
it does not necessarily belong ta D(X).
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Proof: By denoting

1,if j=n+1—i

S=(S§j), 4,j=12,...,n, with 3ij={ 0, otherwise

it is easy to see that
Z=8X,andS'V1isS=V"1,

which proves the statement. a

Hence, if a matrix having a definite order of rows has been examined
for optimality, the matrix having the reverse order of rows does not have
to be examined. This reduces the number of “candidates” for optimality
matrices to about a half of their total number.

The case where k = 1 has been studied theoretically in a paper by An-
gelis, Bora-Senta and Moyssiadis ([1]).

Using the n x 1 vectors:

gn = (+1, =1, +1,..., (-1)"*) | @ = (1}, -14_,), v=1,2,..,n—
1, where 1, = (1, 1, 1,..., 1)’ and denoting by [a] the largest integer not ex-
ceeding a, the main result of the above-mentioned paper can be summarized
as follows :

Theorem 2.1 The design matriz of the D- optimal design with one factor
and n observations can be written, except of equivalence, as:

X =(1n0nz), fp<0 and X =(la,gn),fp>0

where z = [1"2'—1].The same design is also A -optimal, except for the cases
with odd n (n > 3) and p > r, where:

(n —-2n— 1)—2\/(17,2 3n+1)(n-— 2)

2.1
In these cases the A-optimal design has a design matriz
1 1
X= ( la-1 8na )
]
We define as:
1 k n-1

NLC(X) =5 Do) (M —zismig,) (2:2)

j=1 i=1
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the total number of level changes over all columns of the design matrix
X. From the Theorem 2.1, it is observed that the A- and D- optimal
designs for p < 0 have NLC(X) = 1, which is the minimum number of
level changes over all possible design matrices X. Similarly, the A- and D-
optimal designs for p > 0 have NLC(X) = n — 1, which is the maximum
number of level changes over all possible design matrices X. There is only
one exception for the A-optimality and for the cases p > r, (r as in 2.1),
where N LC(X) is less than maximum, namely NLC(X) = n—2. However,
by comparing the trace of the inverse of the information matrix of the A-
optimal design with the one of the design having the maximum number of
level changes, it is found that there is not a significant difference. In fact, if
we define as A-efficiency, the ratio of the above two traces, expressed as a
percentage, we see that the A-efficiency of the last design, is greater than
99.3%. In figure 1 we can see that this efficiency is an increasing function
of n for a given value of p.

1.002

0.998

0.996

0.992

Figure 1. A-efficiency for the almost A-optimal designs for p = 0.8

Designs with great A-efficiency (greater than, say, 0.85) will be referred
to, as “almost A-optimal designs”. Note that there are designs, which are
Ag-optimal, but they have low A-efficiency. For example if p =04, =9
the design with x = (—14, 14)’ has A-efficiency only 0.72.

According to the above observations, the proposition (2.4) can be restated
as follows:

Corollary 2.2 The design with a single factor and n observations, is A-
and D- optimal, if the corresponding design matriz X allains the minimum
value of level changes of the factor for p < 0, or the mazimum value of level
changes for p > 0, except for the case of A-optimality and p > r, as r is
defined in (2.1). In this case the design is “almost A-optimal” with A-
efficiency very close to 1. a
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Unfortunately, the general case where k > 2 cannot be studied in a simi-
lar way. In fact, the expressions giving the determinant of the information
matrix (or the trace of the inverse of the information matrix) are so compli-
cated, that it is extremely difficult to maximize (or minimize) them, using
algebraic operations.

However, for the case k = 2, we give the following conjecture, based on
the experience of several exhaustive searches.

