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Abstract

Suppose S is a defining set of a symmetric 2-(v, k, A) design D where
A = 1 or 2; that is, D is a projective plane or a biplane. In this
paper, conditions under which the residual of S is a defining set of
the residual of D are investigated. As a consequence, inequalities
relating the sizes of smallest defining sets of D and of the residual of
D are obtained. The exact sizes of smallest defining sets of PG(2,5),
AG(2,5) and the three non-isomorphic 2-(10, 4, 2) designs are deter-
mined.

1 Introduction

A block design D = (V, B) is a set V of v elements (points), together with
a set B of b k-subsets (blocks) of V, such that each element of V' occurs in
precisely r blocks, for some positive integers v,b,r, k. If k < v, D is said to
be incomplete; if all the blocks of B are distinct, D is said to be simple.
Henceforth, designs discussed in this paper are assumed to be simple. If
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every t-subset of V occurs in precisely A, blocks of B, then D is a ¢-design
with parameters -(v, k, A¢).

If t = 2, then the design is said to be balanced. Fisher’s inequality states
that for any balanced incomplete block design (BIBD) b > v. When equal-
ity holds, the design is said to be symmetric. Suppose D = (V,B) is a
2-(v, k, A) symmetric design with blocks B = {By, By,...,B,}. Then D is
necessarily linked, that is, | B;NB;| = Afor i # j. The blocks B = B;\ B,,
i=1,2,...v—1, all have (constant) size £ — A and form the residual de-
sign D* = (V*,B8*) of D with respect to block B,; see for instance Street
and Wallis [16, page 388]. D* has parameters 2-(v — k, k — A, A). Similarly,
for any collections of blocks S C B such that B, ¢ S, define S*, the residual
of S with respect to By, by

S':{B,‘\Bu IB,’GS}.

There is thus a correspondence between collections of blocks S C B that do
not contain B, and collections of blocks S* C B*. In this paper, we apply
known results about this correspondence when A = 1,2 to the problem of
finding defining sets.

When X = 1, symmetric designs have parameters 2-(¢> + g+ 1,9+ 1,1). A
design with these parameters is generally known as a projective plane of
order g. The subfamily of Desarguesian projective planes will be denoted
by PG(2,q). Desarguesian projective planes are cyclic and are known to
exist whenever g is a prime or prime power. Residual designs of projective
planes are affine planes. The subfamily of Desarguesian affine planes will
be denoted by AG(2, q).

When A = 2, symmetric designs have parameters 2-(("';2) +1,g+22). A
design with these parameters is generally known as a biplane of order gq.
Biplanes of order g are known to exist whenever ¢ € {2,3,4,7,9,11}.

Definition 1.1 (K. Gray [7]) A set of blocks which is a subset of a unique
t-(v, k, A¢) design D is a defining set of that design. A defining set is
smallest if no defining set of D has fewer blocks.

Definition 1.2 Let Ty and Ty be collections of m k-subsets of V. If T\
and Ty contain precisely the same (including repetitions) t-subsets, then Ty
and T, are said to be mutually t-balanced. If T} and T3 are also disjoint
then (T1,T3) is a (v, k,t) trade of volume m = m(T).
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Definition 1.3 The foundation of a collection of blocks X, F(X), is the
set of elements of V covered by X. Observe that if T = (T1,T2) is a trade,
then F(T)) = F(T2).

If D = (V,B) is at-(v, k, \;) design, (T, T?) is a (v, k, t) trade and T° C B,
then the single collection T is often referred to as a trade in D. It is simple
to see that the collection of blocks (B \ T°) UT® also comprise a t-(v, k, A;)
design. There is a natural relationship between defining sets and trades in
a design.

Theorem 1.4 ([7]) Let D = (V,B) be a (simple) t-(v,k, \:) design and
S C B. Then S is a defining set of D if and only if S intersects each trade
in D. 0

Example 1.5 An example of the 2-(7,3,1) design PG(2,2) is F = (V, B)
where V = {1,...,7} and B = {124, 235, 346,457, 561, 672, 713}. Each of
the seven collections of four blocks from B with an element of V omitted,
is a trade of volume four. For instance, T} = {124,156,235,346} C B
trades with T, = {125, 146,234, 356}. Here F(T1) = {1,2,3,4,5,6}. Using
Theorem 1.4 or otherwise, it is simple to see that any set of three blocks of
B not containing a common element of V is a smallest defining set of F. O

Lemma 1.6 ([7]) If S is a defining set of D = (V,B) and p is an aulo-
morphism of B, then pS is a defining set of D. a

An immediate consequence of the previous lemma is that isomorphic de-
signs have isomorphic collections of defining sets. Hence, one need only
investigate defining sets of a single design in an isomorphism class.

Let D be a symmetric 2-(v, k, A) design with A = 1 or 2, and let S be a
defining set of D. In this paper, conditions under which the residual of S
is a defining set of the residual of D are investigated. Inequalities relating
the sizes of smallest defining sets of D and its residual D* are obtained.
The following theorem summarises the main results of this paper.