Proposition 2.5 (Conjecture) The A- and D- optimal designs for the
case k = 2 and for different values of n, have design matrices given by:

i) n =4y,
X = (ln) qfl;2l'1 ( q:!u;v )) ) forp < 0
—Q2v;p
X = (ln,gn, ( _ggz;/ )) , forp>0
iW)n=4+1,
X = (ln, Qn;2v+1, ( qz_‘_‘+lw+l )) ’ forp <0
Qv
X = (ln,gn, ( B2v+1 )) , forp>0
g2
i) n=4v+2,
X = (lfu An;2v+1, ( (12;::::: )) , Jorp<Q
2041
X = 1 ’ ] ] > 0
(1)) e
i) n=4v +3,
—_ Q2v4-2;0+1
X = (lm Qn;2v+2, ( ot )) yforp<0
X = (ln’g'm ( g:::; )) ’ forp>0

o

This conjecture was found to be true for all the values of n < 14 and for
a wide variety of values of p in (-1, 1).
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A construction of optimal designs, or at least highly efficient designs, for
D- and A-optimality criteria, can be achieved with an exhaustive search,
by developing a suitable computer algorithm.

In the following section we develope such an algorithm which gives a
number of optimal designs for relatively small values of n» and k. We tried
to find out a relation between these designs and the corresponding ones for
the case without autocorrelation, and to state a proposition extending the
corollary (2.2).

3 The algorithm

For an exhaustive search over all possible information matrices we first need
to find all the possible design matrices, then to form the corresponding
information matrices, to calculate their determinants and the trace of their
inverses and finally to point out the D- and A -optimal among them. For
given values of  and k we can form 2™ such matrices by taking z;; = +1,0r
-1, fori=1,2, ..,n,and 7 =1,2,..,k . Obviously, many of them are
equivalent to each other, so it is need to reduce their number, using the
previous propositions. For this purpose, we have developed an algorithm
which, by using a known class of matrices for some k and constant n,
produces sequentially a class for k+1. The way of construction determines
the order of matrices in this class, which in turn is used for the next step.

Let us denote this class by Cp, k. Its elements are n x (k + 1) matrices of

the form:
Co={X :X=(QQ,x1,x2,..., xk)}

where x; are n x 1 vectors with the following properties:

(P1) Every x; has at most [}] negative 1’s.

In fact, by multiplying ( if it is necessary) x; by —1 (proposition 2.1), we
can always have x; - 1,, > 0 for n even or > 1 for n odd.

(P2) If x; has t negative 1’s, then x;+1 has at most ¢ negative 1’s, i.e. if
x; -1, =n—2, then x{,, -1, > n — 2t

In fact, in any other case we can interchange x; with x;,;, (proposition
2.1).

(P3) For every £=1,2,...,(k —1) exists a partition of the rows of the
matrix Xg;1, consisting of the first £+ 1 columns of X , in s parts, having
rows with all the elements but the last equal, i.e.

M, & M; is a y; x € matrix,y; > 1,
M, 6, withv; + v+ ...+, =n
ceeeee and with all rows identical,
M, & 6; is a 1; x 1 vector .

Xey1 = , Where
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Then the vectors §; can always be written in the form §; = (l’h e )' ,
for t; < ;.

In fact, if we rearrange the v; rows of the i-th part of the partition of the
matrix Xg1, then the matrix M; remains unchanged. So the vector §; can
always take the above form.

This property of matrices X reduces the number of the representatives
in the class Cy, k.

(P4) The matrices in class Cp x must be of full rank, i.e. rank(X) = k+1.

In fact, by using the known property that for any two matrices A and B
the rank of the product AB cannot exceed the rank of either A or B, we
find that if rank(X) < k, then rank (X’ V! X) < k, which means that if
rank(X) < k+ 1, then the information matrix is singular.

(P5) To every matrix X = (1, x1,X2,..., Xi) we correspond the k x 1
vector a(X) defined by:

Ty T12 ... Zin 2"_;
n—
1 g1 Tog ... Ton 2
a(X) = 5 Jk'n + . . . . . . )
Tkl k2 ... Tkn 20

where Jy,, is the k X n matrix consisting only of 1 ’s. Note that the binary
representation of the i-th element of a(X) is 3 (1’ + x}). Using proposition
2.1, we can rearrange the columns of the matrix X , so as the elements of the
vector a(X) to be in decreasing order i.e. a(X) = (a(k), Q(k—1)s--- » a(l))' .

So, the problem of finding if a matrix Z belongs to a class D(X) is re-
duced to the one of comparing the corresponding vector a(Z) with the
vectors a(X;) of the class D(a(X)) (proposition 2.3).

We proceed, now, with the description of the algorithm. First of all the
elements of the class C, 1 are determined and are ordered in decreasing
order, according to their total number of negative 1 ’s, i.e.

— ln—t 1n—t _ _ .'I_l
Cn,1-—{( 1, -1, ), t—s,s—l,...,l,wheres—[2]}.

The optimum design in this class is known (see theorem 2.1). Suppose
we have studied the class C,x—1 for k =2, 3, ... . Then we continue as
follows:

Step 1. Begin with the first element, say Y, of the class C,, x—1, having,
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say, to negative 1’s in its last column. Let’s suppose Y can be written as:

%1 M; is a y; x k matrix,v; > 1,
Y= 2 , Where with vy +ve+...+v,=n
M and with all rows identical.
8

For each ¢, t = tg,p—1, ..., 1 (property P2), construct a vector § consisting
of s segments corresponding to M;’ s of the matrix Y, i.e.

§=(8,,6,...,8) , with & = (1], _,, -1, )’

where " t; < t (property P3). Berry’s algorithm AS179 ([3]), gives the
complete set of all such vectors § ’s, by taking all the partitions of ) _¢;
into s non-ordered, non-empty subsets ¢,,2s,... ,¢t; . For every § form the
augmented matrix Z = (Y, §) and continue to Step 2.

Step 2. Compute the rank of the matrix Z = (Y, §). If this rank is equal
to k + 1 (property P4), then go to Step 3. Else, ignore the matrix Z and
continue with the next é.

Step 3. For the matrix Z = (Y,6), form the corresponding class of
vectors D(a(Z)) (property P5). Compare each one of its vectors with the
vectors a(X;) of the matrices X; that have already been recorded in the
class Cp k. If all these comparisons fail, include matrix Z in the class Cy, .
If § is not the last one, take next § and go to Step 2. Else, if ¢ > 1 take
t +—t—1 and go to Step 1. Else continue to Step 4.

Step 4. Compute matrix V! for a given value of p. For each element
X in the class Cp, do the following. Form the class D(X) taking into
account the proposition 2.4. (That means include in D(X), only the one
of the two matrices having their rows identical in reverse order). Find the
D- and A-optimal design among the elements of all the classes D(X). For
the optimal design(s) X*, store its determinant, the trace of its inverse, the
number of level changes, etc.

Then Stop.

4 The results

The above algorithm was executed for the cases k=2 and n <14, k=3
andn <10, k=4andn < 8, k=5andn = 7, each for p = -0.9 +
0.1-h, h=0,1,...,18. For greater values of the parameters k and =, the
computer time needed for exhaustive search is huge. However, the cases we
dealt with, reveal the general tendency.

The optimal designs are given in the appendix. The D-optimal designs
for k = 2 and n < 14 are not listed explicitly, because they are the same as
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the ones given in the conjecture 2.5. The A-optimal designs which are the
same as the corresponding D-optimal ones, are not listed too.

By studying the structure and the properties of these designs, we tried
to answer the following questions:

(a) “In which cases the D- or A-optimal designs are also Dy - or Agp-
optimal?”

(b) “Can the D- or A-optimal designs be obtained by rearranging the
rows of a Dy- or Ag-optimal design?”

(c) “If we consider as D- or A-optimal the best design (with respect to
D- or A-optimality criteria) generating by the corresponding Dy- or
Ao-optimal one, in the case where these designs are different, what is
the maximum error?”