Theorem 1.7

(A) Assume g > 3. Let s, be the cardinality of a smallest defining set of a
projective plane P of order q. Let A be an affine plane (of order q) which
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is a residual of P and let s, equal the cardinalily of a smallest defining set
of A. Then
sa <8 <8+qg-—1

(B) Assume g > 2. Let sq be the cardinality of a smallest defining set
of a biplane D of order q. Let R be a residual of D and let s, equal the
cardinality of a smallest defining set of R. Then

sy — g < 84 < s+ (3/2)g + 10. 0

The general methods developed in Sections 2 and 3 will also be used to
obtain the sizes of various smallest defining sets given in Table 1. The
results for the smallest defining sets of PG(2,5) and AG(2,5) are new
and rely on some computation. The results for smallest defining sets of
G3,G3s, Hy, Hy and Hjs use only the theory developed in Section 3. These
latter results have previously been obtained by Greenhill and Street [11]
using exhaustive computation. The algorithm that they used is explained
in Greenhill [9, 10]. The author [4] has previously determined theoretically
all non-isomorphic smallest defining sets of G.

Table 1: Sizes of smallest defining sets discussed in this paper

| A=1 A=2 |
Parameters || 2-(31,6,1) | 2-(25,5,1) || 2-(16,86,2) 2-(10,4,2)
Design PG(2,5) | AG(2,5) ||G1|G2|Gs|H,| Hz | Hs
Size 11 10 9 7|7 |86 |5

2 Defining sets of projective and affine planes

Throughout this section, P = (V, B) denotes a projective plane of order g,
B, = L € B, and P* = A denotes the affine plane derived from P with
respect to L. Without loss of generality, let L = {1,2,...,9,¢+ 1}. Also,
B can be written as

{l.Xl, 2X2, cesy qu, (q + I)Xq+1, L},
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where iX; denotes the collection of ¢ blocks in B, other than L, that contain

ifor each i = 1,2,...,q + 1. In this way, the set of blocks B* of A can be

written as {X1,..., Xq+1} where each X; is a parallel class. The notation

iY; is used to represent a subset of blocks of iX;, that is, Y; is a subset of

blocks of the parallel class X; in A. Then S = Uf':"ll 1Y; is equivalent to
U‘H'l Y.

Now suppose that T* = (T%*,T%*) is a trade and T** is in A. Let T%* =
U] ¥ where Y;* C X;. Without loss of generality, we can write T** =
iasy Yb for some partial parallel classes Y%, and to ensure the labelling
is consistent with that used for the parallel classes of A, we impose the
condition that

(X; \ Y°) UY is a complete parallel class. (%)

Note that there is some flexibility in the labelling of the partial parallel
classes Y if Y;® = X; for at least two distinct i. Define T® = JI1] i¥;?
in the natural way. We show that T = (7°,T?) is a trade. Certainly
T NT® =0 as T" is a trade and so it suffices to show that 7* and T? are
mutually 2-balanced. Again, as T* is a trade, pairs of elements {j, k} with
Jyk ¢ L are contained in the same number of blocks of T* and T®. Thus
we need only consider pairs of elements containing some ¢ € L. However,
by (*), F(X: \ Y*) = F(X; \'Y?). This implies that F(Y;?) = F(Y}?) and
thus T is mutually 2-balanced. Thus we have proven the following result.

Lemma 2.1 If T°* is a trade in A, then T® is a trade in P. 0

Theorem 2.2 Suppose S is a defining set of P. Then (S\ {L})* is a
defining set of A.

Proof. By Theorem 1.4, S intersects every trade in P. Lemma 2.1 guar-
antees that (S\ {L})"* intersects every trade in A. Thus (S\ {L})* is a
defining set of A. 0

For the remainder of this section, let s, and s, equal the cardinalities of
smallest defining sets of P and A respectively.

Corollary 2.3 For ¢ > 2, s, < s,. Furthermore, if the automorphism
group of P is transitive on B, then s, < sp — 1.
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Proof. Let S be a smallest defining set of P. If the automorphism group
of P is transitive on B, then S can be chosen so as to contain L. By
Theorem 2.2, (S\{L})* is a defining set of A. Thus, s; < |[(S\{L})*] < sp
and s; < s, — 1if S contains L. 0

B. Gray, Hamilton and O’Keefe [5] have shown that the size of a smallest
defining set of PG(2,q) is at most (g2 + 3¢)/2. We can now establish the
first known upper bound for the size of a smallest defining set of AG(2, q).

Theorem 2.4 The size of a smallest defining set of AG(2,q) is at most
(4% +3g—2)/2.

Proof. Recall that a Desarguesian projective plane is cyclic and hence its
automorphism group is transitive on B. It then follows from Corollary 2.3
and the result of [5] that the size of a smallest defining set of AG(2,q) is
at most ((¢2 + 3¢)/2) — 1 = (¢® + 3¢ — 2)/2. o

A trade T in P does not necessarily induce a trade T°* in A as the following
example demonstrates.

Example 2.5 A projective plane PG(2,5) is Ps = (Vs, Bs) where
Vs = {0,1...,9,(1,6,...O,Q,ﬁ,‘Y,J,G,C},

and the blocks of Bs = L5 U (U2, B:) are listed in Table 2. Let A5 be the
residual of Ps with respect to Ls. Let T° = {Byg, B17,...,B25} C Bs, let
the transposition o = (§¢) and let T® = ¢T°. Then (T¢,T?) is a (27, 6,2)
trade of volume ten. However, T** = T®* and (T**, T%*) is certainly not a
trade. 0

Lemma 2.6 IfT° is a trade in P and T® contains neither L nor iX; for
any i € L, then T** is a trade in A.

Proof. Suppose T = (T°%,T?) is a trade. Without loss of generality, let
T° = U, i¥? and T® = Y%, iY?. Note that ¥; # X;. It is clear that
T* = (T%*,T") is a trade if 7% N T® = @. Suppose there exist blocks
C? C Y and C} C Y} such that Cf = C!. AsT is a trade, i # j. Since T°
does not contain :X¢, choose block iD¢ € iXf\iY;®. As (V, (B\T®)UT?) is
a projective plane, |iDf NjC}?| = 1. However, |iD#NjC?| = |iD¢NjC¢| = 0
which is a contradiction. D
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B; :a01234 | By; :v09dhl | B3y : €07egn
B; :a56789 | Bis : vvl5eim | Baj : €18aho
B3 :aabede | Bis:v26ajn | Bas : €29bik
By :afghij | Bis:v37bfo | B4 : €35¢jl
Bs : aklmno | Bys : v48cgk | Bgs : ed46dfm
Bg : B05afk | Big : 608bjm | Byg : (06cio
B7 . ﬂlﬁbgl Bl-( H 519cf'n. 327 H Cl7djk
Bg : B27chm | Byg : 025dgo | Bag : (28efl
By :838din | Byg : 036ehk | Bag : (39agm
Byo : f49¢jo | Bao : 647ail | Bsg : (45bhn
Ly : ofyéeC

Table 2: Blocks of the 2-(31,6,1) design Ps

Theorem 2.7 Suppose that S* is a defining set of A and that X* C B* is
chosen so that S* U X* intersects each of the parallel classes of A. Then
Sp = SUX U{L} is a defining set of P.

Proof. If T° is a trade in P containing L or iX; for some i, then T® N
(X U{L}) #£0. If T is a trade in P which contains neither L nor iX; for
each i € L, then T°* is a trade in A by Lemma 2.6. But as S* is a defining
set of A, T%* NS* # @ which implies that T NS # 0. Hence, Sp intersects
every trade in P and is thus a defining set of P. 0

K. Gray [8] showed that, for ¢ > 3, any smallest defining set of A contains
blocks from at least three distinct parallel classes.

Corollary 2.8 Forg> 3, s, <ss+q—1.

Proof. Construct a defining set of P, Sp, as in Theorem 2.7 with X*
chosen to contain as few blocks as possible; that is, X* contains precisely
one block from each of the parallel classes which do not intersect S*. Then,

5, <|SP|<sa+|X*|+1<8a+g—2+1=5,+g—1

as claimed. 0

The main result of this section comes from combining Corollary 2.3 with
an obvious generalisation of Corollary 2.8.
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Theorem 2.9 Forq > 3,
5a X8 <sat+qg+2—-c<sa+g-—1,

where ¢ equals the marimum number of parallel classes intersected by a
smallest defining set of A. ]

These inequalities are consistent with the results of [8]. In particular, s, >
29 — 1 and sp > 2q for ¢ > 3, and s, = 2¢ for ¢ = 3,4. We show that the
latter equality does not hold when ¢ = 5.

2.1 Smallest defining sets of PG(2,5) and AG(2,5)

In this subsection the sizes, s, 5 and s, 5, of smallest defining sets of
PG(2,5) and AG(2,5) respectively, are determined. Recall that PG(2,5),
notated by Ps, was introduced in Example 2.5. Also introduced were the
line Ls, and the affine plane As, the residual of P; with respect to Ls.

The computer program bds [2] was used to determine whether a defining
set of A5 consisting of nine blocks existed. The outcome of this exhaustive
search was that any defining set of As must consist of at least ten blocks,
that is, sq5 > 10. A defining set of Ps of cardinality eleven is exhibited
in Lemma 2.11 and it will be consequently shown that s, 5 = 10. We first
state the following lemma regarding the minimum volume of a trade in a
projective plane.

Lemma 2.10 ([3])) If T is a trade in a projective plane of order g, then
m(T) > 2g. 0

Lemma 2.11 Let S = {Bg, Bas, By, Bg, Bg, B11, B12, B14, Ba1, st}. Then
SU{Ls} is a defining set of the projective plane Ps in Ezample 2.5.

Proof. The element « is contained in four blocks of S U {Ls}. The set
of elements not occurring with « in SU {Ls} is {0,1,2,3,4,%,l,m,n,0}.
However, the pairs 0k, 0/, On, 0o, m2 and m1l are contained in S. Therefore
o, 0 and m are not collinear and blocks 01234 and aklmno are forced. As
five blocks containing 0 are determined, the block §08bjm is also forced.

Similarly, the element v is contained in four blocks of S U {Ls}. The set
of elements not occurring with 4 in SU {Ls} is {2,4,6,8,aq,c¢,9,J,k,n}.
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Also, the pairs ca,c2,c6,gn, kn are in known blocks (either S or blocks
subsequently forced). If v,¢,n occur together in a block of Ps, then the
blocks yc48jn and ya26kg are forced. But the pair ak € Bg which is in
S yielding a contradiction. Thus v, ¢,n are not collinear and the blocks
v26ajn and y48cgk are forced.

Continuing in the same manner, the element m does not yet occur with
elements ¢, 3,9, a, g, ¢, 4, 6,d, f. The pairs ad, af, a6, 4g, 43 are in the known
blocks and so if m,4 and a are collinear, then the block m4a(9e¢ is forced.
This yields a contradiction as the pair (e is already in Ls. Consequently,
m, 4 and a are not collinear and blocks €46dfm and (39agm are forced.

Now consider the elements 4, 1,9, ¢, n, 2,8, e,/ not yet occurring with f and
known pairs 8c, 84, 89, ce, n2, nl, ne. It is simple to see that blocks (28ef!
and §19¢fn are also forced. Finally, consider the elements 1,4,5,7,b, d, j,
k, h, n not yet occurring with ¢, and the known pairs 15, 14, 1n, 5k, 4d, Tn,
7b, Th. This forces the blocks (17djk and (45bhn.