The answer in question (a) is the case of the saturated designs (n = k+1)
(proposition 2.2)

For the cases n =5, 7, 8, 9, 11, 12, 13 and k = 2 there is only one, w.r.t.
c-equivalence , Dy- optimal design, which is Ag-optimal too. It was found
that the D-or A- optimal design is generated from the corresponding Dy-or
Ao- optimal ones, i.e. the answer to question (b) is positive. In all these
cases the D-optimal designs coincide with the one given in conjecture 2.5.
The cases for which the A - optimal design is different from the correspond-
ing D-optimal are listed in Appendix (section 6.1).

For the rest of the other cases examined, there are more than one Djy-
or Ag-optimal designs. One of them i.e. n =6, k =2 will be discussed in
details. For the rest cases we shall give a summary of the results.

4.1 Thecasen=86, k=2

There are two different design matrices , i.e.

11 1 1 1 1
1 1 1 1 1 1
1 1 -1 1 1 -1
X=17 31 |Y=l1 a2 1|
1 -1 -1 1 -1 1
1 -1 -1 1 -1 -1
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which are both Dp- and Ag- optimal. These two matrices are equivalent,
but not c-equivalent. In fact, Y =T - X - S where

1000 0 0
0100 0 0
10 0
001 0 0 0
T=lo000 0 0 -1 ’S—(gé_"l)'
000 0 -1 0
000 -1 0 0

while Y can not be obtained from X by rearranging some columns or by
multiplying some of them by —1.

It was found that the D-optimal design is obtained by taking the permu-
tation 123645 of the rows of the matrix Y, when p < 0 or by taking the
permutation 162435, when p > 0, i.e.

1 1 1 1 1 1
1 1 1 1 -1 -1
|11 |11 1
Xt = 1 -1 -1 for p <0, and X* = 1 -1 1 forp>0
1 -1 1 1 1 -1
1 -1 1 1 -1 1

These designs coincide with the corresponding ones given in the conjecture
2.5. It was also found that the D-optimal design can not be obtained by
rearranging the rows of X. So, in this case the answer to question (b)
depends on the choice of the Dg-optimal design.

If the matrix X was selected instead of Y and the best (w.r.t. the D
-optimality criterion) design generated by X was considered as the D -
optimal design, then the ratio of the determinants of the corresponding
information matrices, expressed as a percentage, is a measure of the good-
ness of this choice. If X is Dyp-optimal too, as it happens here, we call this
ratio D-efficiency of the best design w.r.t. the D -optimal one.

When the D-efficiency is large enough (for example greater than 85%),
the error of taking as D-optimal design the best design obtained by some
of the Dp-optimal ones, is small. We computed the range of the D -
efficiencies for different ranges of p and we distinguished the cases where
the D-efficiencies were greater than 85%. The output was listed in the
appendix (section 6.8).

The same is almost true for the A-optimality. In fact the D-optimal
designs found above are also A-optimal for all values p, except for p > 0.7. In
this case the A-optimal design is also obtained from the matrix Y by taking
a different permutation 123645 of its rows (section 6.1 in the appendix).
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The A-efficiency of the best design w.r.t. the A-optimal one is defined
in an analogous way, by considering the traces of the inverses of the infor-
mation matrices instead of the determinants.

If the A-efficiency is large enough (for example greater than 85%), the er-
ror of taking as A-optimal design the best (w.r.t. the A-optimality criterion)
design obtained by some of the Ag-optimal ones, is small. We computed
the range of the A-efficiencies for different ranges of p and we discriminated
the cases where the A-efficiencies were greater than 85%. The ocutput was
listed in the appendix {section 6.8).

4.2 The other cases

The D- optimal designs for the other cases were found and were listed in
the appendix (sections 6.2, 6.4). Similarly, the A- optimal designs for the
other cases were found and were listed in the appendix (sections 6.1, 6.3,
6.5). We now state the following general remarks.