Thus 22 blocks of Ps are determined, leaving nine unknown blocks remain-
ing. It is immediate from Lemma 2.10 that these nine blocks cannot contain
a trade. Hence SU {L;} is a defining set of Ps. 0

Theorem 2.12 The set of ten blocks S* = { B3, B3, B}, B, B3, B;,, Bi,
B34, B3,, B3g} is a smallest defining set of As.

Proof. That S* is a defining set of A follows from Theorem 2.2. Hence
Sq,5 < 10. But from the computer search using bds, sa 5 > 10. Thus
84,5 = 10 and S* is a smallest defining set of As. 1]

Theorem 2.13 The set of eleven blocks SU{Ls} introduced in Lemma 2.11
is a smallest defining set of Ps.

Proof. Lemma 2.11 shows that S U {Ls} is a defining set of Ps. As
Sa,5 = 10, sp,5 > 11 by Corollary 2.3. Hence S U {Ls} is indeed a smallest
defining set of Ps. D

Remark 2.14 If S* is a defining set of A, then S U {L} is not neces-
sarily a defining sel of P. For instance, it is simple to show that S* =
{B%, B3, B}, B} ,Bg,B3 ,Bj ,B},,B1,, B1,} is a (smallest) defining set of As.
However, SU{Ls} does not intersect the trade T® = {B¢,B17,...,Bas} of
Ezample 2.5.
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3 Defining sets of biplanes and their residuals

Throughout this section D = (V,B) denotes a biplane of order ¢ with
g > 2. The parameters of D are thus 2-(v,q + 2,2) where v = (?}?) + 1.
Let L = B, € Band R = D* = (V \ L,B*) denote the residual of B
with respect to L. Without loss of generality, let L = {1,2,...,q9 + 2}.
For 1 < i< j < ¢+2,ijB;; denotes the block in B other than L which
contains the pair of elements {i, j}. In this way,

B={ijB,"jIlSi<qu+2}U{L}.

Also, the set of blocks B* of R can be written as {B;; |1 < i< j < ¢+2}.
Suppose S C B\ {L}. Then, for some indexing set A of ordered pairs (3, j)
(1 < 4), § =Ux{iiBi,;}, and equivalently, S* = |J,{Bi,;}-

Example 3.1 It is well-known that a biplane G; = (V;, B1) of order four
can be easily constructed from the array A below. Let V; = {1,2,...,16}
and B; = }jl{A,-}, where, for each i € V1, A; consists of all the numbers
other than ¢ which occupy a square of A in the same row or column as 3.

112]3]4
5|6 [7]8
A_9101112
13[14[15] 16

It is a simple exercise to verify that G; is indeed a 2-(16,6,2) design as
claimed. Let L; = A; = {2,3,4,5,9,13}. The design H;, the residual of
G, with respect to Ly, has parameters 2-(10, 4, 2). o

In this section, we consider when a trade T® in D induces a trade 7°* in
R and vice versa.

Lemma 3.2 Suppose that T° is a trade in D, and that L ¢ T°. Fur-
ther suppose that for each x € L N F(T*), there ezist at least three blocks
containing = in B\ (T* U {L}). Then T** is a trade in R.

Proof. Let T° = |J,{ijB;;} for some indexing set of ordered pairs A.
Suppose that T* trades with T°. Then T® can be written as |J,{ijB?;}.
It is required to show that T* = (T, T**) = (Ur{Bi,;},Us{B%;)} is a
trade.
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As T is a trade, it follows that T* is mutually 2-balanced. If T* is not a
trade, then T%* NT?* # @ which implies that By, = Bg,q for some ordered
pairs (I, m), (p,q) € A, < m and p < q. There are four cases to consider.

Case I: | = p,m = q. In this case, B;;m = B{’,m and the block ImB; ., €
T4 N T® which contradicts the fact T is a trade.

Case 2: | = p,m # q or |l # p,m = q. Without loss of generality, assume
that ! = p,m # ¢ and so B ;m = Bpm = g’q. Now g € F(T*®). Therefore,
there exist at least three blocks in Z = B\ (T° U {L}) containing g. In
particular, a block jgBj,q (or gjB,,;) can be chosen in Z with j # m. Note
that j # p as pgBp q € T®. Now the set of blocks (B\ T*) U T® comprise a
biplane containing blocks j¢Bj,, and qu:’q. But Bpm = :,q, and so

|79Bj,q anBg,q| = |§¢Bj,q N PgBp,m| = 1 + |Bj,g N Bp,m| = 3
using {j,q} N {p, m} = 0. This is a contradiction.

Case 8: l<m=p<qorp<gqg=1< m. Without loss of generality,
assume that | < m = p < g and so0 Bim = By, = Bgﬂ. Now ¢ € F(T?).
Therefore, there exist at least three blocks in Z = B\ (T*U{L}) containing
g. In particular, a block jgB;,, (or ¢jBy,;) can be chosen in Z with j # L.
Note that j # p as pgBpq € T° Now the set of blocks (B \ T%) U T®
comprise a biplane containing blocks jgBj;, and Pqu,q- But Bip = Bg’q,
and so

Iquj’q nqu}l;,ql = |quJaq nqulnPl =1 + |Bj'q n B’)Pl =3
using {7, ¢} N {l,p} = 0. This is a contradiction.

Case 4: {l,m}n{p,q} = 0. Again, as there exist at least three blocks in
Z = B\ (T° U {L}) containing g, there is a block jgB;,q € Z (or qjBy,;)
with j ¢ {I,m}. Now the set of blocks (B \ T°) U T® comprise a biplane
containing blocks j¢Bj,q and pgB} ;. But By = B} ;, and so

l79Bj,q anBg,q| = |jqBj,q NlgBi,m| =1+ |Bj,g N Bim| = 3
using {j,¢} N {{,m} = 0. This is a contradiction.

Thus Cases 1, 2, 3 and 4 all lead to a contradiction and so T is a trade.
In particular, 7%* is a trade in R. 0

Example 3.3 Let T° = {Aj, As, A6, A7} C B; of Example 3.1. Then T
trades with 7® and T** trades with T°* where, written in full,

T = {{1,3,4,6,10,14},{1,2,4,7,11,15},{5,7,8,2, 10, 14},
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{5,6,8,3,11,15}}
T = {{1,4,2,7,10,14},{1,4,3,6,11,15},{5,8,3,6, 10, 14},
{5,8,2,7,11,15}},
T = {{1,6,10,14},{1,7,11,15},{7,8, 10,14}, {6,8,11,15}}, and
™ = {{1,7,10,14},{1,6,11,15},{6,8, 10,14}, {7,8,11,15}}.

It is interesting to verify that T° is an example of a trade that satisfies the
premises of Lemma 3.2. ]

In terms of defining sets of biplanes, Lemma 3.2 yields the following result.

Theorem 3.4 Suppose S* is a defining set of R. If X C B\ {L} is
such that each element of L occurs in at least three blocks of SU X, then
SUXU/{L} is a defining set of D.

Proof. Suppose Sp = SU X U {L} is not a defining set of D. Then there
exists a trade T® C B\ Sp. By Lemma 3.2, T®* is a trade in R such that
S* NT* = §. But S* is a defining set of R which is a contradiction. 0

Let sq and s, be the sizes of smallest defining sets of D and R respectively.
Let [z] denote the least integer greater than or equal to z.

Corollary 3.5 For g > 2, sq4 < s, +(3/2)g + 10.

Proof. Partition the set V into as many subsets of size four as possible.
Note that v = 0 (mod 4) for ¢ = 1,4 (mod 8). For ¢ = 0,2,3,5,6,7
(mod 8), we allow one group of size 2, 3, 3,2, 1, 1 respectively.

Without loss of generality let one subset of V of size four be G = {1, 2, 3,4}.
Each element of G is contained in three blocks of

X = {1231,2, 1331,3, 1431,4, 2332_3, 24By 4, 3433,4}.

For each subset R of size four (or less), construct a set Xz in a simliar way.
Let X =|Jgr Xr where R varies over all the subsets in the partition of V.
Then X C B\ {L} and each element of L is contained in at least three
blocks of X. By Theorem 3.4, if S* is a defining set of R, then SUX U{L}
is a defining set of D.

Now |X| < 6[(g + 2)/4]. Hence,

sa<s+|X|+1<s +6((g+2)/4+1)+1=s-+(3/2)g+10. D
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Of course the upper bound in Corollary 3.5 can be tightened considerably
when the structure of a particular smallest defining set of R is known. The
result of this generalisation is stated in Theorem 3.11.

As in Street and Street [15, page 261), the blocks of the residual of a biplane
can be placed in a (g + 1) x (¢ + 1) array A with empty diagonal cells so
that any two blocks have precisely one variety in common if they appear
in the same row or column of A. In fact, a row of A is obtained from the
set of residuals of all the blocks of D containing a common element of L.
The next example illlustrates this idea.

Example 3.6 Up to isomorphism, there is a unique biplane of order three
with parameters 2-(11,5,2). This design is cyclic. Let D be an example
of this design, based on the elements {0,1,2,...,9,a}, with starter block
L = 1237a. The residual of D with respect to L, is the 2-(6, 3,2) design
with blocks

B* = {459, 456, 056, 468, 589, 689, 049, 058, 069, 048}.

We arrange these blocks in the array A below so that any two blocks have
precisely one variety in common if they appear in the same row or column
of A.

*x | 459 | 468 | 068 | 069
459 | x | 056 | 689 | 048
A=|468|056| % |[049 | 589
058 | 689 [ 049 [ = | 456
069 | 048 | 589 | 456 | *

Let T°* = {459, 468, 058, 069}. Then T°* trades with T** = {059, 068, 458,
469}. T°* extends to T® = {13459, 17468, 1a058, 12069}.

We now recreate all the blocks of D using A. Recall that L = 1237a and
consider, for instance, the possible extensions of the block 056 € B*. Such
an extension necessarily intersects both 13459 and 17468 in two elements.
Five blocks in D containing the element 1 are known and hence 056 is
forced to extend to 37056. All the remaining blocks of D can be recreated
from A in this way. This illustrates the Hall-Connor theorem; see [15]. O

The reader can easily verify that in the previous example, T is not a trade

in D. In fact, how would one extend T®* to provide a possible trade mate
T for T*7 We see in the following lemma that, as long as one complete
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row of A is disjoint from a trade T°* in R, then it is indeed possible to
extend T so as to induce a trade (T, T®) with T¢ in D.

Lemma 3.7 Suppose that ¢ > 2, that T** is a trade in R = (V*,B") and
that there ezists a row of the array A associated with R disjoint from T°*.
Then T is a trade in D.