1. For most of the cases examined (except forn = 9,k = 3 and n =
7, k = 5 ), there are two different, with respect to the equivalence,
Dg-optimal designs, which are Ap-optimal too. Only one of them
generates the D- or the A-optimal design.

2. For the case n = 9, k = 3 there are three different, with respect to the
equivalence, Dg-optimal designs, which are Ap-optimal too. Again,
only one of them generates the D- or the A-optimal design.

3. For the case n = 7, k = 5 there are three Dg-optimal designs and
four Ag-optimal ones, which are all different to each other.

4. There are cases (namely n =7, k=3, p<-09,n =17, k=4,
p>05n=7 k=25 p < —0.25), where the D- optimal design is
not Dp- optimal design.

5. Similarly, there are cases (namely n =7, k=3, p < —05,n=26,
k=4, p<-08 ,n=7 k=4, p<—-050rp>03,n=7,
k=5, p<—0.65or p> 0.75 ), where the A- optimal design is not
Ap- optimal design.

5 Conclusion

Summarizing the above, we can say the following:

For absolutely small values of p (say |p| < .4) the D-optimal design or
at least a design very close to it, can be constructed as follows: Begin from
the known Dy-optimal designs (D-optimal in the case without correlation)
and by rearranging its rows, find the best, with respect to D-optimality
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criterion. In most of the cases the total sum of the level changes (see 2.2)
attains its maximum (or near the maximum) value when p > 0, or its
minimum (or near the minimum) value when p < 0.

The same holds for the A-optimality.

For larger values of p the above process can not work. In these cases the
optimal designs can be taken from the appendix.

6 Appendix
6.1 A-optimal Designs for k =2

(Only those which differ from the corresponding D-optimal ones, which are
given in general form in the conjecture 2.5)2

24 stands for +1, — stands for -1
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n=5,p< -5 n=5,p>4| n=6,p>7||n=7,p>4|n=8,p>8

+ + + + + + + + + + + - |+ + +

+ + - + 4+ - + - + + + + |+ - -

+ - - + - + + + - + - - |+ + +

+ - + + + + + - + + 4+ + |+ - +

+ + + + - - + + + + - 4+ |+ + -

+ - - + + - |+ - +

+ - + |+ + -

+ -— -
n=9,p>.6 || n=10,7<p< 8 || n=10,p>.9 | n=11,p> .6
+ + + + + + + + - + + -
+ - - + - - + - + + + +
+ + + + + + + + + + - -
+ + - + - - + - - + + +
+ - + + + + + + + + - -
+ + - + - + + - - + + +
+ - + + + - + + + + - +
+ + 4+ + - + + - + + + -
+ - - + + - + + - + - +
+ - - + - + + + -
+ - +
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6.8 D- and A-efficiencies for different values of n, k, p

A -efficiency (%) |

[ ] = p | D-efficiency (%) |
p<—04 67 — 80 _
6 —04<p<0 80 — 97 83 - 97
0<p<05 8506 -
2 p>0.5 80 — 85 98 -99
10 T<p<li 9308 B 09
1 T<p<l 90 =97 3408
p< 03 50— 85
5 —03<p<0 85 — 95 85— 98
750 8095
5 <05 7585
6 -05<p<0 8-95 85— 97
2> 0 57—87 %699
p<0 88 — 98 _
3| 7 N 45— 83 90 — 98
p<0 7805
8 p>0 40— 83 9298
p<0 8506 -
9 p>0 45— 80 9 -99
p<0 8502
0<p<03 8504
10 p>03 76 — 85 97-99
p< 04 89— 85
6 —04<p<0 85 — 98 96 — 99
p>0 30 — 98
p<—02 6783 -
7 _02<p<0 83— 91 85— 98
4 7>0 8599 96 — 98
p<—05 _ 78 — 85
. —05<p<0 34-83 85 — 96
0<p<04 8505
p>04 78 — 85 98-99
< —02 82 - 99
5 | 7 _02<p<0 100 96 — 98
7> 0 160
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