Proof. Let R be a row of A disjoint from 7°*. The extension of blocks
of R to blocks in D is known. The previous example illustrates how this
forces the remaining blocks in R to extend to blocks in D uniquely. Also,
R corresponds to a complete row in the array A’ corresponding to the
design (R\ T°*) U T**. Similarly, as R is disjoint from T®*, the extension
of (R\T**)UT®** to (D\T*)UT® is forced (uniquely). Clearly T*NT® = @
and so T is a trade in D. 0

Corollary 3.8 Suppose ¢ > 2 and that T** is a trade in R with m(T*) <
g+ 1. Then T*® is a trade in D.

Proof. Construct the array A from the blocks of B. As A contains ¢ + 1
rows and columns, there must exist a complete row of A disjoint from 7.
The result follws from Lemma 3.7. O

Theorem 3.9 Suppose S is a defining set of D = (V,B). Let z be an
arbitary element of L. Choose X C B\ {L} so that (SUX)\ {L} contains
the g + 1 blocks of D (other than L) which contain the element z. Then
(S\ {L})* U X" is a defining set of R.

Proof. Suppose (S\{L})*UX" is not a defining set of R. Then there exists
a trade T°* in R disjoint from (S\ {L})* U X*. However, as (SUX) \ {L}
contains the ¢+ 1 blocks of D with element z (other than L), there is a row
in A disjoint from T**. Hence T is a trade in D disjoint from S which is
a contradiction since S is a defining set of D. O

Corollary 3.10 For g > 2,s, < 54 +4.

Proof. Let S be a smallest defining set of D. Some element of L, z
say, will be contained in at least one block of S\ {L}. Choose X so that
(SUX)\ {L} contains the g+ 1 blocks of D (other than L) with element
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z. Then (S\ {L})* U X" is a defining set of R with cardinality no greater
than sg + q. 0

The main result of this section comes from generalising Corollaries 3.5 and
3.10.

Theorem 3.11 Let c¢; be the mazximum number of blocks in a smallest
defining set of D which contain a common element of L. Let S* be a
smallest defining set of R. Let co be the minimum number of blocks in a
set X such that each element of L occurs in at least three blocks of SU X.
Then for ¢ > 2,

$r—q<s—(g+1—-c1)<sa<s+c2+1<s+(3/2)g+10. D

3.1 Biplanes of order four and their residuals

There are three non-isomorphic 2-(16, 6,2) designs. We denote these de-
signs by G1, G2 and Gg; their blocks are given in Example 3.1 and Table 4.
The automorphism group of each of these designs is transitive on the sets of
blocks and points. The residuals of these designs are denoted by Hy, H; and
Hj. Fori=1,2,3,let g; and h; denote the size of a smallest defining set
of G; and H; respectively. A summary of known theoretical results [11, 4]
regarding the sizes of smallest defining sets of these six designs is given in
Table 3.

Table 3: Known theoretical results for the sizes of smallest defining sets

DeSigl‘l G1 Gg Ga H1 Hz Hs
Size 91=9g2<T|ga<T||h1<8|ha<6|h3<5

Greenhill [9] used the computer program bds to verify that these bounds
gave the exact sizes of smallest defining sets of these designs. It would be
of considerable interest to verify these results theoretically as was done in
(4] for the design G. Using the results developed in Section 3, theoretical
proofs for the sizes of smallest defining sets of Gy, Hy, H; and Hsz will
be presented. Unfortunately, the exact size of a smallest defining set of
G3 cannot be determined using only this method. The reason for this is
discussed at the end of this section.
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Table 4: The blocks of the 2-(16, 6, 2) designs G2 and G3

G2 G3
1 2 3 45 6| 1 23 4056
1 2 7 8 910 1 2 7 8 910
1 3 7111213} 1 3 7111213
1 4 8111415 1 4 8111415
1 5 9121416 1 5 91214 16
1 610131516 1 6 10 13 15 16
3 915 6 812 3 816 51011
31014 5 813 3 915 6 812
4 913 6 714 31014 4 913
41012 5 715| 4 716 6 911
316 2 71415 41012 5 715
31116 4 910 5 813 6 7 14
2 4 8121316 2 3 7141516
5 6 7 81116| 2 4 8121316
2 5 9111315 2 5 9111315
2 610111214 2 6101112 14

186



We commence with a classification of trades of volume four in symmetric
designs by Khosrovshahi, Majumdar and Widel [12]. The form in which
the following lemma is stated is easily inferred from [4].

Theorem 3.12 ([12],[4]) Suppose Ty is a subset of four blocks of a sym-
metric 2-(v, k, A) design. Then (T1,T2) is a trade of volume four if and
only if Ty can be written as

T1 = {50315355,50515455,50325455,50525356}, in which case
T; = {50515455, 50515356, S05253S5, 50525156},
where S; N S; = ] (i # ]), ‘Sll = |8 =... = |Sa| = (k - )\)/2 and
1So| = (3/\ - k)/2 O

One of the immediate consequences of this theorem is that a symmetric
2-(v, k, A) design contains a trade of volume four only if £ = A (mod 2)
and 3X > k. We shall investigate the case 3A = k and the next corollary is
an immediate consequence of Theorem 3.12.

Corollary 3.13 Suppose Ty is a subset of four blocks of a symmetric 2-
(v,3\,X) design D. Then T is a trade of volume four if and only if T} can
be written as

Ty = {5153S5s,515156,525455, 525356},
where 5; N S; = 0 (i # §) and |S1] = |Sa| = ... = |Se| = A. 0

From a symmetric design D = (V, B), it is possible to construct the dual
design D+. Suppose the blocks of B are labelled with the elements of V.
For each element v € V, define B to be the set of labels of blocks in B
which contain v. Define B+ = J, By and D* = (V, B*). Clearly D' and
D have the same parameters. The design D is said to be self-dual if D
is isomorphic to Dt. For a set X of blocks (points) in a symmetric design
D, let X+ denote the corresponding set of points (blocks) in the dual of
D, Dt.

The concept of ovals in symmetric designs was introduced by Assmus and
van Lint [1].

Definition 3.14 Let D be a symmetric design with parameters 2-(v, k, X).
The order of D is k — X. A collection S of points of the design is an arc
if no three points of S lie on a block. If D s of even order with A dividing
k, then an arc with (k + )/ points is called an oval.
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Assmus and van Lint define ovals for symmetric designs of other orders
but we will only be interested in symmetric designs with parameters 2-
(v,3), X). Ovals in these designs consist of four points. In particular, ovals
in a design with these parameters will be shown to correspond to trades of
volume four in the dual design.

Lemma 3.15 Let D be a symmetric 2-(v,3), X) design. Then T is a trade
of volume four in D if and only if T is an oval in DL.

Proof. Let T = {By, By, B3, Bs}. That B; N B; N By, = 0 for distinct i, j, k
is immediate from Corollary 3.13. It follows that T+ is an oval in D+,

Conversely, suppose that O = {1,2,3,4} is an oval in D*. Let O+ =T =
{B1,B2, B3, B4}. As D is linked, |B; N Bj| = X for distinct i,j. As O
is an oval, B; N B; N By = @ for distinct ¢, j,k. Let Sy = B, N By, S5 =
BiNB3,S3=B NBsy Sy =B;NB3,5 = BN By and 53 = BzN By. It
follows that |S;| = A and S;NS; = @ (i # j). Also T can be written as
{51535, 51546, 525455, 525356}, and is thus a trade of volume four in
D by Corollary 3.13. o

If T; is a trade of volume four in a symmetric 2-(v, k, ) design D with
3X > k, then by Theorem 3.12 there exists a non-empty set Sy contained
in each of the blocks of T;. Thus when 3A > k, Tj* is certainly not a subset
of an oval in D*.

We now focus our attention on the three 2-(16, 6, 2) designs G1, G2 and G3.
Each of these designs is self-dual. The structure of ovals in these designs has
been extensively studied. The classification used here is that of Roghelia
and Sane [14]. The number of ovals in G, G2 and Gj3 is 60,28 and 12
respectively. The ovals in G and G5 are listed in Table 5. G35 contains the
ovals in the columns headed by @1, @2 and Q3. G2 contains all the ovals
listed in Table 5.

Henceforth, X;, X, and X3 are sets of points that intersect every oval
in G1,G2 and G3 respectively. We show that |X;| > 9, |X2| > 7 and
|X3| > 6. As each of G;,G; and Gj3 is self-dual, it follows immediately
that g1 > 9,92 > 7 and g3 > 6. Let H; be the residual of G; with respect
to the block L;. Each trade of volume four in G;, which does not contain
L;, induces a trade of volume four in H;. This follows from Lemma 3.2 and
Corollary 3.13 (and conversely by Corollary 3.8). Thus we conclude that
h1 > 8,hz > 6 and h3 > 5. These results when combined with the results
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Table 5: The ovals of G2 and G3

@1

Q2

Qs

1 21116
12131415
56 910
3478

1 21215
11131416
4 6 810
3579

1 21314
11121516
4589
36 710

Q4

@s

Qs

Q7

16 911
2 51016
7 81214
3 41315

1 51011
2 6916
7 81315
3 41214

1 3 816
24711
9101415
5 61213

14716
2 3 811
9101213
5 61415

summarised in Table 3 show that g; = 9,92 =7,h; = 8,he = 6,h3 =5 and
that 6 < g3 < 7.

Lemma 3.16 ([4]) |X1]| > 9.

Proof. Defining sets and trades of volume four in G; are discussed in [4].
It is shown that there are precisely two non-isomorphic smallest defining
sets of G with nine blocks. In proving this result, it is shown that at least
nine blocks are required to intersect all the trades of volume four in Gj.
Thus | X;| > 9 by Lemma 3.15. a

Lemma 3.17 |X3| > 6 and |X2| > 7.

Proof. Let I, = {{1,2}, {11, 16}, {12,15}, {13,14}}, I. = {{5,9}, {6,10},
{3,7}, {4,8}}. Observe how the ovals of G3 can be decomposed into pairs of
members from each of I) and I,. For instance, the first oval of @,, namely
{1,2,11,16}, can be decomposed into {1,2} U {11, 16}. Furthermore, any
pair of members of I} comprise an oval in Q1,Q2 or @3 and similarly for
any pair of members of I5. It follows that X3 must contain elements from
at least three of the members in each of I and I5. That is, | X3| > 6.

In a similar manner, the ovals of G2 can be decomposed into pairs of mem-
bers from the collections I; and I, together with J; = {{1, 11}, {6,9},

{5,10}, {2,16}},J2 = {{7,8}, {12,14}, {13,15}, {3,4}}, K1 = {{1,16},
{3,8}, {4,7}, {2, 11}}, Kz = {{9, 10}, {14, 15}, {12,13}, {5,6}}.
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For instance, the first oval of Q4, {1,11,6,9} can be decomposed into
{1,11} U {6,9} from J;. Note that each of the ovals of Q; can be de-
composed in three different ways; for example,

{1,2,11,16} = {1,11} U {2,16} = {1,16} U {2,11} = {1,2} U {11, 16}.

We remark that a pair of distinct members chosen from one of the collec-
tions Iy, I, J1,J2, K1, K3 comprises an oval in G3. As each of the ovals of
Q1 can be decomposed in three ways, the total number of ovals in G3 (still)
equals 6(;) —2x4=28.

Recall the four ovals of @Q;:

| {1,2,11,16} | {12,13,14,15} | {5,6,9,10} | {3,4,7,8} |

X2 clearly contains at least one element from each of these ovals, for if
not, there is an oval of @; disjoint from X». Suppose X, contains precisely
one element from one of these ovals. As the automorphism group of G is
transitive on the points, assume, without loss of generality, that this is the
element 1 say. Consider the ovals in G2 which do not contain the element
1. Some of these are listed in the following array:

{11,16,12,15} | {2, 16,5, 10} | {2,11, 3,8}
{11,16,13,14} | {2,16,6,9} | {2,11,4,7}

Clearly, at least two elements from each of the second, third and fourth
ovals of Q; must be contained in X3. Thus |X2| > 7 as required. 0

It is of interest to count the total number of smallest defining sets of G.
We illustrate how this is done utilising the symmetries in G5, where the
details of the symmetry arguments are omitted. As before, suppose that
X3 is a set of 7 points that intersects all the ovals of G2. Then X3 contains
precisely one, two, two and two points from the four ovals of @,. Without
loss of generality, as the automorphism group of G is transitive, suppose
1 is the only member of X, from the first oval.

Now observe that there are four possible choices of two elements from the
second oval of Q; to be contained in X3, namely {12,13}, {12, 14}, {13,15}
and {14,15}. The choices {13,14} and {12, 15} are forbidden as {11, 13,
14,16} and {11,12, 15,16} are ovals of G2 and 1 is the only member of X,
from the first oval of @;. By symmetry arguments, we choose without loss
of generality, 12,13 € X,.
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Now consider the ovals in the previous array, together with the ovals
{14, 15,9, 10} and {14, 15, 5,6}. These imply that there are only two choices
for the two elements of the third oval of @;; namely, {5,9} and {6,10}.
Again, utilising the symmetries of G2 we can suppose that 5,9 € X.

Finally, consider the ovals in the previous array, together with {6,10,3,7}
and {6, 10,4,8}. It is simple to see that again there are only two choices
for the two elements of the fourth oval of Qy; namely, {3,4} and {7,8}.

Hence, in total, there are 16 x 4 x 2 x 2 = 256 possible ways X2z could
be constructed (all of which are isomorphic). More formally, we have the
following result which was also stated in [11]. The method employed in [11]
used extensive computation and some group theory.

Theorem 3.18 A smallest defining set of Gy contains seven blocks, is
unique to isomorphism and has 256 copies in G3. 0

Finally, we show in the following example why some of the premises of
Lemma 3.2 are necessary.

Example 3.19 Let T = (T°,T®) be the trade in G3 induced by the per-
mutation o = (15). So T® = oT®. We show that 7°* is not a trade in Hj,
the residual of G3 with respect to the block {1,2, 3,4, 5,6}. Explicitly,

T° = {{1,2,7,8,9,10},{1,3,7,11,12,13},{1,4,8,11,14,15},
{1,6,10,13, 15, 16}, {4,5,7, 10,12, 15}, {3,5,8, 10, 11, 16},
{5,6,7,8,13,14},{2,5,9,11,13,15}},

T* = {{7,8,9,10},{7,11,12,13},{8,11,14,15},{10,13,15,16},
{7,10,12, 15}, {8,10,11, 16}, {7,8, 13, 14}, {9,11,13,15}}

- Tb*.

Certainly, (T%*,T?*) is not a trade. We show that there is no trade mate
T°* such that (T°*,T°*) is a trade. Suppose that such a T°* exists.

First consider the fact that elements 7 and 11 occur in four blocks of T%*
each, and the pair {7,11} occurs in one block of T%*. This forces partial
blocks {7,11}, {7}, {7}, {7}, {11}, {11}, {11} to be in T°*. Next consider
the blocks in T%* containing elements 12,16 and 10. It is clear that at
the very least, the partial blocks {7,11,12},{7,12}, {7}, {7}, {11}, {11},
{11,186, 10}, {16, 10} are forced to be in T*.
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Now the pair {8, 16} must occur in a block of T°*. However, the pair {8, 12}
does not occur in a block of 7%*. Hence, by balancing the occurrences of 8
with elements 7 and 11 in T°*, we derive the contradiction {8,11,10,16} €
T¢*. Thus T** has no trade mate as claimed. 0

It is this type of single-transposition trade, which occurs in G3 but does
not induce a trade in H3, that causes g3 > | X3|; the details of a complete
analysis of this case can be found in [6].

4 Conclusion

If Dy is a design with a residual D}, then let 4 and p; represent the fraction
of blocks in the smallest defining sets of D4 and D} respectively. When Dy
is the symmetric block design formed from the points and hyperplanes of
PG(d,2), then it has been shown by the author in [3] that limg_,e pg =
limgy0 py = 1. When Dy = PG(2,d) and if limg,o ptg exists, then it
follows from Theorem 2.9 that limg_yoo ta = limgyeo p#y. Theorem 3.11
suggests a similar result for families of biplanes (if an infinite family of
these designs can be found!). The following two questions are posed:

1. Is there a family of symmetric designs Dy with limg_, o0 (54— p3) # 0?

2. Is there a symmetric design D such that the cardinality of a smallest
defining set of D is strictly less than the cardinality of a smallest
defining set of D*?
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